陳磊 王浩 陳燕 鄭強(qiáng)卿 王振東 王文軍 包建平
DOI:10.13925/j.cnki.gsxb.20220702
摘? ? 要:【目的】研究花前和花期灌水對庫爾勒香梨萼片脫落的影響?!痉椒ā恳詭鞝柪障憷鏋樵嚥模ㄟ^測定香梨果實(shí)萼片脫萼率、土壤含水量、短果枝水勢、活性氧(reactive oxygen species,ROS)含量以及抗氧化酶活性,并通過顯微觀察、DNA ladder檢測、DAPI染色和TUNEL標(biāo)記等證明萼片脫落的細(xì)胞程序性死亡(programmed cell death,PCD)特征?!窘Y(jié)果】不灌水(對照)的土壤含水量低于休眠期和大蕾期灌水處理且處于持續(xù)下降趨勢;通過對比大蕾期后10 d和大蕾期后20 d和對照的短果枝水勢變化,不灌水(對照)短果枝水勢下降幅度最小,為-0.20 MPa,并且土壤含水量和短果枝水勢與脫萼率呈顯著負(fù)相關(guān)。隨著干旱脅迫的加劇,對照萼筒·OH清除率、O2-·生成速率和H2O2含量分別顯著升高了46.24%、36.12%和53.84%,而對于超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)和過氧化氫酶(catalase,CAT)活性則顯著下降了45.57%、69.76%和62.47%。相關(guān)性分析表明,脫萼率與活性氧含量呈顯著正相關(guān),與抗氧化酶活性呈顯著負(fù)相關(guān)?!窘Y(jié)論】隨著干旱脅迫的加劇,萼筒ROS含量升高導(dǎo)致抗氧化酶無法清除從而影響萼筒離區(qū)發(fā)育,影響PCD進(jìn)程,促進(jìn)香梨萼片脫落。研究結(jié)果表明香梨花期干旱脅迫不灌水更能促進(jìn)脫萼發(fā)生。
關(guān)鍵詞:庫爾勒香梨;物候期;灌水;ROS;抗氧化酶;PCD
中圖分類號:S661.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)10-2124-12
Effects of pre-flowering and flowering irrigation on reactive oxygen species metabolism and programmed cell death in the calyx tubes of Kuerlexiangli pear
CHEN Lei1, 2, WANG Hao1, 2, CHEN Yan1, 2, ZHENG Qiangqing2, WANG Zhendong2, WANG Wenjun2, BAO Jianping1, 2*
(1College of Horticulture and Forestry, Tarim University, Alar 843300, Xinjiang, China; 2Korla Pear Germplasm Innovation, Quality Improvement and Efficiency Improvement Group Key Laboratory, Alar 843300, Xinjiang, China)
Abstract: 【Objective】The objective of this study is to disclose the effect of pre-flowering and flowering irrigation on sepal abscission of Kuerlexiangli pear. 【Methods】 This experiment was conducted by measuring the calyx abscission rate, soil water content, water potential in fruiting spurs, reactive oxygen species (ROS) content and antioxidant enzymes activity of detached calyx, so as to verify the cell death in detached calyx by microscopic observation, DNA ladder detection, DAPI staining and TUNEL labeling. The programmed cell death (PCD) characteristics of calyx abscission were also demonstrated by microscopic observation, DNA ladder assay, DAPI staining and TUNEL labeling. 【Results】 There was no significant difference between pre-flowering and flowering irrigation treatments in terms of calyx abscission rate, and non-irrigation (control) promoted calyx abscission during flowering although the highest calyx shedding rate was 56.57%. The soil water content of non-irrigation (control) was lower than the irrigation treatments at different phenological stages and exhabited a continuous decreasing trend. By comparing the spur water potential changes between pre-flowering or flowering stage irrigation treatments and control 10 days after those, the spur water potential decreased by (-0.31 MPa), (-0.33 MPa) and (-0.20 MPa), respectively, among which the spur water potential of non-irrigation (control) decreased the least. With the increase of drought stress, the changes of reactive oxygen contents and antioxidant enzyme activity of persistent calyx tubes with pre-flowering and flowering irrigation treatments and control were not significant at bloom and 10 days after bloom, while those of shedding calyx at bloom and 10 days after bloom were significant. Among them, the·OH scavenging rate, O2-·production rate and H2O2 content in the non-irrigated (control) calyx tubes were significantly higher by 46.24%, 36.12% and 53.84%, respectively, compared with the bloom stage, while SOD, POD and CAT activities decreased significantly by 45.57%, 69.76% and 62.47%, showing the most significant changes. By observing the microstructure of paraffin sections of calyx tubes, no significant saffron coloration was found in the cells of the persistent calyx isolates during flowering and 10 days after flowering; the percentage of saffron coloration in the cells of the desiccated isolates during flowering was 48%, and that 10 days after flowering was as high as 85%, indicating that the continued lignification of the desiccated isolates increased with drought stress and promoted sepal abscission. The total DNA in the persistent calyx cells showed a complete band during flowering and 10 days after flowering, indicating that no programmed cell death occurred during this period. The degradation of cellular DNA in this isolated region was observed at this time, and the DNA electrophoresis pattern of the calyx at 10 days after flowering was “smear-like” with the disappearance of the ladder band, probably due to the degradation of intracellular DNA into lower DNA fragments as the programmed cell death deepened. This is probably due to the fact that as the programmed cell death deepens, the DNA inside the cell is degraded into smaller fragments, which are absorbed and used by the cell as part of the cell wall. No changes were observed in the TUNEL labeling and DAPI staining of the isolated cells from the persistent calyx during and 10 days after flowering, and no dead cells were found; during the desiccation of the calyx at flowering, a few nuclei showed positive TUNEL labeling, indicating that the PCD process had started in the isolated cells and occurred first in the differentiated mature isolated cells; during the desiccation of the calyx 10 days after flowering, fewer nuclei were seen with TUNEL labeling, and the occasional nuclei that were visible were brownish in color, indicating that the nuclei had been absorbed and used or were severely atrophied at this stage. At 10th day after anthesis, the nuclei of the DAPI stained isolated cells showed nuclear condensation and deepened staining, and the nuclear chromatin was gathered in a crescent shape on one side of the nuclear membrane, indicating that the cells had begun with apoptosis; 10 days after anthesis, the nuclei of the DAPI stained isolated cells broke into round vesicles of different sizes and were surrounded by the cell membrane, indicating that the cells had entered apoptosis. 【Conclusion】 The combination of paraffin sectioning, DNA ladder detection, DAPI staining and TUNEL labeling showed that with the increase of drought stress, the calyx tube ROS contents increased, leading to the inability of antioxidant enzymes to scavenge, thus affecting the development of the calyx tube free zone, affecting the PCD process and promoting the sepal abscission of Kuerlexiangli pear. This study showed that the effect of irrigation on sepal shedding of Kuerlexiangli pear was not significant during pre-flowering and flowering stage, while the effect of continuous drought stress on sepal shedding was mostly obvious.
Key words: Kuerlexiangli pear; Phenological phase; Irrigation; ROS; Antioxidant enzymes; PCD
庫爾勒香梨(Pyrus sinkiangensis Yü)簡稱香梨,屬于薔薇科(Rosaceae)梨屬(Pyrus)中白梨系統(tǒng),是新疆梨和西洋梨的自然雜交后代,是新疆主栽梨品種[1]。但在香梨果實(shí)中存在著“公梨”(宿萼果)與“母梨”(脫萼果)之分,相比宿萼果,脫萼果則具有果形正、果面光潔、果核小、石細(xì)胞少和風(fēng)味佳等諸多優(yōu)點(diǎn)。由于遺傳因素影響,香梨存在嚴(yán)重的萼片宿存現(xiàn)象,極大地影響了其品質(zhì),對銷售量及經(jīng)濟(jì)效益造成了一定影響[2]。
香梨萼片脫落是由多種因素協(xié)調(diào)控制的復(fù)雜的生理過程,逆境條件、植物內(nèi)源激素及相關(guān)酶均可以影響香梨萼片脫落[3]。新疆南疆地區(qū)極度缺水,易產(chǎn)生干旱脅迫造成器官衰老,這是引起器官非正常脫落的主要原因之一[4]。同時(shí),梨樹的物質(zhì)運(yùn)輸、蒸騰和光合作用同樣受土壤含水量的直接影響,適當(dāng)?shù)乃置{迫有利于提高果實(shí)的品質(zhì)[5]。干旱脅迫時(shí),萼筒產(chǎn)生的大量活性氧(reactive oxygen species,ROS)是一類具有強(qiáng)氧化能力、能持續(xù)進(jìn)行反應(yīng)的物質(zhì),主要包括O2-·(超氧陰離子)、H2O2(過氧化氫)和·OH(羥自由基)等[6]。超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)和過氧化氫酶(catalase,CAT)等是萼筒抗氧化酶系統(tǒng)[7]。當(dāng)活性氧的含量超過清除酶能力時(shí),需清除多余的活性氧才能維持自身的平衡[8]。
在通常情況下,細(xì)胞中活性氧濃度很低,可以被SOD、CAT和POD清除,因而不會造成傷害。在細(xì)胞衰老時(shí),ROS平衡遭到破壞,ROS濃度超過了傷害閾值,致使蛋白質(zhì)、核酸和酶結(jié)構(gòu)被氧化破壞,尤其是膜脂中的不飽和雙鏈酸最容易受到攻擊,繼而發(fā)生過氧化作用。過氧化過程又會產(chǎn)生新的羥自由基,從而加重膜脂質(zhì)的過氧化,破壞膜的完整性,最終導(dǎo)致細(xì)胞死亡[9]。當(dāng)ROS濃度適中的時(shí)候,其作為信號分子參與調(diào)控細(xì)胞程序性死亡(programmed cell death,PCD)等生理事件的發(fā)生[10]。
筆者在本試驗(yàn)中通過不同物候期灌水處理測定短果枝水勢、ROS含量及其相關(guān)清除酶活性,探究不同時(shí)期灌水對香梨果實(shí)萼片脫落的影響,并結(jié)合石蠟切片、DAPI染色、TUNEL檢測、DNA laddering 等方法闡明香梨萼片脫落的PCD特征。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)于2022年3—4月在新疆阿拉爾市塔里木大學(xué)進(jìn)行。供試品種為以杜梨為砧木、長勢一致的27年生香梨樹,株高度4.5 m,株行4 m×5 m,南北行向。灌溉方式為漫灌,2021年冬灌水時(shí)間為10月底,灌水定額為300 mm,土壤類型為壤砂土,果園常規(guī)管理。
1.2 試驗(yàn)設(shè)計(jì)
本試驗(yàn)以5株樹為1小區(qū),每小區(qū)1個(gè)處理,隨機(jī)排列,設(shè)置5次重復(fù),以不灌水為對照。漫灌處理的梨樹于每個(gè)處理繞樹起一條保護(hù)墑,具體漫灌試驗(yàn)設(shè)計(jì)如表1。從3月15日開始每隔3 d測定各個(gè)處理的土壤含水量,并于4月10日(大蕾期后10 d)和4月20日(大蕾期后20 d),分別采集2個(gè)處理和對照的脫萼果和宿萼果萼筒及短果枝,取萼筒部位,一部分固定在乙醇-福爾馬林-醋酸固定液(ethanol-formalin-acetic acid solution,F(xiàn)AA)中用于DAPI染色、DNA ladder檢測、TUNEL標(biāo)記和石蠟切片顯微結(jié)構(gòu)觀察,另一部分經(jīng)液氮處理后保存于-80 ℃冰箱,用于·OH清除率、O2-·生成速率、H2O2含量和抗氧化酶(SOD、POD和CAT)活性測定。
1.3 測定方法
1.3.1 脫萼率 花后30 d,調(diào)查自然條件下香梨的脫萼率[11]。
脫萼率/%=脫萼果/總果數(shù)×100。
1.3.2 土壤含水量的測定 利用烘干法[12]測定土壤含水量。
1.3.3 短果枝水勢測定 短果枝水勢采用小液流法測定[13]。
1.3.4 活性氧(·OH、O2-·和H2O2)代謝測定 ·OH清除率參照李貴榮等[14]的方法測定;O2-·生成速率參照石潤霖等[15]的方法測定;H2O2含量參照Liu等[16]的方法測定。
1.3.5 抗氧化酶(SOD、POD和CAT)活性測定 SOD活性采用氮藍(lán)四唑(nitro blue tetrazolium,NBT)光還原法[17]測定;POD活性采用愈創(chuàng)木酚比色法[18]測定;CAT活性采用紫外吸收法測定[19]。
1.3.6 香梨萼片PCD過程的形態(tài)特征 (1)顯微結(jié)構(gòu)觀察。樣本選取灌水處理的為宿萼,不灌水處理的為脫萼。樣本從FAA固定液中取出使用系列濃度的乙醇溶液與透明劑完成樣本的脫水和透明,使用石蠟進(jìn)行包埋,切片機(jī)切片,烘箱烘片,使用系列濃度的乙醇溶液與透明劑復(fù)水,使用1%番紅染液和0.5%固綠染液雙重染色,中性樹膠封片,使用顯微鏡進(jìn)行觀察拍照[20]。
(2)DNA ladder檢測。利用5×TAE buffer和瓊脂糖制備2%瓊脂糖凝膠,向膠槽中點(diǎn)入處理組與對照組樣品DNA及marker,150 V電泳30 min用于檢測。電泳結(jié)果經(jīng)溴化乙錠(ethidium bromide,EB)染色并照相。試驗(yàn)進(jìn)行3次重復(fù)[21]。
(3)DAPI 染色和TUNEL標(biāo)記。石蠟包埋組織切片先脫蠟和水化加蛋白酶K通透,用1×PBS洗滌樣品2~3次,滴加100 μL 1×Equilibration Buffer室溫平衡10~30 min,依次加入34 μL ddH2O、10 μL 5×Equilibration Buffer、5 μL BrightGreen Labeling Mix、1 μL Recombinant TdT Enzyme,37 ℃標(biāo)記60 min終止,然后用1×PBS洗滌,再用1×PBS新鮮配制的2 mL·L-1 DAPI溶液在黑暗中對樣品進(jìn)行復(fù)染,染色時(shí)室溫放置5 min。立即在熒光顯微鏡下分析樣本,用標(biāo)準(zhǔn)的熒光過濾裝置在460 nm熒光下觀察DAPI的藍(lán)色熒光和在520 nm±20 nm的熒光下觀察綠色熒光[22]。
2 結(jié)果與分析
2.1 花前和花期灌水對香梨萼片脫落的影響
由表2可知,T1、T2處理與對照脫萼率呈顯著差異,T1、T2的脫萼率較對照分別下降了21.41%、18.62%,而T1、T2間脫萼率并無顯著差異。這說明不灌水處理更利于香梨萼片脫落。
2.2 花前和花期灌水對土壤含水量的影響
從圖1中可以看出,與對照相比較,T1含水量呈現(xiàn)先上升再下降的變化趨勢,其中第一次上升是3月16日,其原因是灌水后的第一天含水量變高,而第二次上升則是因?yàn)?月20—21日連續(xù)下雨;T2含水量的變化也是受降水影響在3月20—21日升高,而后開始下降,在4月1日因灌水而再次升高,而對照除受降雨影響基本呈現(xiàn)持續(xù)下降趨勢外,且含水量均低于T1、T2灌水處理。
2.3 花前和花期灌水對香梨短果枝水勢的影響
從圖2中可以看出,T1、T2處理和對照在大蕾期后10 d和大蕾期后20 d短果枝水勢的變化趨勢基本一致。在大蕾期后10 d,T1、T2處理和對照的香梨短果枝水勢變化范圍為-1.08~-0.54 MPa;在大蕾期后20 d,T1、T2處理和對照的香梨短果枝水勢變化范圍為-1.29~-0.84 MPa。對比大蕾期后10 d和大蕾期后20 d發(fā)現(xiàn),T1、T2處理和對照的短果枝水勢變化分別下降了-0.31、-0.33和-0.20 MPa,其中對照(不灌水處理)短果枝水勢下降幅度最小,T2下降幅度最大。
2.4 大蕾期后10 d和大蕾期后20 d土壤含水量和短果枝水勢與脫萼率的相關(guān)性分析
如圖3所示,大蕾期后10 d土壤含水量與萼片脫萼率呈負(fù)相關(guān),但并不顯著(r<-0.811 4),大蕾期后20 d土壤含水量與脫萼率呈極顯著(r>-0.917 2)負(fù)相關(guān);大蕾期后10 d短果枝水勢與脫萼率呈顯著(-0.811 4<r<-0.917 2)負(fù)相關(guān),大蕾期后20 d短果枝水勢與脫萼率呈極顯著(r>-0.917 2)負(fù)相關(guān)。
2.5 花前和花期灌水對香梨萼筒活性氧代謝的影響
2.5.1 花前和花期灌水對香梨萼筒·OH清除率的影響 由圖4可知,T1、T2處理和對照大蕾期后10 d脫萼比宿萼萼筒的·OH清除率分別顯著升高了79.01%、48.02%、71.54%;大蕾期后20 d脫萼比宿萼萼筒的·OH清除率分別顯著升高了144.42%、98.74%、208.65%;大蕾期后10 d與大蕾期后20 d宿萼萼筒的·OH清除率隨干旱脅迫的持續(xù)并無顯著變化,相反大蕾期后10 d與大蕾期后20 d脫萼的·OH清除率隨干旱脅迫的持續(xù)變化顯著;相對于大蕾期后10 d脫萼,大蕾期后20 d脫萼的·OH清除率分別顯著增加了26.18%、28.54%、46.24%,其中對照增幅最大為46.24%,T1增幅最小為26.18%。
2.5.2 花前和花期灌水對香梨萼筒O2-·生成速率的影響 由圖5可知,大蕾期后10 d T1、T2處理和對照脫萼比宿萼萼筒的O2-·生成速率分別顯著升高了21.90%、15.53%、29.91%;大蕾期后20 d脫萼比宿萼萼筒的O2-·生成速率分別顯著升高了44.05%、42.61%、118.47%;大蕾期后10 d與大蕾期后20 d宿萼的O2-·生成速率隨干旱脅迫的持續(xù)并無顯著變化,相反大蕾期后10 d和大蕾期后20 d脫萼的O2-·生成速率隨干旱脅迫的持續(xù)變化顯著;大蕾期后20 d脫萼的O2-·生成速率較大蕾期后10 d分別顯著增加了15.08%、27.25%、36.12%,其中對照增幅最大為36.12%,T1增幅最小為15.08%。
2.5.3 花前和花期灌水對香梨萼筒H2O2含量的影響 由圖6可知,大蕾期后10 d T1、T2處理和對照脫萼比宿萼萼筒的H2O2含量分別顯著升高了67.38%、122.36%、84.99%;大蕾期后20 d,脫萼比宿萼萼筒的H2O2含量分別顯著升高了147.58%、256.06%、290.49%;大蕾期后10 d與大蕾期后20 d宿萼的H2O2含量隨干旱脅迫的持續(xù)并無顯著變化,反之大蕾期后10 d和大蕾期后20 d脫萼的H2O2含量隨干旱脅迫的持續(xù)變化顯著;大蕾期后20 d脫萼的H2O2含量較大蕾期后10 d分別顯著增加了37.20%、37.80%、53.84%,其中對照增幅最大為53.84%,T1增幅最小為37.20%。T1、T2處理和對照宿萼萼筒H2O2含量無顯著變化,而脫萼萼筒H2O2含量變化顯著,其中對照的H2O2含量隨干旱的持續(xù)變化最顯著。
2.6 花前和花期灌水對活性氧清除酶活性的影響
2.6.1 花前和花期灌水對香梨萼筒SOD活性的影響 由圖7可知,T1、T2處理和對照大蕾期后10 d脫萼和宿萼均有顯著差異,其中對照變化最顯著,為17.10%;大蕾期后20 d脫萼和宿萼均有顯著差異,其中對照變化最顯著,為45.57%。
2.6.2 花前和花期灌水對香梨萼筒POD活性的影響 由圖8可知,T1、T2處理和對照大蕾期后10 d脫萼和宿萼萼筒的POD活性均有顯著差異,其中對照變化最顯著,為38.26%;大蕾期后20 d脫萼和宿萼萼筒的POD活性均有顯著差異,其中對照變化最顯著,為69.76%。
2.6.3 花前和花期灌水對香梨萼筒CAT活性的影響 由圖9可知,T1、T2處理和對照大蕾期后10 d脫萼和宿萼萼筒的CAT活性均有顯著差異,其中對照變化最顯著,為35.55%;大蕾期后20 d脫萼和宿萼萼筒的CAT活性均有顯著差異,其中對照變化最顯著,為62.47%。
2.7 大蕾期后10 d與大蕾期后20 d萼筒活性氧含量和抗氧化酶活性與脫萼率的相關(guān)性分析
如圖10所示,大蕾期后10 d脫萼的·OH清除率與脫萼率呈極顯著(r>0.917 2)正相關(guān),O2-·生成速率與脫萼率呈顯著(0.811 4<r<0.917 2)正相關(guān),H2O2含量與脫萼率呈極顯著(r>0.917 2)正相關(guān);大蕾期后20 d脫萼的·OH清除率與脫萼率呈顯著(0.811 4<r<0.917 2)正相關(guān),O2-·生成速率與脫萼率呈極顯著(r>0.917 2)正相關(guān),H2O2含量與脫萼率呈極顯著(r>0.917 2)正相關(guān)。大蕾期后10 d脫萼的SOD活性與脫萼率呈負(fù)相關(guān),但不顯著(r<-0.811 4),POD活性與脫萼率呈極顯著(r>-0.917 2)負(fù)相關(guān),CAT活性與脫萼率呈顯著(-0.811 4<r<-0.917 2)負(fù)相關(guān);大蕾期后20 d脫萼的SOD活性與脫萼率呈顯著(r>-0.811 4)負(fù)相關(guān),POD活性與脫萼率呈極顯著(r>-0.917 2)負(fù)相關(guān),CAT活性與脫萼率呈極顯著(r>-0.917 2)負(fù)相關(guān)。
2.8 香梨萼片PCD過程的形態(tài)特征
2.8.1 外觀形態(tài)特征 圖11為香梨萼片離層發(fā)育的外觀形態(tài)特征。圖11-a~b為大蕾期后10 d形成的宿萼果,萼片離區(qū)隨干旱的持續(xù)并無明顯變化;圖11-c~d)為大蕾期后20 d的脫萼果,萼片離區(qū)在花后10 d出現(xiàn)明顯的黃色離層,并且隨著干旱的持續(xù),花后20 d萼片離層已經(jīng)出現(xiàn)明顯的脫落。
2.8.2 顯微結(jié)構(gòu)觀察 大蕾期后10 d和大蕾期后20 d宿萼離區(qū)細(xì)胞并未發(fā)現(xiàn)有明顯番紅著色現(xiàn)象(圖12-a~b);大蕾期后10 d脫萼離區(qū)細(xì)胞番紅著色比例為48%(圖12-c),大蕾期后20 d脫萼離區(qū)細(xì)胞番紅著色比例高達(dá)85%(圖12-d),說明脫萼離區(qū)隨干旱脅迫的持續(xù)木質(zhì)化程度加重,促進(jìn)萼片脫落。
2.8.3 DNA ladder檢測 從圖13可知,大蕾期后10 d和大蕾期后20 d宿萼對應(yīng)的1、2泳道細(xì)胞的總DNA表現(xiàn)為1條完整的帶,表明該時(shí)期未發(fā)生PCD。大蕾期后10 d脫萼對應(yīng)的3泳道可以看到DNA的斷裂程度加重,呈現(xiàn)模糊的DNA梯狀條帶(DNA Ladder),此時(shí)該離區(qū)細(xì)胞DNA降解。大蕾期后20 d脫萼對應(yīng)的4泳道DNA電泳圖譜呈“涂片狀”,梯狀條帶消失,可能是因?yàn)殡S著PCD的深化,細(xì)胞內(nèi)部DNA降解為更小的片段,并被細(xì)胞吸收利用,轉(zhuǎn)化為細(xì)胞壁的一部分。DNA電泳圖譜顯示,離區(qū)細(xì)胞從大蕾期后10 d開始發(fā)生明顯的PCD,出現(xiàn)明顯的DNA梯狀條帶。隨著PCD的深入發(fā)展,DNA電泳圖譜逐漸增寬并且強(qiáng)度下降,表明小片段的DNA迅速增多,隨著PCD不斷深化,最后被吸收利用。該檢測結(jié)果證明了萼片脫落發(fā)生時(shí)離區(qū)細(xì)胞的PCD死亡特征。
2.8.4 TUNEL標(biāo)記和DAPI染色 大蕾期后10 d和大蕾期后20 d宿萼離區(qū)細(xì)胞TUNEL標(biāo)記和DAPI染色觀察并無變化,未發(fā)現(xiàn)死亡細(xì)胞(圖14-a~b);大蕾期后10 d脫萼,TUNEL標(biāo)記可以看到離層細(xì)胞有少數(shù)的細(xì)胞核呈現(xiàn)為陽性,并且是在已經(jīng)出現(xiàn)離層的離區(qū)細(xì)胞上發(fā)生的(圖14-c-1);大蕾期后20 d脫萼,TUNEL標(biāo)記的細(xì)胞核隨著干旱的持續(xù),細(xì)胞核基本消失不見,說明此時(shí)離區(qū)細(xì)胞的細(xì)胞核已經(jīng)被吸收利用(圖14-d-1)。大蕾期后10 d,TUNEL標(biāo)記的離區(qū)陽性細(xì)胞核開始出現(xiàn)并逐漸增多,隨著PCD的加深,離區(qū)細(xì)胞的細(xì)胞核普遍表現(xiàn)為陽性,并迅速萎縮變小直至消失。并且隨著PCD的進(jìn)行大蕾期后10 d脫萼離層出現(xiàn)明顯斷裂(圖14-c-3),大蕾期后20 d脫萼離層斷裂更加明顯(圖14-d-3)。
大蕾期后10 d脫萼(圖14- c-2),DAPI染色出現(xiàn)明顯的細(xì)胞核濃縮,并且呈月牙形的染色質(zhì)向核膜靠攏,表明細(xì)胞已經(jīng)開始凋亡;大蕾期后20 d脫萼(圖14-d-2),DAPI染色離區(qū)細(xì)胞出現(xiàn)細(xì)胞破裂,細(xì)胞呈大小不一的碎片,并被細(xì)胞膜所包裹,此時(shí)的細(xì)胞已經(jīng)基本全部凋亡。
3 討 論
干旱脅迫造成器官衰老,引起器官的非正常脫落。任瑩瑩[23]研究發(fā)現(xiàn),同一梨園內(nèi),澆水困難的干燥區(qū)的梨樹脫萼果率高于正常澆水區(qū)的梨樹,且靠近水渠一側(cè)的樹體宿萼果多,而其他方向平均較少,充足的水分會導(dǎo)致香梨宿萼果增多。這與本研究中的結(jié)果基本一致,即花前和花期灌水與對照(不灌水處理)相比,對照(不灌水處理)短果枝水勢下降幅度最小,土壤含水量因持續(xù)的干旱脅迫處于較低水平,并且與香梨的脫萼率呈顯著負(fù)相關(guān),香梨的脫萼率高于花前和花期灌水處理。
本研究中大蕾期后10 d脫萼的·OH清除率、O2-·生成速率和H2O2的含量呈上升趨勢,并且隨著干旱脅迫時(shí)間的持續(xù)大蕾期后20 d脫萼的·OH、O2-·和H2O2在不斷累積,同時(shí)對比花前和花期灌水處理,對照(不灌水處理)脫萼的·OH、O2-·和H2O2隨脅迫時(shí)間的持續(xù)變化最為明顯。楊偉等[24]在對干旱脅迫下抗旱性老芒麥幼苗的研究中發(fā)現(xiàn),隨著干旱脅迫時(shí)間的持續(xù)和強(qiáng)度的增強(qiáng),植物·OH清除率、O2-·生成速率和H2O2的含量呈上升趨勢。張木清等[25]研究發(fā)現(xiàn),干旱脅迫會促進(jìn)細(xì)胞內(nèi)·OH、O2-·和H2O2的累積,這與本文研究結(jié)果一致。
馬福林等[26]研究表明,受到干旱脅迫后,植物體內(nèi)抗氧化酶活性并不都處于持續(xù)上升的過程;隨著干旱脅迫的加劇,植物體內(nèi)抗氧化酶活性的變化是動態(tài)的,即在受到脅迫初期呈現(xiàn)上升的趨勢,隨著脅迫的加劇又處于下降的趨勢。本研究得到了相同的結(jié)果,即花前和花期灌水處理和對照脫萼萼筒的SOD、POD、CAT活性在大蕾期后10 d均呈上升趨勢;隨著脅迫的加劇,脫萼萼筒的SOD、POD、CAT活性在大蕾期后20 d均呈下降趨勢,并且對照相對于花前和花期灌水處理的ROS清除酶活性下降最明顯。
ROS是植物PCD的關(guān)鍵影響因子,與發(fā)育過程和環(huán)境應(yīng)激反應(yīng)有關(guān),ROS含量較低可以提高植物的抗逆性,而較高則可能導(dǎo)致PCD,并且ROS含量的變化會影響PCD進(jìn)程,從而影響離區(qū)發(fā)育。在干旱脅迫下,一定含量的ROS自由基對植物生長有利,但是過多的ROS自由基會毒害植物,破壞植物的光合系統(tǒng)和細(xì)胞膜穩(wěn)定性,從而使植物的生長受到抑制[27]。在本研究中,花前和花期灌水處理和對照在大蕾期后10 d和大蕾期后20 d宿萼萼筒的ROS含量隨著干旱脅迫的加劇變化并不顯著,與之相對應(yīng)的抗氧化酶活性也處于平穩(wěn)狀態(tài);同時(shí)大蕾期后20 d脫萼的ROS含量明顯高于大蕾期后10 d,并且相對應(yīng)的抗氧化酶活性也隨干旱脅迫的加劇明顯降低,脫萼率與活性氧呈極顯著正相關(guān),與抗氧化酶活性呈極顯著負(fù)相關(guān)。這與谷巖等[28]結(jié)論相一致。說明隨著干旱脅迫的加劇,萼筒的抗氧化酶不足以清除多余的ROS,從而影響PCD進(jìn)程。
劉喜明等[29]認(rèn)為巨尾桉脫落樹皮離區(qū)細(xì)胞形成和分離中細(xì)胞屬于主動的PCD,本試驗(yàn)通過石蠟切片、DAPI 染色、TUNEL 檢測、DNA laddering得出了相似的結(jié)論。本研究結(jié)果表明,離區(qū)細(xì)胞已經(jīng)具備了明顯的PCD特征,隨著離區(qū)細(xì)胞的發(fā)展,PCD程度不斷深化。TUNEL檢測和DNA梯度檢測的結(jié)論均為闡明離區(qū)細(xì)胞死亡的PCD特征提供了充足的證據(jù)。
4 結(jié) 論
綜上所述,在不同物候期灌水對香梨萼片脫落的影響并不顯著,而持續(xù)的干旱脅迫萼片脫落效果最為明顯,并且隨著干旱脅迫的加劇萼筒ROS含量升高導(dǎo)致抗氧化酶無法清除從而影響萼筒離區(qū)發(fā)育,影響PCD進(jìn)程,促進(jìn)香梨萼片脫落。
參考文獻(xiàn) References:
[1] 劉艷,吳運(yùn)建. 庫爾勒香梨研究進(jìn)展[J]. 新疆農(nóng)墾科技,2015,38(2):23-26.
LIU Yan,WU Yunjian. Research progress of Korla fragrant pear[J]. Xinjiang Farm Research of Science and Technology,2015,38(2):23-26.
[2] 陳園園,羅嘉亮,李凱,宋宇琴,李六林. 梨脫萼果與宿萼果品質(zhì)比較[J]. 北京農(nóng)學(xué)院學(xué)報(bào),2018,33(1):15-21.
CHEN Yuanyuan,LUO Jialiang,LI Kai,SONG Yuqin,LI Liulin. Comparative studies on quality and texture of leaving calyx and persistent calyx fruits in pear[J]. Journal of Beijing University of Agriculture,2018,33(1):15-21.
[3] 蔡慶生. 植物生理學(xué)[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2011:275-277.
CAI Qingsheng. Plant physiology[M]. Beijing:China Agricultural University Press,2011:275-277.
[4] SIMONS R K. Tissue response of young developing apple fruits to freeze injury1[J]. Journal of the American Society for Horticultural Science,1969,94(4):376-382.
[5] 程平,趙明玉,李宏,張志剛,馬文濤,劉幫,郝鳳. 干旱脅迫對蘋果樹生長、光合特性及果實(shí)品質(zhì)的影響[J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,44(2):405-414.
CHENG Ping,ZHAO Mingyu,LI Hong,ZHANG Zhigang,MA Wentao,LIU Bang,HAO Feng. Effects of drought on growth,photosynthetic characteristics and fruit quality of apple trees[J]. Journal of Yunnan University (Natural Sciences Edition),2022,44(2):405-414.
[6] 胡彥,何虎翼,何龍飛. 活性氧與植物細(xì)胞程序性死亡[J]. 文山師范高等??茖W(xué)校學(xué)報(bào),2005(2):125-128.
HU Yan,HE Huyi,HE Longfei. Reactive oxygen species and programmed cell death in higher plants[J]. Journal of Wenshan Teachers College,2005,18(2):125-128.
[7] 薛鑫,張芊,吳金霞. 植物體內(nèi)活性氧的研究及其在植物抗逆方面的應(yīng)用[J]. 生物技術(shù)通報(bào),2013(10):6-11.
XUE Xin,ZHANG Qian,WU Jinxia. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin,2013(10):6-11.
[8] 楊淑慎,高俊鳳. 活性氧、自由基與植物的衰老[J]. 西北植物學(xué)報(bào),2001,21(2):215-220.
YANG Shushen,GAO Junfeng. Influence of active oxygen and free radicals on plant senescence[J]. Acta Botanica Boreali-Occidentalia Sinica,2001,21(2):215-220.
[9] 王愛國,邵從本,羅廣華,郭俊彥,梁厚果. 大豆下胚軸線粒體的衰老與膜脂的過氧化作用[J]. 植物生理學(xué)報(bào),1988,14(3):269-273.
WANG Aiguo,SHAO Congben,LUO Guanghua,GUO Junyan,LIANG Houguo. Senescence and peroxidation of membrane lipid in mitochondria of soybean hypocotyl[J]. Physiology and Molecular Biology of Plants,1988,14(3):269-273.
[10] MITTLER R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[11] 張倩,李蕭婷,吳翠云,張銳,包建平,陶書田. 不同灌溉方式對庫爾勒香梨果實(shí)品質(zhì)的多變量分析[J]. 新疆農(nóng)業(yè)科學(xué),2022,59(3):578-587.
ZHANG Qian,LI Xiaoting,WU Cuiyun,ZHANG Rui,BAO Jianping,TAO Shutian. Multivariate analysis of fruit quality of Korla pear irrigated by different methods[J]. Xinjiang Agricultural Sciences,2022,59(3):578-587.
[12] 馬璠,張鵬輝,王健,鄭騰輝,張慶瑋. 土壤樣品含水量快速測定方法的比較研究[J]. 安徽農(nóng)業(yè)科學(xué),2014,42(20):6591-6593.
MA Fan,ZHANG Penghui,WANG Jian,ZHENG Tenghui,ZHANG Qingwei. Comparison of rapid methods for soil water content[J]. Journal of Anhui Agricultural Sciences,2014,42(20):6591-6593.
[13] 朱秀云,馬玉,梁夢. 小液流法測定植物水勢實(shí)驗(yàn)綜述報(bào)告[J]. 科技視界,2020(10):178-180.
ZHU Xiuyun,MA Yu,LIANG Meng. A review of the experiments for the determination of water potential in plant tissues by small liquid flow method[J]. Science & Technology Vision,2020(10):178-180.
[14] 李貴榮,楊勝圓. 黨參多糖的提取及其對活性氧自由基的清除作用[J]. 化學(xué)世界,2001,42(8):421-422.
LI Guirong,YANG Shengyuan. Extraction of Codonopsis pilosula polysaccharide and its effects of anti-active oxygen free radicals[J]. Chemical World,2001,42(8):421-4224.
[15] 石潤霖,尹亞輝,杜維,李瑞龍,王金輝,董亮,趙長新. 釀酒酵母老化過程中超氧化物歧化酶活性和O2-·生成速率變化的研究[J]. 食品科技,2015,40(9):2-6.
SHI Runlin,YIN Yahui,DU Wei,LI Ruilong,WANG Jinhui,DONG Liang,ZHAO Changxin. Investigation of changes in superoxide dismutase activity and O2-· production rates during the aging process of Saccharomyces cerevisiae cells[J]. Food Science and Technology,2015,40(9):2-6.
[16] LIU Y,PAN Q H,YANG H R,LIU Y Y,HUANG W D. Relationship between H2O2 and jasmonic acid in pea leaf wounding response[J]. Russian Journal of Plant Physiology,2008,55(6):765-775.
[17] 衣海青,王建華. 蘆丁和抗壞血酸對NBT光還原法測定植物組織SOD活性的干擾[J]. 植物生理學(xué)通訊,1996,32(4):276-278.
YI Haiqing,WANG Jianhua. Interference of rutin and ascorbic acid on determination of SOD activity in plant tissues by NBT photoreduction method[J]. Plant Physiology Communications,1996,32(4):276-278.
[18] 鄭炳松. 現(xiàn)代植物生理生化研究技術(shù)[M]. 北京:氣象出版社,2006:91-92.
ZHENG Bingsong. Research techniques in contemporary plant physiology and biochemistry[M]. Beijing:China Meteorological Press,2006:91-92.
[19] 孫群,胡景江. 植物生理學(xué)研究技術(shù)[M]. 楊凌:西北農(nóng)林科技大學(xué)出版社,2006:167-170.
SUN Qun,HU Jingjiang. Research technology of plant physiology[M]. Yangling:Northwest Agriculture and Forestry University Press,2006:167-170.
[20] 周乃富,張俊佩,劉昊,查巍巍,裴東. 木本植物非均質(zhì)化組織石蠟切片制作方法[J]. 植物學(xué)報(bào),2018,53(5):653-660.
ZHOU Naifu,ZHANG Junpei,LIU Hao,ZHA Weiwei,PEI Dong. New protocols for paraffin sections of heterogeneous tissues of woody plants[J]. Chinese Bulletin of Botany,2018,53(5):653-660.
[21] 王蕊. 葫蘆巴堿誘導(dǎo)煙草Bright Yellow-2細(xì)胞凋亡及其分子機(jī)制研究[D]. 哈爾濱:東北林業(yè)大學(xué),2010.
WANG Rui. Mechanism of apoptosis in bright yellow-2 tobacco suspension cell induced by trigonelline[D].Harbin:Northeast Forestry University,2010.
[22] 張婧. 板栗短雄花序發(fā)育期間細(xì)胞程序性死亡研究[D]. 北京:北京農(nóng)學(xué)院,2007.
ZHANG Jing. Studies on the programmed cell death during mutant short catkin development in chestnut[D]. Beijing:Beijing University of Agriculture,2007.
[23] 任瑩瑩. 影響庫爾勒香梨果實(shí)品質(zhì)的相關(guān)因子及提高果實(shí)品質(zhì)的措施研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2007.
REN Yingying. Studies on influencing related factors of fruit quality and measures of improving fruit quality in Korla fragrant pear[D]. Urumqi:Xinjiang Agricultural University,2007.
[24] 楊偉,劉文輝,馬祥,馬暉玲. 干旱脅迫對2種不同抗旱性老芒麥幼苗ROS積累及抗氧化系統(tǒng)的影響[J]. 草地學(xué)報(bào),2020,28(3):684-693.
YANG Wei,LIU Wenhui,MA Xiang,MA Huiling. Effects of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica,2020,28(3):684-693.
[25] 張木清,陳如凱,余松烈.水分脅迫下蔗葉活性氧代謝的數(shù)學(xué)分析[J]. 作物學(xué)報(bào),1996,22(6):729-735.
ZHANG Muqing,CHEN Rukai,YU Songlie. Mathematical analysis for the active oxygen metabolism in the drought-stressed leaves of sugarcane[J]. Acta Agronomica Sinica,1996,22(6):729-735.
[26] 馬福林,馬玉花. 干旱脅迫對植物的影響及植物的響應(yīng)機(jī)制[J]. 寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,43(4):391-399.
MA Fulin,MA Yuhua. Effect of drought stress on plants and their response mechanism[J]. Journal of Ningxia University (Natural Science Edition),2022,43(4):391-399.
[27] 王曉雪,李越,張斌,賈舉慶,馮美臣,張美俊,楊武德. 干旱脅迫及復(fù)水對燕麥根系生長及生理特性的影響[J]. 草地學(xué)報(bào),2020,28(6):1588-1596.
WANG Xiaoxue,LI Yue,ZHANG Bin,JIA Juqing,F(xiàn)ENG Meichen,ZHANG Meijun,YANG Wude. Effects of drought stress and rehydration on root growth and physiological characteristics of oats[J]. Acta Agrestia Sinica,2020,28(6):1588-1596.
[28] 谷巖,梁煊赫,王振民,何文安,趙福林,吳春勝. 不同抗旱性玉米苗期葉片活性氧代謝對水分脅迫的響應(yīng)[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(29):14089-14091.
GU Yan,LIANG Xuanhe,WANG Zhenmin,HE Wenan,ZHAO Fulin,WU Chunsheng. Response of activated oxygen metabolism to water stress in the leaves of different drought-resistant corns in seedling stage[J]. Journal of Anhui Agricultural Sciences,2009,37(29):14089-14091
[29] 劉喜明,陳瑞英,陳居靜,于再君. 巨尾桉韌皮部周皮形成過程的研究[J]. 福建林學(xué)院學(xué)報(bào),2013,33(3):262-266.
LIU Ximing,CHEN Ruiying,CHEN Jujing,YU Zaijun. Study on the periderm forming process in Eucalyptus grandis × E. urophylla phloem[J]. Journal of Fujian College of Forestry,2013,33(3):262-266.
收稿日期:2022-12-30 接受日期:2023-06-18
基金項(xiàng)目:庫爾勒香梨種質(zhì)創(chuàng)新與提質(zhì)增效兵團(tuán)重點(diǎn)實(shí)驗(yàn)室開放課題(2020DA004-202103);兵團(tuán)財(cái)政科技計(jì)劃項(xiàng)目(2021CB055,2022CB001-11);國家自然科學(xué)基金項(xiàng)目(31860528、U2003121);塔里木大學(xué)科研條件項(xiàng)目(TDZKKY202204)
作者簡介:陳磊,男,在讀碩士研究生,研究方向?yàn)楣麡渖砼c高效栽培技術(shù)。Tel:18638284505,E-mail:1439391376@qq.com
通信作者Author for correspondence. Tel:15003014726,E-mail:baobao-xinjiang@126.com