梁剛 趙崇宇 蘇凱 劉春生 肖坤 李剛 武軍凱 肖嘯 張立彬 張晨光
DOI:10.13925/j.cnki.gsxb.20230247
摘? ? 要:【目的】探明外源ABA處理對桃抗寒性的影響?!痉椒ā恳圆煌|(zhì)量濃度ABA(0、25、50、75、100 mg·L-1)噴施處理的21世紀(jì)和久碩1年生枝條為試驗(yàn)材料,分別進(jìn)行人工模擬低溫(0、-5、-10、-15、-20、-25、-30 ℃)處理,研究相對電導(dǎo)率和丙二醛(MDA)、可溶性蛋白、可溶性糖及內(nèi)源激素(ABA、GA、IAA、CTK)含量以及ABA/GA的差異。【結(jié)果】在低溫脅迫下,外源ABA處理的21世紀(jì)和久碩枝條可溶性蛋白、可溶性糖含量較對照均增加,丙二醛(MDA)含量和相對電導(dǎo)率均降低,ABA、GA、IAA、CTK含量及ABA/GA均呈無規(guī)律變化。用隸屬函數(shù)法對低溫脅迫下各項(xiàng)抗寒指標(biāo)進(jìn)行綜合評價,不同ABA質(zhì)量濃度對21世紀(jì)抗寒影響順序?yàn)?0>75>100>25>0 mg·L-1(CK),不同ABA質(zhì)量濃度對久碩抗寒影響順序?yàn)?0>25>75>100>0 mg·L-1(對照)?!窘Y(jié)論】50 mg·L-1ABA為最佳質(zhì)量濃度,能有效緩解凍害,提高抗寒性。
關(guān)鍵詞:桃;外源ABA;低溫脅迫;隸屬函數(shù);抗寒性
中圖分類號:S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)10-2136-13
Effect of exogenous ABA on the cold resistance of branches of 21st Century and Jiushuo peaches
LIANG Gang, ZHAO Chongyu, SU Kai, LIU Chunsheng, XIAO Kun, LI Gang, WU Junkai, XIAO Xiao, ZHANG Libin, ZHANG Chenguang*
(College of Horticulture Science and Technology, Hebei University of Science and Technology/Key Laboratory of Horticultural Germplasm Resources Discovery and Innovative Utilization, Hebei Province/Research and Development Center of Biological Breeding Application Technology of Horticultural Plants with Special Characteristics in Hebei University, Qinhuangdao 066000, Hebei, China)
Abstract: 【Objective】 This experiment was conducted to explore the effect of exogenous ABA treatments on peaches under low temperature stress in Qinhuangdao City, Hebei Province, China, in order to screen the optimal concentration for improving cold resistance. 【Methods】 In this study, annual branches of 21st Century and Jiushuo treated with different concentrations of ABA (0, 25, 50, 75 and 100 mg·L-1) were used as test materials for evaluation of cold resistance under different artificial low temperatures (0, -5, -10, -15, -20, -25, and -30 ℃). Relative electrical conductivity (REC) was determined with the method of Li Hesheng. MDA was determined with Thiobarbituric acid method using the kit was provided by Shanghai Enzyme Link Biotechnology Co. Ltd.; soluble protein content was determined with a BCA protein method kit (Shanghai Enzyme Link Biotechnology Co. Ltd.); and soluble sugar content was determined with plant soluble sugar kit (Shanghai Enzyme Link Biotechnology Co. Ltd.). The endogenous hormones of ABA, GA, IAA and CTK were determined using ELISA method with kits provided by Shanghai Enzyme Biotechnology Co. Ltd.. The differences in relative conductivity, MDA, soluble protein, soluble sugar and endogenous hormones (ABA, GA, IAA, CTK and ABA/GA) were investigated. 【Results】 The results showed that under low temperature stresses, the soluble protein and soluble sugar contents in 21st Century and Jiushuo branches treated with exogenous ABA increased compared with the control. 50 mg·L-1 ABA treatment had the highest increase compared with the control. MDA and relative conductivity increased slowly compared with the control. The contents of ABA, GA, IAA, CTK and ABA/GA ratio increased first and then decreased. The endogenous ABA content in 21st Century at 0 ℃ was the highest in the 75 mg·L-1 treatment and increased by 6.9% compared with the control; at -15 ℃, the highest ABA content was found in the 25 mg·L-1 treatment, which increased by 2.1% compared with the control; at -30 ℃, the highest ABA content was found in the 25 mg·L-1 treatment, which increased by 2.6% compared with the control. The ABA content in Jiushuo was the lowest in the 100 mg·L-1 treatment at 0 ℃, which was 5% lower than the control; the lowest ABA was found in the 50 mg·L-1 treatment at -15 ℃ and at -30 ℃, which was 9.1% and 7.4% lower than the control, respectively. The GA content in 21st Century was the lowest in 50 mg·L-1 treatment at 0 ℃, which was 3.8% lower than the control; the lowest GA content was found in 50 mg·L-1 treatment at -15 ℃, which was 3.2% lower than the control; GA content in 75 mg·L-1 treatment at -30 ℃ increased slightly and was 1.5% higher than in the control. The GA content in Jiushuo was the lowest in 75 mg·L-1 treatment at 0 ℃, which was 6.5% lower than the control at -15 ℃; the lowest GA content was found in 25 mg·L-1 treatment, which was 0.1% lower than the control at -30 ℃; the GA content in 25 mg·L-1 and 100 mg·L-1 treatments was increased slightly and was 0.7% higher than the control. The endogenous IAA content in 21st Century was the lowest in 25 mg·L-1 treatment at 0 ℃, about 2.9% lower than the control. At -15 ℃, the lowest IAA content was found in 100 mg·L-1 treatment, which was 4.2% lower than the control. At -30 ℃, the IAA content of the sample treated with 50 mg·L-1 ABA is less than 1% higher than the control. IAA content in Jiushuo was the lowest in 50 mg·L-1 treatment at 0 ℃, which was 4.8% lower than the control; at -15 ℃, the lowest IAA content was in 75 mg·L-1 treatment, which was 3.7% lower than the control; and at -30 ℃ the lowest IAA was found in 100 mg·L-1 treatment at, which was 1.5% higher than the control. In 21st Century, endogenous CTK content at 0 ℃ was found in the 100 mg·L-1 treatment, which increased 0.4% compared to the control; at -15 ℃, the lowest CTK content was found in the 100 mg·L-1 treatment, which increased 2.2% compared to the control; at -30 ℃, the lowest CTK content was found in the 100 mg·L-1 treatment, which decreased by 9.3% compared with the control. The endogenous CTK content of Jiushuo was the lowest in the 50 mg·L-1 treatment at 0 ℃, with an increase of 2.5% compared with the control; at -15 ℃, the lowest CTK was found in the 50 mg·L-1 treatment, with a decrease of 1.8% compared with the control; and the lowest CTK was in the 100 mg·L-1 treatment at -30 ℃, with a decrease of 7.9% compared with the control. In 21st Century, ABA/GA ratio at 0 ℃. 50 mg·L-1 treatment had the highest ABA/GA ratio, which 8.1% hgiher compared with the control; At -15 ℃, the ABA/GA ratio of 50 mg·L-1 treatment was the highest, increasing by 4.7% compared to the control; At -30 ℃, the ABA/GA ratio of 75 mg·L-1 treatment was the highest among all treatment groups, but it was 0.5% lower than the control group. The ABA/GA ratio of Jiushuo was the highest in the 75 mg·L-1 treatment at 0 ℃, with 4% increase over the control; the highest ABA/GA ratio was found in the 25 mg·L-1 treatment at -15 ℃; and the highest ABA/GA ratio was in the 25 mg·L-1 treatment at -30 ℃. At -30 ℃, the highest ABA/GA ratio was observed in the 25 mg·L-1 treatment, with an increase of 1.8% compared with the control. The cold resistance indexes under low temperature stress were comprehensively evaluated by the affiliation function method, and the order of cold resistance among ABA treatments for 21st Century was 50 mg·L-1>75 mg·L-1>100 mg·L-1>25 mg·L-1>0 mg·L-1 (control); for Jiushuo, the order was 50 mg·L-1>25 mg·L-1>75 mg·L-1>100 mg·L-1>0 mg·L-1 (control). 【Conclusion】 ABA treatment could affect the cold resistance of 21st Century and Jiushuo to different degrees. Based on the changes in physiological indexes, 50 mg·L-1 ABA treatment is the best, as it effectively alleviated frost damage and improve cold resistance.
Key words: Peach; Exogenous ABA; Low temperature stress; Affiliation function; Cold resistance
桃屬薔薇科李屬桃亞屬落葉果樹,起源于中國西部[1],具有較高的經(jīng)濟(jì)價值。其主要栽培范圍集中在我國北方地區(qū),而北方地區(qū)冬季氣候嚴(yán)寒,使桃樹經(jīng)常遭受低溫凍害和早春霜害侵襲,嚴(yán)重時造成樹體死亡,給桃樹生長發(fā)育和產(chǎn)業(yè)發(fā)展造成嚴(yán)重影響[2]。給果樹噴施相關(guān)激素是提高果樹抗寒力常用農(nóng)業(yè)措施,對抗寒育種、產(chǎn)業(yè)發(fā)展有著重要意義。目前研究較多的是脫落酸(abscisic acid,ABA),它是植物五大激素之一,可響應(yīng)逆境脅迫,提高植物抗逆性[3]。有相關(guān)試驗(yàn)報道外施ABA可代替低溫鍛煉,能提高植物抵抗低溫的能力[4]。近年來,大量研究表明利用外源ABA噴施處理植株是提高植物抗寒性的有效方法。徐琛[5]在低溫脅迫對冬小麥膜質(zhì)抗寒性影響的研究中,發(fā)現(xiàn)外源ABA處理均使小麥電導(dǎo)率、丙二醛(malondialdehyde,MDA)含量顯著降低。項(xiàng)洪濤等[6]對水稻研究發(fā)現(xiàn)外源ABA處理均降低MDA含量和相對電導(dǎo)率,促進(jìn)可溶性糖、可溶性蛋白、脯氨酸含量和保護(hù)酶活性提高。黃杏[7]在甘蔗中研究發(fā)現(xiàn)外源ABA處理后,能有效緩解低溫帶來的不利效應(yīng),降低MDA和赤霉素(gibberellic acid, GA)含量,提高脯氨酸、ABA含量和ABA/GA比值,從而提高抗寒性。伍寶朵等[8]研究發(fā)現(xiàn)外源ABA處理可提高胡椒抗氧化酶活性、降低H2O2和MDA含量以緩解低溫對其光系統(tǒng)活性的傷害,從而提高胡椒抵抗低溫脅迫的能力。
本研究于中國河北省秦皇島市昌黎縣進(jìn)行,2018—2022年間冬季最低溫為-21 ℃(來源于全球天氣網(wǎng))。在桃樹未進(jìn)入休眠前,通過對21世紀(jì)和久碩桃樹進(jìn)行不同質(zhì)量濃度ABA噴施處理,待樹體進(jìn)入休眠后采集1年生枝條,人工模擬不同低溫處理,研究不同質(zhì)量濃度ABA對枝條相對電導(dǎo)率和丙二醛(MDA)、可溶性蛋白、可溶性糖及內(nèi)源激素脫落酸(ABA)、赤霉素(GA)、生長素(indoleacetic acid,IAA)、細(xì)胞分裂素(cytokinin,CTK)含量及ABA/GA的影響。采用隸屬函數(shù)法進(jìn)行綜合評價,篩選出最佳ABA處理質(zhì)量濃度,為噴施ABA提高桃樹抗寒性提供參考依據(jù)。
1 材料和方法
1.1 試驗(yàn)材料
以21世紀(jì)和久碩桃為試驗(yàn)材料,定植于河北省秦皇島市昌黎縣河北科技師范學(xué)院石橋營基地桃種質(zhì)資源圃(119°23′ E,39°73′ S)。
1.2 試驗(yàn)處理
1.2.1? ? 外源ABA處理? ? 2022年9月27日下午,天氣晴朗無風(fēng),桃樹還未進(jìn)入落葉期(10月底11月初落葉期)。選取樹齡一致,樹體大小相近且生長勢旺盛的桃樹進(jìn)行區(qū)域分組,同一品種3株相鄰樹為1組,一共2個品種10組(30株樹),每組之間間隔1株樹,防止噴霧飄散的影響。用不同質(zhì)量濃度ABA(0、25、50、75、100 mg·L-1)對每組噴施處理。0 mg·L-1為清水處理,記為對照,每個ABA質(zhì)量濃度對應(yīng)一個組進(jìn)行噴施,樹葉滴水為宜。2022年10月6日下午,天氣晴朗無風(fēng),以同樣方法進(jìn)行第二次噴施處理。等到桃樹完全落葉,進(jìn)入休眠期后,取樣。ABA處理后的桃樹落葉期均較對照提前2~4 d。
1.2.2? ? 低溫脅迫處理? ? 2022年11月17日,隨機(jī)選取ABA處理后樹冠外圍和中部生長健壯、大小、粗度相似且無病蟲害的1年生枝條,每組取30枝,做好標(biāo)記帶回實(shí)驗(yàn)室。用清水沖洗表面污漬,濾紙吸干表面水分后,每組截取枝條中部長度一致(12 cm)、粗度相似(0.3~0.6 cm)枝條,凡士林封住兩端剪口,裝入聚乙烯自封袋中。每組分為7份,每份15根枝條,共計(jì)10組。放入已設(shè)置好的低溫冰箱中進(jìn)行低溫處理。設(shè)置溫度為0、-5、-10、-15、-20、-25、-30 ℃ 7個低溫處理,每個處理溫度保持24 h。0 ℃保持24 h后,將第1組枝條取出。溫度設(shè)置-5 ℃,再次保持24 h,將第2組枝條取出。以同樣方法依次處理至-30 ℃,將第7組枝條取出。每個溫度處理后取出枝條需放置于4 ℃冰箱,保持9 h,進(jìn)行各項(xiàng)生理指標(biāo)測定。
1.3 試驗(yàn)方法
1.3.1? ? 相對電導(dǎo)率測定? ? 相對電導(dǎo)率采用電導(dǎo)法[9]測定。將低溫處理后枝條避開芽眼剪成0.1 cm小段,準(zhǔn)確稱取0.2 g裝入50 mL錐形瓶中,加入15 mL去離子水,用封口膜封口,在室溫下浸泡12 h,用電導(dǎo)率儀測定浸提液初始電導(dǎo)率(C1)。測定完成后,再次用封口膜封口,沸水?。?00 ℃)30 min殺死植物組織,冷卻至室溫,測定最終電導(dǎo)率(C2)。每個處理3次重復(fù)。相對電導(dǎo)率/%=C1/C2×100。
1.3.2? ? 其他生理指標(biāo)測定? ? 丙二醛、可溶性蛋白、可溶性糖含量均參照試劑盒說明書(上海酶聯(lián)生物科技有限公司)測定,試劑盒測定說明書根據(jù)實(shí)際情況略微改動。內(nèi)源激素ABA、GA、IAA、CTK含量均采用酶聯(lián)免疫吸附法[10](Enzyme-linked immunosorbent as-says,簡稱ELISA法)測定,所用測定試劑盒購自于上海酶計(jì)生物科技有限公司。每個指標(biāo)測定需將處理好的樣品裝入96孔酶標(biāo)板,放入酶標(biāo)儀進(jìn)行吸光值測定。
1.4 數(shù)據(jù)分析與處理
試驗(yàn)數(shù)據(jù)利用Microsoft Excel 2007進(jìn)行處理,利用SPSS 26.0進(jìn)行相關(guān)性分析和差異顯著性分析。參照唐士勇[11]方法計(jì)算低溫半致死溫度(LT50)。運(yùn)用隸屬函數(shù)法計(jì)算各抗寒指標(biāo)隸屬度[12],若指標(biāo)與抗寒性呈正相關(guān),指標(biāo)隸屬度計(jì)算公式為:
Ui j=(Xi j-Xj min)/(Xj max-Xj min);
若指標(biāo)與抗寒性呈負(fù)相關(guān),指標(biāo)隸屬度計(jì)算公式為:
Ui j=1-(Xi j-Xj min)/(X j max-Xj min)。
式中Ui j表示i品種j指標(biāo)的抗寒隸屬函數(shù)值;Xi j表示i品種j指標(biāo)的測定值;Xj min表示j指標(biāo)的最小值;Xj max表示j指標(biāo)的最大值[13-14]。
2 結(jié)果與分析
2.1 不同質(zhì)量濃度ABA處理后在不同低溫下枝條相對電導(dǎo)率變化與半致死溫度(LT50)
不同質(zhì)量濃度ABA處理對不同低溫下21世紀(jì)和久碩相對電導(dǎo)率的影響見圖1、圖2。隨著溫度降低,處理質(zhì)量濃度增加,21世紀(jì)和久碩枝條相對電導(dǎo)率總體呈上升趨勢,上升速度均低于0 mg·L-1(對照)。在0~-30 ℃不同低溫下,21世紀(jì)相對電導(dǎo)率分別增加70.5%、51.6%、48.3%、52.6%、50.7%,對照相對電導(dǎo)率增加最大,為70.5%,50 mg·L-1處理枝條相對電導(dǎo)率增加最小,為48.3%。久碩相對電導(dǎo)率分別增加101.2%、84.5%、79.3%、67.2%、75.3%,對照增加最大,為101.2%,75 mg·L-1處理枝條相對電導(dǎo)率增加最小,為67.2%。
由表1可見,不同質(zhì)量濃度ABA處理21世紀(jì)和久碩的logistic方程擬合相關(guān)系數(shù)為0.811~0.951,均高于臨界相關(guān)系數(shù)(r=0.707,α=0.05),擬合度較好。LT50在-17.675~-29.731 ℃之間,由LT50可得出不同質(zhì)量濃度ABA對21世紀(jì)抗寒性影響的順序50 mg·L-1>75 mg·L-1>100 mg·L-1>25 mg·L-1>0 mg·L-1;對久碩抗寒性影響的順序?yàn)?0 mg·L-1>75 mg·L-1>100 mg·L-1>25 mg·L-1>0 mg·L-1。
將處理質(zhì)量濃度與相對電導(dǎo)率進(jìn)行相關(guān)性分析,結(jié)果表明質(zhì)量濃度與兩品種相對電導(dǎo)率均呈極顯著正相關(guān)(p<0.01),21世紀(jì)相關(guān)系數(shù)分別為0.953、0.935、0.932、0.967、0.975;久碩相關(guān)系數(shù)分別為0.949、0.939、0.932、0.901、0.905。
2.2 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條丙二醛含量的影響
不同質(zhì)量濃度ABA處理后在不同低溫下對丙二醛含量影響見圖3、圖4。隨著溫度下降,質(zhì)量濃度增加,21世紀(jì)枝條丙二醛含量呈升-降-升-降的變化趨勢,久碩枝條丙二醛含量整體呈上升的變化趨勢。當(dāng)溫度由0 ℃下降到-30 ℃時,21世紀(jì)丙二醛含量分別增加42.4%、50.0%、42.2%、43.7%、44.3%,50 mg·L-1處理枝條丙二醛含量增加較少,為42.2%。久碩丙二醛含量分別增加104.2%、85.4%、85.0%、102.7%、97.4%,50 mg·L-1處理枝條丙二醛含量增加較少,為85.0%。這些結(jié)果表明,一定質(zhì)量濃度ABA處理抑制21世紀(jì)和久碩丙二醛積累,且50 mg·L-1ABA效果最佳。
將處理質(zhì)量濃度與抗寒性進(jìn)行相關(guān)性分析,結(jié)果表明,21世紀(jì)相關(guān)系數(shù)為0.521、0.730、0.603、0.632、0.554,均呈顯著正相關(guān)(p<0.05),其中25、75、100 mg·L-1處理呈極顯著正相關(guān)(p<0.01);久碩相關(guān)系數(shù)為0.828、0.808、0.850、0.877、0.843,均呈極顯著正相關(guān)(p<0.01)。
2.3 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條可溶性蛋白含量的影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對可溶性蛋白含量的影響見圖5、圖6。隨著溫度降低,21世紀(jì)和久碩各質(zhì)量濃度ABA處理后枝條可溶性蛋白含量均呈升-降-升-降-升的變化趨勢。當(dāng)溫度由0 ℃下降到-30 ℃時,21世紀(jì)枝條可溶性蛋白含量分別增加30.5%、38.9%、39.7%、36.2%、34.2%,50 mg·L-1處理枝條可溶性蛋白含量幅度增加最大,為39.7%。久碩枝條可溶性蛋白含量分別增加59.4%、59.6%、62.3%、49.5%、54.5%,50 mg·L-1處理枝條可溶性蛋白含量增加幅度最大,為62.3%。這些結(jié)果表明一定質(zhì)量濃度ABA處理促進(jìn)21世紀(jì)和久碩可溶性蛋白含量積累,且50 mg·L-1ABA處理效果最佳。
將處理質(zhì)量濃度與抗寒性進(jìn)行相關(guān)性分析,結(jié)果表明處理質(zhì)量濃度在50 mg·L-1時,21世紀(jì)枝條可溶性蛋白含量與抗寒性呈顯著正相關(guān),相關(guān)系數(shù)為0.476(p<0.05)。0 mg·L-1(對照)處理,久碩枝條可溶性蛋白含量與抗寒性呈顯著正相關(guān),相關(guān)系數(shù)為0.468(p<0.05)。25 mg·L-1處理,久碩枝條可溶性蛋白含量與抗寒性呈極顯著正相關(guān),相關(guān)系數(shù)為0.596(p<0.01)。
2.4 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條可溶性糖含量的影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對可溶性糖含量的影響見圖7、圖8。隨著溫度降低,不同質(zhì)量濃度ABA處理21世紀(jì)枝條可溶性糖含量整體呈升-降-升-降-升的變化趨勢。當(dāng)溫度由0 ℃下降到-30 ℃,21世紀(jì)枝條可溶性糖含量分別增加13.9%、13.1%、15.2%、7.3%、6.7%。50 mg·L-1處理可溶性糖含量增加幅度最大,為15.2%。久碩枝條可溶性糖含量整體呈升-降-升-降-升的變化趨勢,可溶性糖含量分別增加13.1%、13.3%、13.6%、5.8%、4.8%,50 mg·L-1處理枝條可溶性糖含量增加幅度最大,為13.6%。這些結(jié)果表明一定質(zhì)量濃度ABA處理能促進(jìn)21世紀(jì)和久碩枝條可溶性糖含量積累,且50 mg·L-1ABA處理效果最佳。
2.5 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條ABA含量的影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對ABA含量的影響見圖9、圖10。21世紀(jì)整體ABA含量隨著溫度降低而降低。0 ℃時,ABA含量均高于對照,75 mg·L-1處理的ABA含量最高,較對照增加6.9%;-15 ℃時,25 mg·L-1處理的ABA含量最高,較對照增加2.1%;-30 ℃時,25 mg·L-1處理的ABA含量最高,較對照增加2.6%。久碩ABA含量整體隨著溫度降低而降低。0 ℃時,100 mg·L-1處理的ABA含量最低,較對照降低5%;-15 ℃時,50 mg·L-1處理的ABA含量最低,較對照降低9.1%;-30 ℃時,50 mg·L-1濃度ABA處理的ABA含量最低,較對照降低7.4%。
2.6 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條GA含量的影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對GA含量的影響見圖11、圖12。21世紀(jì)整體GA含量隨溫度降低而降低。0 ℃時,50 mg·L-1處理的GA含量最低,較對照降低3.8%;-15 ℃時,50 mg·L-1處理的GA含量最低,較對照降低3.2%;-30 ℃時,GA含量均高于對照,25 mg·L-1處理的GA含量最高,較對照增加7.6%。久碩整體GA含量隨溫度降低而降低。0 ℃時,整體GA含量均低于對照。75 mg·L-1處理的GA含量最低,較對照降低6.5%;-15 ℃時,75 mg·L-1處理的GA含量最高,較對照增加5%;-30 ℃時,整體GA含量均高于對照。75 mg·L-1處理的GA含量最高,較對照增加2.6%。
2.7 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條IAA含量的影響
不同質(zhì)量濃度ABA在不同低溫條件下對IAA含量的影響見圖13、圖14。21世紀(jì)整體IAA含量隨溫度降低呈下降趨勢。0 ℃時,25 mg·L-1處理的IAA含量最低,較對照降低2.9%;-15 ℃時,IAA含量均低于對照,整體隨濃度升高呈降低趨勢。100 mg·L-1處理的IAA含量最低,較對照降低4.2%;-30 ℃時,IAA含量整體均高于對照,100 mg·L-1處理的IAA的含量最高,較對照增加4.2%。久碩整體IAA含量隨溫度降低呈下降趨勢。0 ℃時,50 mg·L-1處理的IAA含量最低,較對照降低4.8%;-15 ℃時,75 mg·L-1處理的IAA含量最低,較對照降低3.7%;-30 ℃時,IAA含量均高于對照,25 mg·L-1處理的IAA含量最高,較對照增加9.5%。
2.8 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條CTK含量影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對CTK含量的影響見圖15、圖16。21世紀(jì)整體CTK含量隨溫度降低而下降,呈現(xiàn)隨著質(zhì)量濃度升高先升高后降低的趨勢。0 ℃時,CTK含量均高于對照。50 mg·L-1處理的CTK含量最高,較對照增加7.6%;-15 ℃時,CTK含量差異不顯著;-30 ℃時,CTK含量均低于對照。100 mg·L-1處理的CTK含量最低,較對照降低9.3%。久碩整體CTK含量隨溫度降低而下降,隨著質(zhì)量濃度增加呈升-降-升-降的趨勢。0 ℃時,CTK含量均高于對照,75 mg·L-1處理的CTK含量最高,較對照增加8.8%;-15 ℃時,25 mg·L-1處理的CTK含量最高,較對照增加4.3%;-30 ℃時,100 mg·L-1處理的CTK含量最低,較對照降低7.9%。
2.9 不同質(zhì)量濃度ABA處理后在不同低溫下對枝條ABA/GA比值的影響
不同質(zhì)量濃度ABA處理在不同低溫條件下對ABA/GA比值的影響見圖17、圖18。21世紀(jì)的ABA/GA比值隨溫度降低整體呈上升趨勢,在0 ℃時,50 mg·L-1處理的ABA/GA比值最高,較對照增加8.1%,差異顯著。-15 ℃時,50 mg·L-1處理的ABA/GA比值最高,較對照增加4.7%。-30 ℃時,ABA/GA比值均低于對照。50 mg·L-1處理的ABA/GA比值最低,較對照降低9.4%。久碩ABA/GA比值隨溫度降低整體呈先升后降的趨勢。0 ℃時,75 mg·L-1處理的ABA/GA比值最高,較對照增加4%。-15 ℃時,25 mg·L-1處理的ABA/GA比值最高,較對照增加1.1%。-30 ℃時,25 mg·L-1處理的ABA/GA比值最高,較對照增加1.8%。
2.10 不同質(zhì)量濃度ABA處理后桃枝條抗寒性綜合評價
單一的指標(biāo)很難全面反映植物綜合抗寒能力,用多個指標(biāo)評價綜合能力比單一指標(biāo)更為可靠[15]。運(yùn)用隸屬函數(shù)平均值能更全面、客觀地反映不同桃品種的抗寒能力[16]。本研究中以10個抗寒指標(biāo)隸屬度的平均值對2個桃品種不同濃度ABA處理后枝條抗寒性進(jìn)行綜合評價,綜合指標(biāo)平均隸屬值度越大,抗寒性越強(qiáng),反之抗寒性越弱。結(jié)果如表2所示,21世紀(jì)枝條經(jīng)過不同質(zhì)量濃度ABA處理的平均隸屬度值在0.504~0.514之間,平均隸屬度值均比對照高,其中50 mg·L-1ABA處理的平均隸屬度值最大,根據(jù)平均隸屬度值大小,不同質(zhì)量濃度ABA抗寒影響順序?yàn)?0 mg·L-1>75 mg·L-1>100 mg·L-1>25 mg·L-1>0 mg·L-1。久碩枝條不同質(zhì)量濃度ABA處理的平均隸屬度值在0.492~0.510之間,平均隸屬度值均比對照高,50 mg·L-1ABA處理的平均隸屬度值最大。根據(jù)平均隸屬度值大小,不同質(zhì)量濃度ABA抗寒影響順序?yàn)?0 mg·L-1>25 mg·L-1>75 mg·L-1>100 mg·L-1>0 mg·L-1(對照)。
3 討 論
在自然界中,植物正常生長發(fā)育需要適宜的溫度,超過致死溫度就會影響植物發(fā)育甚至死亡。低溫脅迫下,植物細(xì)胞膜透性增大,電解質(zhì)外滲率升高,枝條組織細(xì)胞膜的功能損傷越來越嚴(yán)重,電導(dǎo)率發(fā)生變化[17]。電導(dǎo)率的變化能反映細(xì)胞膜受傷害程度,結(jié)合Logistis方程計(jì)算出的LT50可用于比較植物抗寒性[18]。本試驗(yàn)研究結(jié)果表明不同質(zhì)量濃度ABA處理21世紀(jì)和久碩均能降低低溫脅迫下枝條相對電導(dǎo)率上升速度,且50 mg·L-1處理的21世紀(jì)上升速度最小,75 mg·L-1處理的久碩上升速度最小,與孫慶玲等[19]研究結(jié)果中的狗牙根表現(xiàn)一致,抗寒性強(qiáng)的品種最適ABA濃度高于抗寒性敏感品種。
丙二醛(MDA)是膜質(zhì)過氧化的最終分解產(chǎn)物,其含量是判斷細(xì)胞膜是否被氧化的一個重要依據(jù)[20],果樹上眾多研究表明MDA含量隨著脅迫溫度降低均有不同程度增加[21-23],MDA變化可以反映果樹遭受逆境傷害的程度[24]。楊曉宇[25]的研究結(jié)果表明,3個扁桃品種葉片和枝條內(nèi)的MDA含量變化始終是抗寒性弱的品種晉扁2號最高,抗寒性強(qiáng)的品種英吉沙最低。說明MDA含量高,抗寒能力較弱,受凍害較嚴(yán)重;MDA含量低,抗寒能力較強(qiáng),受凍害較輕。本試驗(yàn)中經(jīng)過不同質(zhì)量濃度ABA處理的21世紀(jì)和久碩在低溫脅迫下枝條MDA含量均不同程度增加。50 mg·L-1處理的21世紀(jì)和久碩枝條MDA含量增加幅度最小,表明50 mg·L-1處理可以抑制枝條MDA積累,減輕毒害作用。
可溶性蛋白、可溶性糖均屬于細(xì)胞滲透調(diào)節(jié)物質(zhì),負(fù)責(zé)維持細(xì)胞質(zhì)與外界環(huán)境平衡,使細(xì)胞膜不受傷害。許多研究表明,滲透物質(zhì)積累越多,植物抗寒性越強(qiáng),反之,則弱。噴施ABA可促進(jìn)植物體內(nèi)滲透調(diào)節(jié)物質(zhì)積累[26],從而提高抗寒性。本試驗(yàn)中經(jīng)過不同質(zhì)量濃度ABA處理的21世紀(jì)和久碩在低溫脅迫下枝條可溶性蛋白、可溶性糖含量均不同程度增加,這與紀(jì)環(huán)宇等[27]研究外源ABA處理對低溫脅迫下越橘花期和幼果期中可溶性糖、可溶性蛋白含量變化趨勢相似。50 mg·L-1處理的21世紀(jì)和久碩枝條可溶性蛋白、可溶性糖含量增加幅度最大。表明50 mg·L-1處理可以更好促進(jìn)枝條滲透調(diào)節(jié)物質(zhì)積累,提高抗寒性。
內(nèi)源激素(ABA,GA,IAA,CTK)對植物自身生長、發(fā)育、成熟等所有生理過程均有調(diào)控作用[28]。植物生長調(diào)節(jié)劑可直接或間接影響植物內(nèi)源激素含量。前人研究發(fā)現(xiàn),脫落酸(ABA)可通過正向反饋機(jī)制進(jìn)一步合成ABA,增強(qiáng)信號轉(zhuǎn)導(dǎo)途徑,讓植物更好地適應(yīng)脅迫環(huán)境[29]。外施ABA能誘導(dǎo)植物抵御低溫,有效改變植物體內(nèi)激素平衡關(guān)系,使植物各項(xiàng)生理指標(biāo)發(fā)生變化,提高抗寒性[30-31]。王興等[32]在自然條件下對不同抗寒性冬小麥的研究指出,抗寒性強(qiáng)的東農(nóng)冬麥1號各器官中的ABA、ZR、IAA含量均高于抗寒性弱的濟(jì)麥22,對冬小麥安全越冬起重要作用的內(nèi)源激素是ABA。有報道說明ABA/GA更能代表植株抗寒性強(qiáng)弱[33],羅正榮等[34]研究指出,植物膜透性半致死溫度與葉片內(nèi)ABA/GA比值呈線性相關(guān),ABA/GA比值高,抗寒力增強(qiáng);ABA/GA比值降低,則抗寒力下降。說明植株體內(nèi)多種激素不同配比也能調(diào)節(jié)抗寒性[35]。本試驗(yàn)中不同質(zhì)量濃度ABA處理的21世紀(jì)和久碩在低溫脅迫下枝條內(nèi)源激素(ABA、GA、IAA、CTK)含量均出現(xiàn)不同變化,且無顯著變化規(guī)律。ABA/GA比值則總體呈上升趨勢,與楊文莉等[36]研究外源ABA對輪臺白杏枝條內(nèi)源激素含量影響的結(jié)果一致。
綜合各項(xiàng)生理指標(biāo),經(jīng)方差分析,除可溶性糖含量外,各指標(biāo)均有顯著差異性??扇苄蕴呛繜o差異性可能是對處理濃度不敏感所致。隸屬函數(shù)分析,久碩平均隸屬函數(shù)值總體比21世紀(jì)的隸屬函數(shù)值低,這可能是久碩本身比21世紀(jì)耐寒(試驗(yàn)基地中大部分21世紀(jì)桃樹均受到一定的凍害,比如樹干卷曲,甚至少部分出現(xiàn)樹干凍裂現(xiàn)象,而久碩并未發(fā)現(xiàn)類似凍害現(xiàn)象。且兩個品種桃樹栽培地點(diǎn)相鄰,均位于試驗(yàn)基地中部)。但自然溫度下的植物生長受多種因素影響,人工模擬溫度并不能完全準(zhǔn)確反映植物抗寒性,具體有待進(jìn)一步研究。
4 結(jié) 論
50 mg·L-1ABA處理21世紀(jì)和久碩的各抗寒指標(biāo)顯著優(yōu)于對照及其他處理,效果最佳。生產(chǎn)上可借鑒此ABA處理質(zhì)量濃度噴施桃樹以抵御低溫凍害。
參考文獻(xiàn) References:
[1] 張立彬,王印肖. 河北林木種質(zhì)資源[M]. 北京:中國林業(yè)出版社,2015:231-248.
ZHANG Libin,WANG Yinxiao. Tree germplasm resources in Hebei[M]. Beijing:China Forestry Publishing House,2015:231-248.
[2] 王力榮,朱更瑞,左覃元. 中國桃品種需冷量的研究[J]. 園藝學(xué)報,1997,24(2):194-196.
WANG Lirong,ZHU Gengrui,ZUO Qinyuan. Studies on the chilling requirement of peach varieties[J]. Acta Horticulturae Sinica,1997,24(2):194-196.
[3] 玄祖迎. 滇楊(Populus yunnanensis)對增強(qiáng)紫外輻射、干旱和噴施脫落酸的生態(tài)生理響應(yīng)[D]. 成都:中國科學(xué)院研究生院(成都生物研究所),2007.
XUAN Zuying. Ecophysiological responses of Populus yunnanensis to supplemental ultraviolet-B,drought and exogenous abscisic acid[D]. Chengdu:Graduate School of Chinese Academy of Sciences (Chinese Academy of Sciences),2007.
[4] LI C Y,JUNTTILA O,ERNSTSEN A,HEINO P,PALVA E T. Photoperiodic control of growth,cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes[J]. Physiologia Plantarum,2003,117(2):206-212.
[5] 徐琛. 外源ABA對低溫下冬小麥膜質(zhì)抗寒性的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.
XU Chen. Impacts of ABA on cold resistance of membrane lipid in winter wheat under cold stress[D]. Harbin:Northeast Agricultural University,2014.
[6] 項(xiàng)洪濤,齊德強(qiáng),李琬,鄭殿峰,王月溪,王彤彤,王立志,曾憲楠,楊純杰,周行,趙海東. 低溫脅迫下外源ABA對開花期水稻葉鞘激素含量及抗寒生理的影響[J]. 草業(yè)學(xué)報,2019,28(4):81-94.
XIANG Hongtao,QI Deqiang,LI Wan,ZHENG Dianfeng,WANG Yuexi,WANG Tongtong,WANG Lizhi,ZENG Xiannan,YANG Chunjie,ZHOU Hang,ZHAO Haidong. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress[J]. Acta Prataculturae Sinica,2019,28(4):81-94.
[7] 黃杏. 外源ABA提高甘蔗抗寒性的生理及分子機(jī)制研究[D]. 南寧:廣西大學(xué),2012.
HUANG Xing. Study on physiological and molecular mechanism of cold resistance enhanced by exogenous ABA application in sugarcane[D]. Nanning:Guangxi University,2012.
[8] 伍寶朵,崔鑫,胡麗松,范睿,朱春梅,楊建峰,郝朝運(yùn). 葉面噴施外源ABA對胡椒抗寒生理生化及ABA信號轉(zhuǎn)導(dǎo)相關(guān)基因的影響[J]. 南方農(nóng)業(yè)學(xué)報,2020,51(11):2764-2772.
WU Baoduo,CUI Xin,HU Lisong,F(xiàn)AN Rui,ZHU Chunmei,YANG Jianfeng,HAO Chaoyun. Effects of exogenous foliar spraying ABA on genes related to cold resistance physiology,biochemistry and ABA signal transduction of black pepper[J]. Journal of Southern Agriculture,2020,51(11):2764-2772.
[9] 郭燕,張樹航,李穎,張馨方,韓斌,王廣鵬,楊陽. 我國幾個板栗品種抗寒性綜合評價[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2019,24(4):52-63.
GUO Yan,ZHANG Shuhang,LI Ying,ZHANG Xinfang,HAN Bin,WANG Guangpeng,YANG Yang. Comprehensive evaluation on the cold resistance of several main Chinese chestnut cultivars[J]. Journal of China Agricultural University,2019,24(4):52-63.
[10] 赫冬梅,胡國公,穆琳. 煙草內(nèi)源激素的酶聯(lián)免疫吸附法(ELISA)測定[J]. 煙草科技,2000,33(5):41-42.
HE Dongmei,HU Guogong,MU Lin. Determination of endogenous hormones in tobacco by enzyme-linked immunosorbent assay (ELISA)[J]. Tobacco Science & Technology,2000,33(5):41-42.
[11] 唐士勇. Logistic方程在果樹半致死溫度測定中的應(yīng)用[J]. 北方果樹,1993(4):23-24.
TANG Shiyong. Application of logistic equations in the determination of semi-lethal temperature of fruit trees [J]. Northern Fruits,1993(4):23-24.
[12] 張文娥,王飛,潘學(xué)軍. 應(yīng)用隸屬函數(shù)法綜合評價葡萄種間抗寒性[J]. 果樹學(xué)報,2007,24(6):849-853.
ZHANG Wene,WANG Fei,PAN Xuejun. Comprehensive evaluation on cold hardiness of Vitis species by Subordinate Function (SF)[J]. Journal of Fruit Science,2007,24(6):849-853.
[13] 馮英慧,悅沖,樊保國. 山西省部分毛桃品種的抗寒性評價[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(4):139-142.
FENG Yinghui,YUE Chong,F(xiàn)AN Baoguo. Evaluation of cold resistance of some hairy peach varieties in Shanxi Province[J]. Jiangsu Agricultural Sciences,2018,46(4):139-142.
[14] 董婧妍. 河北省桃品種凍害調(diào)查及部分品種抗寒力評價[D]. 秦皇島:河北科技師范學(xué)院,2022.
DONG Jingyan. Investigation on freezing injury of peach varieties in Hebei Province and evaluation of cold resistance of some varieties[D]. Qinhuangdao:Hebei Normal University of Science & Technology,2022.
[15] 趙國棟,趙同生,李春敏,付友,張新生. 11個蘋果野生砧木品種低溫處理抗性指標(biāo)的綜合評價[J]. 西北林學(xué)院學(xué)報,2018,33(6):145-151.
ZHAO Guodong,ZHAO Tongsheng,LI Chunmin,F(xiàn)U You,ZHANG Xinsheng. Comprehensive evaluation on cold resistance of eleven wild apple rootstocks[J]. Journal of Northwest Forestry University,2018,33(6):145-151.
[16] 王召元,田啟航,常瑞豐,劉國儉,陳湖,李永紅. 桃不同品種對低溫脅迫的生理響應(yīng)及評價[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2022,27(2):66-77.
WANG Zhaoyuan,TIAN Qihang,CHANG Ruifeng,LIU Guojian,CHEN Hu,LI Yonghong. Physiological response and evaluation of different peach varieties under low temperature stress[J]. Journal of China Agricultural University,2022,27(2):66-77.
[17] 陳同森,古麗江,張東亞,郭靖,盧明艷. 基于隸屬函數(shù)法的3個觀賞樹種抗寒性綜合評價[J]. 防護(hù)林科技,2022(5):47-52.
CHEN Tongsen,GU Lijiang,ZHANG Dongya,GUO Jing,LU Mingyan. Comprehensive evaluation on cold hardiness of three ornamental species by subordinate function[J]. Protection Forest Science and Technology,2022(5):47-52.
[18] 姜慧,徐迎春,李永榮,翟敏. 香櫞不同品系耐寒性的研究[J]. 園藝學(xué)報,2012,39(3):525-532.
JIANG Hui,XU Yingchun,LI Yongrong,ZHAI Min. The study on cold resistance of different Citrus medica strains[J]. Acta Horticulturae Sinica,2012,39(3):525-532.
[19] 孫慶玲,李培英,孫宗玖,阿不來提. 外施脫落酸對不同抗寒性狗牙根品種的滲透調(diào)節(jié)物質(zhì)響應(yīng)研究[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報,2012,35(2):87-92.
SUN Qingling,LI Peiying,SUN Zongjiu,ABULAITI. Studies on response of spraying exogenous ABA to osmotic adjustment substance of bermudagrass varieties with different cold resistance[J]. Journal of Xinjiang Agricultural University,2012,35(2):87-92.
[20] VELIKOVA V,YORDANOV I,EDREVA A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:Protective role of exogenous polyamines[J]. Plant Science,2000,151(1):59-66.
[21] 趙雪輝,陳雙建,成繼東,郭華,曲雪松,安棟,李智. 3個桃品種抗寒性分析研究[J]. 果樹資源學(xué)報,2020,1(6):14-19.
ZHAO Xuehui,CHEN Shuangjian,CHENG Jidong,GUO Hua,QU Xuesong,AN Dong,LI Zhi. Analysis of cold resistance on three peach cultivars[J]. Journal of Fruit Resources,2020,1(6):14-19.
[22] 魏鈺,郭春會,張國慶,孟慶超,郭改改. 我國幾個扁桃種抗寒性的研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2012,40(6):99-106.
WEI Yu,GUO Chunhui,ZHANG Guoqing,MENG Qingchao,GUO Gaigai. Studies on cold-resistance of several Chinese almond species[J]. Journal of Northwest A & F University (Natural Science Edition),2012,40(6):99-106.
[23] 胡春霞,王麗,湯杰. 低溫對南果梨的生理生化指標(biāo)的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,2009,40(3):349-352.
HU Chunxia,WANG Li,TANG Jie. Effect of low temperature on physiological indicators of Nanguopear[J]. Journal of Shenyang Agricultural University,2009,40(3):349-352.
[24] 王樹剛,王振林,王平,王海偉,李府,黃瑋,武玉國,尹燕枰. 不同小麥品種對低溫脅迫的反應(yīng)及抗凍性評價[J]. 生態(tài)學(xué)報,2011,31(4):1064-1072.
WANG Shugang,WANG Zhenlin,WANG Ping,WANG Haiwei,LI Fu,HUANG Wei,WU Yuguo,YIN Yanping. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress[J]. Acta Ecologica Sinica,2011,31(4):1064-1072.
[25] 楊曉宇. 扁桃枝葉生理指標(biāo)與抗寒性相關(guān)性研究[D]. 太原:山西大學(xué),2010.
YANG Xiaoyu. Study on the correlation between physiological index of shoots and leaves of almond and its cold-resistance[D]. Taiyuan:Shanxi University,2010.
[26] 王一靜,克熱木·伊力,肖坤. 外源脫落酸處理對庫爾勒香梨抗寒性的影響[J]. 經(jīng)濟(jì)林研究,2015,33(3):13-19.
WANG Yijing,Karim·Ali,XIAO Kun. Effects of exogenous abscisic acid (ABA) on cold resistance of Korla fragrant pear[J]. Nonwood Forest Research,2015,33(3):13-19.
[27] 紀(jì)環(huán)宇,劉曉嘉,唐雪東,王明月,陳國雙,劉海瀛. 外源ABA對低溫脅迫下越橘花期和幼果期抗寒性的影響[J]. 北方園藝,2023(1):27-33.
JI Huanyu,LIU Xiaojia,TANG Xuedong,WANG Mingyue,CHEN Guoshuang,LIU Haiying. Effects of exogenous ABA on cold resistance of blueberry at flowering stage and young fruit stage under low temperature stress[J]. Northern Horticulture,2023(1):27-33.
[28] KATAOKA K,SUMITOMO K,F(xiàn)UDANO T,KAWASE K. Changes in sugar content of Phalaenopsis leaves before floral transition[J]. Scientia Horticulturae,2004,102(1):121-132.
[29] 鄒琦. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國農(nóng)業(yè)出版社,2000:6-123.
ZOU Qi. Experimental guide to plant physiology[M]. Beijing:China Agriculture Press,2000:6-123.
[30] 吳耀榮,謝旗. ABA與植物脅迫抗性[J]. 植物學(xué)通報,2006,41(5):511-518.
WU Yaorong,XIE Qi. ABA and plant stress response[J]. Chinese Bulletin of Botany,2006,41(5):511-518.
[31] 彭艷華,劉成運(yùn),盧大炎,葉婉成. 低溫脅迫下鳳眼蓮葉片的適應(yīng):脫落酸和可溶性蛋白質(zhì)含量升高[J]. 武漢植物學(xué)研究,1992,10(2):123-127.
PENG Yanhua,LIU Chengyun,LU Dayan,YE Wancheng. Response of water hyacinth leaves to low temperature stress:Increase in abscisic acid and soluble protein concentrations[J]. Journal of Wuhan Botanical Research,1992,10(2):123-127.
[32] 王興,于晶,楊陽,蒼晶,李卓夫. 低溫條件下不同抗寒性冬小麥內(nèi)源激素的變化[J]. 麥類作物學(xué)報,2009,29(5):827-831.
WANG Xing,YU Jing,YANG Yang,CANG Jing,LI Zhuofu. Changes of endogenous hormones of winter wheat varieties with different cold-resistances under low temperature[J]. Journal of Triticeae Crops,2009,29(5):827-831.
[33] 沈漫. 常春藤質(zhì)膜透性和內(nèi)源激素與抗寒性關(guān)系初探[J]. 園藝學(xué)報,2005,32(1):141-144.
SHEN Man. Preliminary study on the relations between membrane permeability,endogenous hormones and cold resistance of ivy[J]. Acta Horticulturae Sinica,2005,32(1):141-144.
[34] 羅正榮,章文才. 外源ABA和GA3處理對人工控制條件下柑桔抗凍力的影響[J]. 中國柑桔,1993,22(4):11-13.
LUO Zhengrong,ZHANG Wencai. Effects of exogenous ABA and GA3 on cold resistance of Citrus under control condition[J]. South China Fruits,1993,22(4):11-13.
[35] 李春燕,徐雯,劉立偉,楊景,朱新開,郭文善. 低溫條件下拔節(jié)期小麥葉片內(nèi)源激素含量和抗氧化酶活性的變化[J]. 應(yīng)用生態(tài)學(xué)報,2015,26(7):2015-2022.
LI Chunyan,XU Wen,LIU Liwei,YANG Jing,ZHU Xinkai,GUO Wenshan. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage[J]. Chinese Journal of Applied Ecology,2015,26(7):2015-2022.
[36] 楊文莉,周偉權(quán),趙世榮,曼蘇爾·那斯?fàn)枺瑮顒倌校瓌倮?,廖? 外源ABA對輪臺白杏枝條內(nèi)源激素含量及抗寒性的影響[J]. 經(jīng)濟(jì)林研究,2018,36(1):43-48.
YANG Wenli,ZHOU Weiquan,ZHAO Shirong,Mansuer·Nasier,YANG Shengnan,DONG Shengli,LIAO Kang. Effects of exogenous ABA on endogenous hormone contents and cold resistances of Armeniaca vulgaris ‘Luntaibaixing shoots[J]. Nonwood Forest Research,2018,36(1):43-48.
收稿日期:2023-06-16 接受日期:2023-07-28
基金項(xiàng)目:中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(236Z6304G)
作者簡介:梁剛,在讀碩士研究生,研究方向?yàn)楣麡湓耘嗌?。Tel:13373271492,E-mail:1763626610@qq.com
通信作者Author for correspondence. Tel:16630500117,E-mail:Zchenguang0105@163.com