国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

石榴MAPK家族基因鑒定及其響應(yīng)冷脅迫的表達分析

2023-10-27 09:00:25陳利娜曹尚銀唐麗穎李好先嚴瓊李松開楊慶華魯振華
果樹學(xué)報 2023年10期
關(guān)鍵詞:表達分析抗寒性石榴

陳利娜 曹尚銀 唐麗穎 李好先 嚴瓊 李松開 楊慶華 魯振華

DOI:10.13925/j.cnki.gsxb.20230136

摘? ? 要:【目的】評價不同石榴種質(zhì)資源籽粒硬度及抗寒性,篩選可能參與調(diào)控石榴抗寒性的MAPK家族基因?!痉椒ā恳?1份石榴種質(zhì)資源為試材,進行抗寒性及籽粒硬度評價;基于全基因組篩選石榴MAPK家族基因,對其進行進化、基因結(jié)構(gòu)和蛋白理化性質(zhì)分析,同時利用實時熒光定量PCR(real-time quantitative PCR,qRT-PCR)分析冷脅迫對石榴MAPK家族基因表達模式的影響?!窘Y(jié)果】31個石榴品種籽粒硬度及半致死溫度測定結(jié)果表明,嶧城粉紅牡丹、淮北六棱甜和魯白榴2號等硬籽石榴抗寒性較強,華紫、以3和瑪麗斯等軟籽石榴抗寒性較弱?;谑袢蚪M鑒定出17個MAPK家族基因,廣泛分布于8條染色體上;MAPK家族所有成員主要分為3個亞類,其中,A和B亞類成員主要包含PKc_MAPKK_plant_like和PTZ00024結(jié)構(gòu)域,C亞類主要包含PLN00034結(jié)構(gòu)域,所有成員均具有S_TKc結(jié)構(gòu)域;各成員氨基酸殘基數(shù)量分布在314~860 aa,外顯子數(shù)目1~18個,蛋白分子質(zhì)量為34 910.05~97 965.26 u,等電點4.94~9.35;PgMKK2、PgMPK6、PgMPK9、PgMPK16和PgMPK13在嶧城粉紅牡丹響應(yīng)冷脅迫過程中表現(xiàn)為顯著上調(diào),PgMKK8、PgMPK1-1和PgMKK4在瑪麗斯響應(yīng)冷脅迫過程中表現(xiàn)為顯著上調(diào);PgMKK2、PgMPK6、PgMPK9、PgMPK16和PgMPK13在嶧城粉紅牡丹響應(yīng)冷脅迫過程中的表達量顯著高于瑪麗斯,PgMKK8和PgMPK1-1在瑪麗斯響應(yīng)冷脅迫過程中的表達量顯著性高于嶧城粉紅牡丹;PgMKK3在嶧城粉紅牡丹不同時間均未檢測到表達,在瑪麗斯中表現(xiàn)為先升高后降低的趨勢;PgMPK12-2在瑪麗斯不同時間均未檢測到表達,在嶧城粉紅牡丹中表現(xiàn)為逐漸升高的趨勢?!窘Y(jié)論】石榴MAPK家族基因響應(yīng)冷脅迫信號,其中,PgMKK2、PgMPK6、PgMPK12-2和PgMPK9可能參與正調(diào)控石榴的抗寒性。

關(guān)鍵詞:石榴;籽粒硬度;抗寒性;MAPK;表達分析

中圖分類號:S665.4 文獻標志碼:A 文章編號:1009-9980(2023)10-2076-13

Identification of MAPK family genes and analysis of their expression patterns in response to cold stress in pomegranate

CHEN Lina1, CAO Shangyin1#, TANG Liying2, LI Haoxian1, YAN Qiong3, LI Songkai3, YANG Qinghua3, LU Zhenhua1*

(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Hebei Chengde Academy of Agriculture and Forestry Sciences, Chengde 067000, Hebei, China; 3Mengzi Fruit and Vegetable Technology Promotion Station, Mengzi 661100, Yunnan, China)

Abstract: 【Objective】 Cold stress is one of the most important factors limiting the progress of pomegranate production. The objectives of this study were to compare the cold hardiness among 31 pomegranate cultivars with wide distribution of seed hardness, and analyze the expression pattern of Mitogen-activated protein kinase (MAPK) family genes in response to cold stress. The results can pave the way for shedding light to the function of Mitogen-activated protein kinase cascades in pomegranate cod tolerance. 【Methods】Plant materials were cultivated in the National Horticulture Germplasm Resources Center of China (NHGRC), with conventional cultivation management. Juvenile branches of 31 pomegranate cultivars were sampled in mid-January, the relative electrolyte conductivity (REC) was measured, and the semi-lethal temperature (LT50) was calculated for the evolution of cold hardiness. Seed hardness was detected by the TA-XT texture apparatus. MAPK family genes of Arabidopsis were used as queries to search in the whole pomegranate genome database, and reference genome sequence of ‘Tunisia was obtained from NCBI database. Potential members of MAPK family were identified. Phylogeny relationship, gene structure and protein physicochemical properties were analyzed. Moreover, we performed real-time quantitative PCR (qRT-PCR) to analyze the expression pattern of 17 MAPK family genes in response to cold stress. 【Results】 The seed hardness and cold tolerance were evaluated. A total of 17 MAPK family genes were identified, which widely distributed on different chromosomes. All the members of the MAPK family could be mainly divided into three sub-classes, among which the members of subclass A and B mainly included PKc_MAPKK_plant_like and PTZ00024 Domain, subclass C mainly contained the PLN00034 domain, and all members contained a S_TKc domain. The results of analysis of physicochemical properties of proteins showed that the number of amino acid residues of each member distributed from 314 to 860 aa, the number of exons was from 1 to 18, the molecular weight of the protein was from 34 910.05 to 97 965.26 u, and the isoelectric point was from 4.94 to 9.35. Specific primer was designed for each PgMAPKs and PgMAPKKs, and their expression patterns were detected. The results showed that 12 out of 17 members were activated after low-temperature treatment. Yichengfenhongmudan that showed strong cold tolerance, and Malisi with weak cold tolerance, were both selected to compare the expression pattern of MAPKs. PgMKK2, PgMPK6, PgMPK9, PgMPK16 and PgMPK13 were all rapidly activated after low-temperature treatment in Yichengfenhongmudan. PgMKK8, PgMPK1-1 and PgMKK4 were rapidly activated in Malisi. PgMKK2, PgMPK6, PgMPK9, PgMPK16 and PgMPK13 showed significantly higher expression level in Yichengfenhongmudan than those in Malisi after low-temperature treatment. The expression of PgMPK3, PgMPK12-1, PgMPK20, PgMPK18 and PgMKK6 was not affected by low-temperature treatment. PgMKK8, PgMPK1-1 and PgMKK4 were up-regulated in Malisi than Yichengfenhongmudan. The expression of PgMPK12-2 was not activated after low-temperature treatment in Malisi, but showed gradual increase in Yichengfenhongmudan. The expression level of PgMKK3 increased at first and then decreased during low-temperature treatment in Malisi, whereas it was not detected in Yichengfenhongmudan. 【Conclusion】 Pomegranate MAPK family genes responded to cold stress signals. PgMKK2, PgMPK6, PgMPK12-2 and PgMPK9 might positively regulate cold tolerance.

Key words: Pomegranate (Punica granatum L.); Seed hardness; Cold resistance; MAPK; Expression analysis

石榴(Punica granatum L.)屬千屈菜科(Lythraceae)石榴屬(Punica L.)落葉果樹,是中國重要的經(jīng)濟作物。石榴抗寒性差,硬籽石榴一般遇-17 ℃以下低溫會出現(xiàn)凍害,以突尼斯軟籽為代表的軟籽石榴遇-10 ℃以下低溫即出現(xiàn)凍害[1-2]。軟籽石榴商品價值高,約占石榴總市場的80%,已成為多個石榴主產(chǎn)區(qū)的主栽品種。但是,目前主栽的軟籽石榴突尼斯軟籽和中農(nóng)紅等品種在河南、山東、陜西等主產(chǎn)區(qū)頻發(fā)凍害,給果農(nóng)造成了極大的損失,這已成為制約石榴產(chǎn)業(yè)健康和可持續(xù)發(fā)展的主要問題。

為緩解石榴凍害問題,國內(nèi)外學(xué)者通過冬季扣棚或埋土、抗寒砧木嫁接和冬季噴施防凍劑等栽培方式防寒[3],并在部分地區(qū)取得了緩解凍害的效果。但與此同時,培育優(yōu)良抗寒軟籽石榴新品種仍是解決凍害問題的根本途徑。目前,國內(nèi)軟籽石榴資源較少,收集或創(chuàng)制并篩選抗寒性強的軟籽石榴資源可加快優(yōu)良抗寒軟籽石榴培育進程。本研究團隊對經(jīng)過多年收集或創(chuàng)制獲得的軟籽石榴種質(zhì)資源進行抗寒性評價,其結(jié)果可為親本選擇提供依據(jù)。石榴抗寒性評價方法主要包括組織褐變法、生理生化指標測定法和電導(dǎo)法等,其中電導(dǎo)法是石榴抗寒性最可行的評價方法[4-6]。

截至目前,已有大量報道植物抗寒調(diào)控關(guān)鍵基因的研究,其中CBF(C-repeat binding factors)基因是調(diào)控植物抗寒性的重要開關(guān)基因[7],而促分裂原活化蛋白激酶(Mitogen-activated protein kinases, MAPK)可通過級聯(lián)反應(yīng)調(diào)控CBF基因的表達從而調(diào)控植物抗寒性。MAPK是一類保守的絲氨酸-蘇氨酸蛋白激酶,主要通過逐級磷酸化放大和傳遞細胞外來刺激[8],在植物生長發(fā)育和脅迫響應(yīng)過程中發(fā)揮重要作用[9-12]。MEKK1-MKK1/2-MPK4級聯(lián)反應(yīng)可通過與MPK3和MPK6拮抗,激活CBF基因表達從而提高植物抗寒性[13-15];MPK3和MPK6等主要通過調(diào)控質(zhì)膜H+-ATP酶活性,磷酸化ICE1蛋白,從而抑制CBF基因表達,負調(diào)控植物抗寒性[16-18]。

關(guān)于石榴抗寒性機制研究的相關(guān)報道較少。劉貝貝[19]研究表明,CBF1基因是參與調(diào)控石榴抗寒性的關(guān)鍵基因。同時,MAPK級聯(lián)途徑相關(guān)基因在硬籽群體內(nèi)受強烈選擇,這從進化角度初步解釋了大部分硬籽石榴抗逆能力強于軟籽石榴的原因,暗示了MAPK級聯(lián)途徑對石榴抗逆過程中的作用[20]。Ren等[21]的研究發(fā)現(xiàn),MAPK家族基因可能參與石榴頂端分生組織、花和果實發(fā)育過程。但MAPK家族基因?qū)κ窨购缘挠绊懮胁幻鞔_。

因此,為研究MAPK家族基因在石榴冷脅迫過程中表達變化,筆者在本研究中對31份種質(zhì)資源進行籽粒硬度及抗寒性評價。同時,基于全基因組挖掘MAPK家族基因,對MAPK家族基因成員進行系統(tǒng)進化、基因結(jié)構(gòu)和蛋白理化性質(zhì)分析,明確MAPK家族基因在石榴響應(yīng)冷脅迫過程中的表達模式,進而為石榴抗寒機制的研究提供理論支持。

1 材料和方法

1.1 植物材料及試驗地概況

試驗以31個石榴品種的果實和枝條為試材,進行籽粒硬度和抗寒性檢測。試驗材料均取自國家園藝種質(zhì)資源庫(鄭州)內(nèi)7年生石榴樹,株行距2 m × 4 m,樹體主干開心形,管理方式采用常規(guī)栽培管理,土壤為壤砂土。

1.2 試驗方法

1.2.1 不同品種石榴籽粒硬度的測定 成熟期取石榴果實籽粒,每個果實取上中下部各10粒種子混合測定(每個果實測定30個籽粒),每個品種取3個果實分別測定。測定時使用紗布去除籽粒外種皮,取光潔未被破壞的籽粒進行硬度測定,使用TA-XT質(zhì)構(gòu)儀(英國SMS)測定,選擇P2探頭(位移1.3~2.0 mm),測前測后速率5 mm·s-1,測中速率1 mm·s-1。

1.2.2 不同品種石榴枝條電導(dǎo)率的測定 2021年1月中旬,選取每個品種1年生健壯枝條20~30根,用去離子水洗凈,吸干水分后剪成8~10 cm小段,每組5段,分成3組,捆綁并用保鮮膜包裹。將分組的枝條于4 ℃冰箱預(yù)冷24 h,之后用低溫培養(yǎng)箱進行梯度冷處理,處理溫度分別為-4、-8、-12、-16、-20 ℃,降溫速率4 ℃·h-1,達到目的溫度后保持24 h,以4 ℃為對照。

在50 mL離心管中加入25 mL去離子水,將低溫處理后的枝條剪成0.5 cm的小段,各稱取1 g,加入去離子水中,置于25 ℃搖床中,90 min,用電導(dǎo)率儀(雷磁 DDS-307型號)測量初始電導(dǎo)值,然后沸水浴20 min,自然冷卻至室溫,測量其終電導(dǎo)值。相對電導(dǎo)率=初始電導(dǎo)值/終電導(dǎo)值[6]。Logistic回歸方程y=k/(1+ ae-bx),其中y為相對電導(dǎo)率,x為處理溫度,k為當x趨于無窮大時的值,a和b為方程參數(shù)。計算半致死溫度(LT50)。

1.2.3 MAPK家族基因鑒定及生物信息分析 擬南芥MAPK家族的30個成員的氨基酸序列(包括10個MKK和20個MPK成員)來源于擬南芥基因數(shù)據(jù)庫TAIR(https://www.arabidopsis.org/)[22]。以突尼斯軟籽石榴基因組為參考基因組通過NCBI blast+-2.9.0進行本地blast獲得。氨基酸序列通過在線軟件emboss[23](https://www.ebi.ac.uk/Tools/st/emboss_transeq/)翻譯獲得。各編碼蛋白的分子質(zhì)量和理論等電點通過在線軟件ProtParam(https://web.expasy.org/protparam/)進行預(yù)測[24]。MAPK家族基因系統(tǒng)發(fā)育樹的構(gòu)建和多序列比對使用本地軟件MEGA 7.0[25],采用鄰接法,bootstrap值為1000,進化樹可視化通過Evolview在線軟件[26]。氨基酸序列的保守結(jié)構(gòu)域通過在線軟件Batch CD-Search(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)進行預(yù)測[27],通過DNAMAN進行MAPK家族基因多序列比對。通過在線網(wǎng)站String(https://cn.string-db.org/)在線網(wǎng)站進行蛋白互作網(wǎng)絡(luò)預(yù)測。

1.2.4 MAPK響應(yīng)冷脅迫過程中表達模式分析 取嶧城粉紅牡丹、瑪麗斯1年生枝條,8~10 cm小段,每組5段,分成3組。4 ℃開始降溫,溫度達到-12 ℃時,分別處理0(對照)、5、10、20、30、60、120 min后取出枝條剪成0.5 cm小塊,液氮速凍,-80 ℃保存。每個處理設(shè)3次生物學(xué)重復(fù)。

以石榴PgActin為內(nèi)參基因[28],實時熒光定量PCR(real-time quantitative PCR,RT-qPCR)測定各基因在不同脅迫條件下的相對表達量。利用NCBI在線軟件Primer-BLAST設(shè)計引物(表1)。選用Universal SYBR Green Master熒光定量試劑盒(Roche)在LightCycler? 480 Ⅱ (Roche)進行檢測。Real Time-qPCR反應(yīng)程序:95 ℃ 5 min; 95 ℃ 10 s、56 ℃ 10 s、72 ℃ 10 s,共 45 個循環(huán);95 ℃ 5 s、65 ℃ 1 min,10個循環(huán);40 ℃冷卻。

1.3 數(shù)據(jù)統(tǒng)計與分析

采用Excel 2013對枝條電導(dǎo)率進行計算和Logistic方程對31個石榴品種的電導(dǎo)率進行回歸分析,熒光定量數(shù)據(jù)計算采用2-ΔΔCT法[29]。采用Excel 2013、SPSS 25.0對籽粒硬度與相對電導(dǎo)率相關(guān)性和熒光定量結(jié)果進行數(shù)據(jù)整理與分析。利用R語言gplots繪制不同基因表達熱圖。使用T檢驗和多重比較法進行差異顯著性分析。

2 結(jié)果與分析

2.1 石榴籽粒硬度與抗寒性分析

籽粒硬度測定結(jié)果表明,31個石榴品種籽粒硬度范圍主要分布在(1.21±0.48)~(1.96±0.44) kg·cm-2和(4.10±0.80)~(7.29±2.14) kg·cm-2;依據(jù)Zarei等[30]分的籽粒硬度等級標準,將籽粒硬度分布在(1.21±0.48)~(1.96±0.44) kg·cm-2的品種歸類為軟籽,將籽粒硬度分布在(4.10±0.80)~(7.29±2.14) kg·cm-2的品種歸類為硬籽;31份石榴種質(zhì)資源共包括17份軟籽和14份硬籽資源(表2)。

對31個石榴品種半致死溫度測定結(jié)果表明,半致死溫度分布范圍在-13.78~-32.79 ℃;其中,嶧城粉紅牡丹、淮北六棱甜和魯白榴2號等硬籽石榴抗寒性較強,華紫、以3和土庫曼斯坦等軟籽石榴抗寒性較弱;除蒙自甜光顏和蒙自厚皮沙籽外,硬籽石榴半致死溫度低于大部分軟籽石榴;同時,除中石榴4號外,軟籽石榴半致死溫度高于大部分硬籽石榴(表2)。

2.2 石榴MAPK家族基因的進化分析

基于擬南芥MAPK家族成員氨基酸序列從突尼斯軟籽石榴基因組數(shù)據(jù)庫中篩選出17個候選的MAPK同源基因(包括5個MAKK和12個MAPK成員)(表3),根據(jù)與擬南芥MAPK家族基因同源性進行命名,廣泛分布于8條染色體上(圖1)。通過擬南芥與石榴MAPK家族基因系統(tǒng)發(fā)育分析,石榴MAPK家族基因可分為3個亞類(A、B、C),其中,A亞類包含PgMPK12-1、PgMPK12-2、PgMPK6、PgMPK3、PgMPK13、PgMPK1-1和PgMPK1-2共7個成員,B亞類包含PgMPK18、PgMPK16、PgMPK20、PgMPK8和PgMPK9共5個成員,C亞類包含PgMKK2、PgMKK3、PgMKK4、PgMKK6和PgMKK8共5個成員(圖2)。

2.3 石榴MAPK家族的結(jié)構(gòu)分析

對石榴和擬南芥MAPK家族的功能域進行分析,發(fā)現(xiàn)這些基因均具有促分裂原活化蛋白激酶(Pkinase)的功能結(jié)構(gòu)域,其中,A和B亞類成員主要包含PKc_MAPKK_plant_like、PTZ00024結(jié)構(gòu)域,C亞類主要包含PLN00034結(jié)構(gòu)域(圖2)?;谑馦APK家族基因氨基酸多序列比對結(jié)果,發(fā)現(xiàn)其具有MAPK家族特有的保守結(jié)構(gòu)域S_TKc(圖3)。

石榴MAPK家族結(jié)構(gòu)分析結(jié)果顯示,石榴MAPK家族各成員氨基酸殘基數(shù)量分布在314~860 aa(表3),外顯子數(shù)目1~18個,同一亞類成員間外顯子數(shù)目、位置及大小類型相近;A亞類成員外顯子數(shù)目主要為6個,PgMAK1-1和PgMAK1-2外顯子數(shù)目為1個,PgMAK12-1外顯子數(shù)目為18個;B亞類成員外顯子數(shù)目主要為10個;C亞類成員外顯子數(shù)目主要為6~9個,PgMKK8外顯子數(shù)目為1個(表3)。利用ProtParam對石榴MAPK家族基因蛋白理化性質(zhì)進行分析,結(jié)果顯示,石榴MAPK家族蛋白分子質(zhì)量為34 910.05~97 965.26 u,等電點4.94~9.35(表3)。

2.4 石榴MAPK家族基因冷脅迫過程中表達模式分析

在抗寒性強的嶧城粉紅牡丹石榴響應(yīng)冷脅迫的過程中,隨著冷脅迫時間推移,MAPK家族基因表達模式主要分為3類(Ⅰ、Ⅱ和Ⅲ類)。Ⅰ類基因隨著冷脅迫時間推移表達量表現(xiàn)為先升高后降低的趨勢,主要包括PgMKK2、PgMPK13、PgMPK1-2、PgMPK8、PgMKK4、PgMPK20、PgMPK18共7個基因;Ⅱ類基因隨著冷脅迫時間推移表達量表現(xiàn)為逐漸升高的趨勢,主要包括PgMPK3、PgMKK6、PgMPK1-1、PgMPK16共4個基因;Ⅲ類基因表達量表現(xiàn)為逐漸降低的趨勢,主要包括PgMPK12-1、PgMPK12-2、PgMPK6、PgMPK9和PgMKK8共5個基因;PgMKK3在嶧城粉紅牡丹石榴冷脅迫不同時間均未檢測到表達(圖4-A)。

在抗寒性差的瑪麗斯石榴響應(yīng)冷脅迫過程中,隨著時間推移,MAPK家族基因表達模式同樣主要分為3類(Ⅰ、Ⅱ和Ⅲ類)。Ⅰ類主要包括PgMKK3、PgMKK2、PgMPK20、PgMPK13和PgMPK1-1共5個基因;Ⅱ類主要包括PgMPK6、PgMKK6、PgMPK9、PgMPK16、PgMPK18和PgMPK3共6個基因;Ⅲ類主要包括PgMPK8、PgMKK4、PgMKK8、PgMPK12-1和PgMPK1-2共5個基因;PgMPK12-1在瑪麗斯響應(yīng)冷脅迫過程中未檢測到表達(圖4-B)。

其中,PgMKK2、PgMPK20和PgMPK13在嶧城粉紅牡丹石榴和瑪麗斯石榴冷脅迫過程中表達量均表現(xiàn)為先升高后降低的趨勢;PgMPK3、PgMKK6和PgMPK16表達量均表現(xiàn)為逐漸降低的趨勢;PgMPK12-1和PgMKK8表達量均表現(xiàn)為逐漸升高的趨勢(圖4)。PgMPK9和PgMPK6在嶧城粉紅牡丹石榴響應(yīng)冷脅迫過程中表現(xiàn)為逐漸升高的趨勢,在瑪麗斯石榴中表現(xiàn)為逐漸降低的趨勢;PgMPK18在嶧城粉紅牡丹石榴不同時間表現(xiàn)為先升高后降低的趨勢,在瑪麗斯石榴中表現(xiàn)為逐漸降低的趨勢;PgMPK1-2、PgMPK8和PgMKK4在嶧城粉紅牡丹石榴不同時間表現(xiàn)為先升高后降低的趨勢,在瑪麗斯石榴中表現(xiàn)為逐漸升高的趨勢;PgMPK1-1在嶧城粉紅牡丹石榴不同時間表現(xiàn)為逐漸降低,在瑪麗斯石榴中表現(xiàn)為先升高后降低;PgMKK3在嶧城粉紅牡丹石榴不同時間均未檢測到表達,在瑪麗斯石榴中表現(xiàn)為先升高后降低的趨勢;PgMPK12-2在瑪麗斯石榴不同時間均未檢測到表達,在嶧城粉紅牡丹石榴中表現(xiàn)為逐漸升高的趨勢(圖4)。

MAPK家族基因在嶧城粉紅牡丹石榴和瑪麗斯石榴間的相對表達量差異結(jié)果表明,PgMKK2、PgMPK6、PgMPK9、PgMPK16在響應(yīng)冷脅迫過程中,在嶧城粉紅牡丹石榴中的相對表達量顯著高于瑪麗斯石榴;PgMPK13相對表達量在響應(yīng)脅迫后5和10 min時在嶧城粉紅牡丹石榴和瑪麗斯石榴間不存在顯著性差異表達,20、30和60 min時在嶧城粉紅牡丹石榴中的相對表達量顯著高于瑪麗斯石榴;PgMKK8和PgMPK1-1在瑪麗斯石榴中的相對表達量顯著性高于嶧城粉紅牡丹石榴;PgMKK6、PgMPK12-1和PgMPK3的相對表達量在瑪麗斯和嶧城粉紅牡丹石榴間無顯著差異;PgMKK4、PgMPK8、PgMPK1-2響應(yīng)冷脅迫前期在嶧城粉紅牡丹石榴中的相對表達量顯著高于瑪麗斯石榴、后期在瑪麗斯石榴中的相對表達量顯著高于嶧城粉紅牡丹石榴;PgMPK20和PgMPK18的相對表達量與石榴對冷脅迫的響應(yīng)無顯著相關(guān)性(圖5)。

3 討 論

3.1 枝條取樣時間不同影響檢測的半致死溫度

筆者在本研究中測定的不同石榴品種半致死溫度范圍在-13.77~-32.79 ℃,與羅華等[31]發(fā)表的石榴半致死溫度存在范圍差異(-9.04~-11.77 ℃)。Ghasemi等[4]對不同取樣時間的石榴枝條半致死溫度檢測的差異進行分析,發(fā)現(xiàn)同一品種1月份取石榴枝條進行測定獲得的半致死溫度顯著低于3月份取枝條所獲得的半致死溫度。筆者取樣時間為石榴枝條休眠期(1月中旬),羅華等[31]取樣時間為萌芽前(3月中旬),這一結(jié)論解釋了本研究測定的石榴半致死溫度范圍顯著低于其發(fā)表范圍的原因。但是,半致死溫度的范圍不影響品種間抗寒性強弱的差異比較。

3.2 石榴抗寒性可能與籽粒硬度呈正相關(guān)

大部分硬籽石榴果實內(nèi)種皮次生細胞壁厚度顯著高于軟籽石榴,枝條較軟籽石榴硬。石榴抗寒性和籽粒硬度性狀可能存在連鎖遺傳現(xiàn)象。例如,NAC家族基因通過調(diào)控木質(zhì)素、纖維素和半纖維素合成從而參與調(diào)控石榴籽粒硬度形成[28],在硬籽石榴中的表達量顯著高于軟籽石榴。同時,NAC家族基因參與植物對抗寒性等非生物脅迫的響應(yīng)[32]。同時,已有研究報道生長環(huán)境溫度對植物抗寒性具有顯著影響,來源于云南產(chǎn)區(qū)的蒙自甜光顏石榴和蒙自滑皮沙籽石榴抗寒性、顯著低于新疆、山東、河南和安徽產(chǎn)區(qū)的石榴,長期自然環(huán)境馴化對石榴抗寒性具有顯著影響[33]。

3.3 石榴MAPK家族基因響應(yīng)冷脅迫

目前,水稻[34]、玉米[35]、葡萄[36]、棗[37]、麻風(fēng)樹[38]等多個物種上MAPK家族基因被挖掘,在植物生長發(fā)育、抗逆等過程中發(fā)揮重要功能。筆者在本研究中分析石榴MAPK家族基因功能性結(jié)構(gòu)域,發(fā)現(xiàn)在不同物種間MAPK家族基因功能性結(jié)構(gòu)域具有保守性。在擬南芥和玉米中MAPK家族基因MPK3、MPK4、MPK6和MKK2等在冷處理30 min內(nèi)表達量顯著上調(diào)[34-35]。MKK2基因在馬鈴薯響應(yīng)冷脅迫過程中顯著上調(diào)表達[39]。MPK5[40]和MPK3[41]響應(yīng)香蕉冷脅迫處理過程,并通過調(diào)控NAC042和ICE1基因表達從而參與調(diào)控香蕉抗寒性。石榴17個MAPK家族基因中12個均能不同程度地響應(yīng)石榴冷脅迫信號。PgMKK2、PgMPK6、PgMPK9、PgMPK16、PgMPK13在嶧城粉紅牡丹石榴響應(yīng)冷脅迫過程中表現(xiàn)為顯著上調(diào),PgMKK8、PgMPK1-1和PgMKK4在瑪麗斯石榴響應(yīng)冷脅迫過程中表現(xiàn)為顯著上調(diào),MAPK家族基因參與石榴響應(yīng)冷脅迫過程。

3.4 PgMKK2-MPK6級聯(lián)反應(yīng)途徑可能參與調(diào)控石榴抗寒性

已有研究表明,低溫誘導(dǎo)MKK2蛋白磷酸化[15],MKK2激發(fā)MPK4/MPK6蛋白磷酸化[14],MPK4/MPK6通過調(diào)控ICE1和CBF基因表達從而調(diào)控植物抗寒性[14];同時MKK2-MAPK4/7通過調(diào)控ICE1基因表達從而參與調(diào)控植物抗寒性;MEKK1-MKK2-MPK4通過調(diào)控CBFs基因表達從而正調(diào)控植物抗寒性。而低溫處理可顯著激活石榴PgMKK2和PgMPK6基因表達,冷脅迫處理后PgMKK2和PgMPK6在嶧城粉紅牡丹石榴中的表達量顯著高于瑪麗斯石榴,同時,PgMPK6表達趨勢與PgMKK2一致,推測PgMPK6基因表達上調(diào)可能與PgMKK2級聯(lián)反應(yīng)相關(guān),PgMKK2-MPK6級聯(lián)反應(yīng)途徑可能參與正調(diào)控石榴抗寒性。

3.5 PgMPK12-2可能參與正調(diào)控石榴抗寒性

油菜、擬南芥等物種中MPK12與MPK9功能冗余,正向調(diào)控脫落酸、茉莉酸、水楊酸[42-43]、低溫和鹽[44]等逆境脅迫過程。而石榴PgMPK12-2在瑪麗斯石榴不同時間均未檢測到表達,在嶧城粉紅牡丹石榴中表現(xiàn)為逐漸升高的趨勢。PgMPK9在響應(yīng)冷脅迫過程中在嶧城粉紅牡丹石榴中的表達量顯著高于瑪麗斯石榴。PgMPK12-2和PgMPK9可能參與石榴響應(yīng)低溫脅迫的過程。

4 結(jié) 論

筆者在本研究中基于石榴全基因組共挖掘到17個MAPK家族基因成員,分布于不同染色體,根據(jù)系統(tǒng)發(fā)育樹將其分為3個亞類,所有成員均含有S-TKc結(jié)構(gòu)域,同一亞類成員間保守結(jié)構(gòu)域、外顯子數(shù)目具有保守性。在響應(yīng)冷脅迫過程中,PgMKK2、PgMPK6、PgMPK9、PgMPK16和PgMAPK13在嶧城粉紅牡丹石榴中的表達量顯著高于瑪麗斯石榴,PgMKK8和PgMPK1-1在瑪麗斯石榴中的表達量顯著高于嶧城粉紅牡丹石榴,PgMKK2、PgMPK6、PgMPK12-2和PgMPK9可能正調(diào)控石榴抗寒性。

參考文獻 References:

[1] 楊雪梅,苑兆和,尹燕雷,馮立娟,招雪晴. 不同石榴品種抗寒性綜合評價[J]. 山東農(nóng)業(yè)科學(xué),2014,46(2):46-51.

YANG Xuemei,YUAN Zhaohe,YIN Yanlei,F(xiàn)ENG Lijuan,ZHAO Xueqing. Comprehensive evaluation on cold resistance of different pomegranate cultivars[J]. Shandong Agricultural Sciences,2014,46(2):46-51.

[2] 姚方,王寧,曹尚銀,馬貫羊,司守霞,姚海雷.不同軟籽品種石榴抗寒性綜合評價[J]. 森林與環(huán)境學(xué)報,2016,36(3):373-379.

YAO Fang,WANG Ning,CAO Shangyin,MA Guanyang,SI Shouxia,YAO Hailei.Comprehensive evaluation on cold resistance of different pomegranate cultivars[J]. Journal of Forest and Environment,2016,36(3):373-379.

[3] 焦其慶,馮立娟,尹燕雷,崔洪濤. 石榴凍害及抗寒評價研究進展[J]. 植物生理學(xué)報,2019,55(4):425-432.

JIAO Qiqing,F(xiàn)ENG Lijuan,YIN Yanlei,CUI Hongtao. Research progress on evaluation of freezing injury and cold resistance of pomegranate[J]. Plant Physiology Journal,2019,55(4):425-432.

[4] SOLOKLUI A A G,ERSHADI A,F(xiàn)ALLAHI E. Evaluation of cold hardiness in seven Iranian commercial pomegranate (Punica granatum L.) cultivars[J]. HortScience,2012,47(12):1821-1825.

[5] 畢潤霞,郝兆祥,侯樂峰,王慶軍,李昭慧,王艷琴. 電導(dǎo)法評價石榴抗寒性方法的探討[J]. 山東農(nóng)業(yè)科學(xué),2015,47(2):38-41.

BI Runxia,HAO Zhaoxiang,HOU Lefeng,WANG Qingjun,LI Zhaohui,WANG Yanqin. Evaluation on cold resistance of pomegranate by conductivity method[J]. Shandong Agricultural Sciences,2015,47(2):38-41.

[6] 劉貝貝,陳利娜,牛娟,李好先,張杰,曹尚銀. 6個石榴品種抗寒性評價及方法篩選[J]. 果樹學(xué)報,2018,35(1):66-73.

LIU Beibei,CHEN Lina,NIU Juan,LI Haoxian,ZHANG Jie,CAO Shangyin. Selection of methods for evaluation on cold tolerance of six pomegranate varieties[J]. Journal of Fruit Science,2018,35(1):66-73.

[7] ZHANG F,JIANG Y,BAI L P,ZHANG L,CHEN L J,LI H G,YIN Y,YAN W W,YI Y,GUO Z F. The ICE-CBF-COR pathway in cold acclimation and AFPs in plants[J]. Middle-East Journal of Scientific Research,2011,8(2):493-498.

[8] TIAN K,LI Q,ZHANG X M,GUO H Y,WANG Y H,CAO P L,XU S Y,LI W Y. Analysis of the expression and function of the CBL-CIPK network and MAPK cascade genes in Kandelia obovata seedlings under cold stress[J]. Frontiers in Marine Science,2023,10:1113278.

[9] PITZSCHKE A,SCHIKORA A,HIRT H. MAPK cascade signalling networks in plant defence[J]. Current Opinion in Plant Biology,2009,12(4):421-426.

[10] BERGMANN D C,LUKOWITZ W,SOMERVILLE C R. Stomatal development and pattern controlled by a MAPKK kinase[J]. Science,2004,304(5676):1494-1497.

[11] MOUSTAFA K,ABUQAMAR S,JARRAR M,AL-RAJAB A J,TR?MOUILLAUX-GUILLER J. MAPK cascades and major abiotic stresses[J]. Plant Cell Reports,2014,33(8):1217-1225.

[12] ZHANG M M,SU J B,ZHANG Y,XU J,ZHANG S Q. Conveying endogenous and exogenous signals:MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology,2018,45:1-10.

[13] BANERJEE G,SINGH D,SINHA A K. Plant cell cycle regulators:Mitogen-activated protein kinase,a new regulating switch?[J]. Plant Science,2020,301:110660.

[14] TEIGE M,SCHEIKL E,EULGEM T,D?CZI R,ICHIMURA K,SHINOZAKI K,DANGL J L,HIRT H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J]. Molecular Cell,2004,15(1):141-152.

[15] FURUYA T,MATSUOKA D,NANMORI T. Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response[J]. Journal of Plant Research,2013,126(6):833-840.

[16] LIU Y K,ZHOU J. MAPping kinase regulation of ICE1 in freezing tolerance[J]. Trends in Plant Science,2018,23(2):91-93.

[17] ZHAO C Z,WANG P C,SI T,HSU C C,WANG L,ZAYED O,YU Z P,ZHU Y F,DONG J,TAO W A,ZHU J K. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability[J]. Developmental Cell,2017,43(5):618-629.

[18] PONCE-PINEDA I G,CARMONA-SALAZAR L,SAUCEDO-GARC?A M,CANO-RAM?REZ D,MORALES-CEDILLO F,PE?A-MORAL A,GUEVARA-GARC?A ? A,S?NCHEZ-NIETO S,GAVILANES-RU?Z M. MPK6 kinase regulates plasma membrane H+-ATPase activity in cold acclimation[J]. International Journal of Molecular Sciences,2021,22(12):6338.

[19] 劉貝貝. 石榴抗寒品種篩選及轉(zhuǎn)錄因子PgCBF1功能分析[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2018.

LIU Beibei. Screening cold-tolerante cultivars of pomegranate and analyzing the function of PgCBF1 transcription factor[D]. Beijing:Chinese Academy of Agricultural Sciences,2018.

[20] LUO X,LI H X,WU Z K,YAO W,ZHAO P,CAO D,YU H Y,LI K D,POUDEL K,ZHAO D G,ZHANG F H,XIA X C,CHEN L N,WANG Q,JING D,CAO S Y. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft-and hard-seeded cultivars[J]. Plant Biotechnology Journal,2020,18(4):955-968.

[21] REN Y A,GE D P,DONG J M,GUO L H,YUAN Z H. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in pomegranate (Punica granatum L.)[J]. Agronomy,2020,10(7):1015.

[22] LAMESCH P,BERARDINI T Z,LI D H,SWARBRECK D,WILKS C,SASIDHARAN R,MULLER R,DREHER K,ALEXANDER D L,GARCIA-HERNANDEZ M,KARTHIKEYAN A S,LEE C H,NELSON W D,PLOETZ L,SINGH S,WENSEL A,HUALA E. The Arabidopsis Information Resource (TAIR):Improved gene annotation and new tools[J]. Nucleic Acids Research,2012,40(Database issue):1202-1210.

[23] MADEIRA F,PEARCE M,TIVEY A R N,BASUTKAR P,LEE J,EDBALI O,MADHUSOODANAN N,KOLESNIKOV A,LOPEZ R. Search and sequence analysis tools services from EMBL-EBI in 2022[J]. Nucleic Acids Research,2022,50(W1):276-279.

[24] ARTIMO P,JONNALAGEDDA M,ARNOLD K,…,STOCKINGER H. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40(Web Server issue):597-603.

[25] KUMAR S,STECHER G,TAMURA K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.

[26] HE Z L,ZHANG H K,GAO S H,LERCHER M J,CHEN W H,HU S N. Evolview v2:An online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Research,2016,44(W1):236-241.

[27] LU S N,WANG J Y,CHITSAZ F,DERBYSHIRE M K,GEER R C,GONZALES N R,GWADZ M,HURWITZ D I,MARCHLER G H,SONG J S,THANKI N,YAMASHITA R A,YANG M Z,ZHANG D C,ZHENG C J,LANCZYCKI C J,MARCHLER-BAUER A. CDD/SPARCLE:The conserved domain database in 2020[J]. Nucleic Acids Research,2020,48(D1):265-268.

[28] QIN G H,LIU C Y,LI J Y,QI Y J,GAO Z H,ZHANG X L,YI X K,PAN H F,MING R,XU Y L. Diversity of metabolite accumulation patterns in inner and outer seed Coats of pomegranate:Exploring their relationship with genetic mechanisms of seed coat development[J]. Horticulture Research,2020,7:10.

[29] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.

[30] ZAREI A, ZAMANI Z, FATAHI R, MOUSAVI A, SALAMI S A, AVILA C , C?NOVAS F M. Differential expression of cell wall related genes in the seeds of soft- and hard-seeded pomegranate genotypes[J]. Scientia Horticulturae, 2016, 205: 7-16.

[31] 羅華,王慶軍,郝兆祥,趙麗娜,陳穎,趙登超,畢潤霞,孟健,馬敏. 石榴抗寒種質(zhì)篩選研究[J]. 中國果樹,2018(4):46-52.

LUO Hua,WANG Qingjun,HAO Zhaoxiang,ZHAO Lina,CHEN Ying,ZHAO Dengchao,BI Runxia,MENG Jian,MA Min. Study on cold resistance of pomegranate germplasms[J]. China Fruits,2018(4):46-52.

[32] SINGH S,KOYAMA H,BHATI K K,ALOK A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement[J]. Journal of Plant Research,2021,134(3):475-495.

[33] DUNN S. Factors affecting cold resistance in plants[J]. Plant Physiology,1937,12(2):519-526.

[34] RAO K P,RICHA T,KUMAR K,RAGHURAM B,SINHA A K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice[J]. DNA Research,2010,17(3):139-153.

[35] KONG X P,L? W,ZHANG D,JIANG S S,ZHANG S Z,LI D Q. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase[J]. PLoS One,2013,8(2):e57714.

[36] ?AKIR B,KILI?KAYA O. Mitogen-activated protein kinase cascades in Vitis vinifera[J]. Frontiers in Plant Science,2015,6:556.

[37] LIU Z G,ZHANG L M,XUE C L,F(xiàn)ANG H,ZHAO J,LIU M J. Genome-wide identification and analysis of MAPK and MAPKK gene family in Chinese jujube (Ziziphus jujuba Mill.)[J]. BMC Genomics,2017,18(1):855.

[38] WANG H B,GONG M,GUO J Y,XIN H,GAO Y,LIU C,DAI D Q,TANG L Z. Genome-wide identification of Jatropha curcas MAPK,MAPKK,and MAPKKK gene families and their expression profile under cold stress[J]. Scientific Reports,2018,8:16163.

[39] CHEN Y,CHEN L,SUN X M,KOU S,LIU T T,DONG J K,TU W,ZHANG Y L,SONG B T. The mitogen-activated protein kinase kinase MKK2 positively regulates constitutive cold resistance in the potato[J]. Environmental and Experimental Botany,2022,194:104702.

[40] TAK H,NEGI S,RAJPUROHIT Y S,RAJPUROHIT Y S,MISRA H S,GANAPATHI T R. MusaMPK5,a mitogen activated protein kinase is involved in regulation of cold tolerance in banana[J]. Plant Physiology and Biochemistry,2020,146:112-123.

[41] GAO J,DOU T X,HE W D,SHENG O,BI F C,DENG G M,GAO H J,DONG T,LI C Y,ZHANG S,YI G J,HU C H,YANG Q S. MaMAPK3-MaICE1-MaPOD P7 pathway,a positive regulator of cold tolerance in banana[J]. BMC Plant Biology,2021,21(1):97.

[42] JAMMES F,SONG C,SHIN D,MUNEMASA S,TAKEDA K,GU D,CHO D S,LEE S M,GIORDO R,SRITUBTIM S,LEONHARDT N,ELLIS B E,MURATA Y,KWAK J M. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(48):20520-20525.

[43] KHOKON M A R,SALAM M A,JAMMES F,YE W X,HOSSAIN M A,OKUMA E,NAKAMURA Y,MORI I C,KWAK J M,MURATA Y. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana[J]. Bioscience,Biotechnology,and Biochemistry,2017,81(7):1394-1400.

[44] 李萍,聶亭亭,張騰國,鄭晟,王娟,毛玉珊. 白菜型油菜MPK12基因克隆及表達分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2017,45(5):26-33.

LI Ping,NIE Tingting,ZHANG Tengguo,ZHENG Sheng,WANG Juan,MAO Yushan. Clone and characterization of MPK12 gene from Brassica campestris[J]. Journal of Northwest A & F University (Natural Science Edition),2017,45(5):26-33.

收稿日期:2023-04-12 接受日期:2023-06-27

基金項目:國家重點研發(fā)計劃項目(2021YFD1600802);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-2023-ZFRI);河南省科技攻關(guān)項目(212102110421)

作者簡介:陳利娜,女,助理研究員,研究方向為果樹遺傳育種。Tel:13283811852, E-mail:1571863765@qq.com。#為共同第一作者。

通信作者 Author for correspondence. Tel:0371-65330990,E-mail:luzhenhua@caas.cn

猜你喜歡
表達分析抗寒性石榴
石榴紅了
石榴籽
草原歌聲(2021年1期)2021-07-16 06:58:06
緊緊抱在一起的“石榴籽”
少先隊活動(2021年1期)2021-03-29 05:27:06
石榴
紅花生育酚環(huán)化酶基因的克隆及表達分析
棗樹抗寒性檢測方法的篩選
巴梨的抗寒性試驗情況初報
中國果菜(2016年9期)2016-03-01 01:28:40
馬鈴薯普通栽培種雜交后代抗寒性分析
中國馬鈴薯(2015年5期)2016-01-09 06:11:11
玉米紋枯病病菌y—谷氨酰轉(zhuǎn)肽酶基因克隆與表達分析
信號分子與葉銹菌誘導(dǎo)下小麥病程相關(guān)蛋白1基因的表達分析
香格里拉县| 老河口市| 渭南市| 荆州市| 阜新| 水富县| 象山县| 子长县| 苍南县| 曲阜市| 无极县| 洪洞县| 新郑市| 陆良县| 饶平县| 华容县| 东源县| 正安县| 奉节县| 开远市| 庆云县| 海兴县| 赫章县| 双峰县| 射阳县| 彭阳县| 昌平区| 梁河县| 临沂市| 尼勒克县| 榕江县| 安徽省| 镇康县| 崇仁县| 炉霍县| 沈阳市| 改则县| 沧州市| 襄垣县| 霍林郭勒市| 平乡县|