何振波 張厲 高銘心 欒玲玉
摘要:近年來,為緩解水資源匱乏,循環(huán)冷卻水系統(tǒng)得到了廣泛應(yīng)用。冷卻水中通常含有鈣、鎂等多種礦物離子,容易形成不溶性鹽,在設(shè)備表面結(jié)垢。使用阻垢劑是解決結(jié)垢問題最有效的方法之一。綜述了近年來國內(nèi)外綠色阻垢劑的研究進(jìn)展,介紹了綠色阻垢劑的開發(fā)與應(yīng)用現(xiàn)狀,分析了不同類型阻垢劑的特點(diǎn)和阻垢性能,從螯合增溶、晶格畸變和凝聚分散作用等方面闡述了阻垢機(jī)理,可為未來綠色阻垢劑研究發(fā)展提供借鑒。
關(guān)鍵詞:循環(huán)冷卻水;綠色阻垢劑;阻垢性能;阻垢機(jī)理
中圖分類號(hào):X52?? 文獻(xiàn)標(biāo)志碼:A?? 文章編號(hào):1002-4026(2023)05-0102-19
Research progress of green scale inhibitors for circulating cooling water
HE Zhenbo, ZHANG Li, GAO Mingxin, LUAN Lingyu*
(Shandong Analysis and Test Center,Qilu University of Technology(Shandong Academy of Sciences), Jinan 250014, China)
Abstract∶Recently, circulating cooling water systems have been widely used to alleviate water shortage.However, cooling water usually contains various mineral ions,such as calcium and magnesium, which can easily form insoluble salts and scale on the surface of the equipment. The use of scale inhibitors in cooling water systems is one of the most effective methods to solve the scaling problem. In this paper, the recent research progress on green scale inhibitors at home and abroad was reviewed. The development and applications of green scale inhibitors were introduced here. The characteristics and scale inhibition performance of different types of scale inhibitors are also analyzed.Moreover,the scale inhibition mechanism was explained from different aspects,such as chelation and solubilization, coagulation and dispersion, and lattice distortion.Therefore,this review would provide an excellent reference for future research and development of green scale inhibitors.
Key words∶circulating cooling water; green scale inhibitor; scale inhibition performance; scale inhibition mechanism
隨著水資源日益短缺,循環(huán)冷卻水系統(tǒng)被廣泛應(yīng)用于各行業(yè)。循環(huán)冷卻水中通常含有許多的鈣、鎂等礦物離子,隨著冷卻水的反復(fù)使用,水中的離子濃度不斷升高[1],鹽類達(dá)到過飽和狀態(tài),形成不溶性鹽,在設(shè)備管道表面結(jié)垢,引起金屬設(shè)備腐蝕。另外,鈣垢吸附在設(shè)備表面,會(huì)降低系統(tǒng)的換熱效率,甚至縮短設(shè)備的使用壽命[2-3]。因此,尋找有效、快速的方法來防止或消除結(jié)垢已迫在眉睫。
目前,在循環(huán)冷卻水系統(tǒng)中添加化學(xué)阻垢劑是經(jīng)濟(jì)、有效的方法之一[4-5]?;瘜W(xué)阻垢劑種類較多,根據(jù)聚合單體成分可分為天然有機(jī)聚合物阻垢劑和合成聚合物阻垢劑[6-8]。阻垢劑通常由含有膦酸基、羧基、磺酸基、酰胺基、醚鍵和羥基等多種官能團(tuán)的單體聚合而成,其阻垢機(jī)理主要以螯合增溶、晶格畸變和凝聚分散為主。表1列舉了常見的幾種傳統(tǒng)化學(xué)阻垢劑的結(jié)構(gòu)和特性。
近年來,膦酸、羧酸、磺酸和醚鍵等官能團(tuán)被證實(shí)能夠抑制鈣垢晶體成核[11-13],特別是膦酸官能團(tuán),其對(duì)阻止CaCO3的沉積具有顯著作用[14]。氨基三亞甲基膦酸(ATMP)和2-膦酸基-1,2,4-三羧基丁烷(PBTCA)等是典型的含膦阻垢劑,對(duì)CaCO3的形成有著良好的抑制效果[9]。然而,含磷阻垢劑會(huì)引起水體富營養(yǎng)化,在應(yīng)用中日益受到限制[15]。此外,經(jīng)研究證明,聚丙烯酸[16]、聚馬來酸及其鹽類[17],因含有羧基等官能團(tuán)具有良好的阻垢性能,但由于不易生物降解受到應(yīng)用限制[18]。隨著人們環(huán)保意識(shí)的增強(qiáng),水體排放標(biāo)準(zhǔn)逐漸嚴(yán)格,開發(fā)新型的無磷、低毒、易生物降解的高效綠色阻垢劑[19]將會(huì)成為研究熱點(diǎn)。
綠色阻垢劑可分為天然有機(jī)阻垢劑和人工合成的綠色聚合物阻垢劑。目前,天然有機(jī)阻垢劑主要包括基于生物提取物及其衍生物阻垢劑,因來源豐富、環(huán)保以及生物可降解等特點(diǎn)受到廣泛關(guān)注。人工合成的綠色聚合物阻垢劑主要包括聚天冬氨酸(PASP)和聚環(huán)氧琥珀酸(PESA)類阻垢劑,因具有良好的阻垢性能、無磷、低毒以及可生物降解等優(yōu)點(diǎn)被廣泛應(yīng)用。近年來,隨著技術(shù)的發(fā)展和可持續(xù)戰(zhàn)略的提出,對(duì)高效綠色阻垢劑的研究越來越多[20-24]。本文對(duì)近年來國內(nèi)外綠色阻垢劑的研究進(jìn)展、開發(fā)與應(yīng)用現(xiàn)狀進(jìn)行了探討分析,并闡述了它們對(duì)鈣垢的阻垢性能和作用機(jī)理。
1 天然有機(jī)阻垢劑
近年來,學(xué)者們已對(duì)部分生物提取物進(jìn)行了阻垢性能的研究[25-27],植物提取物是天然有機(jī)阻垢劑的主要來源,物料豐富,提取工藝簡單,且無毒,無生物積累,作為綠色阻垢劑具有非常可觀的前景[28-30]。這些提取物的來源有杏仁葉[31]、橄欖葉[32]、槲皮素[33]、拳參[34]和甘文葉[35]等,其中含有類黃酮、有機(jī)酸等化合物,可以通過其結(jié)構(gòu)中的某些特定基團(tuán)與鈣離子反應(yīng),從而起到阻垢的作用。表2列舉了幾種天然有機(jī)阻垢劑的結(jié)構(gòu)和特性。
1.1 基于生物提取物的阻垢劑
羧甲基菊粉(CMI)是一種可從堆心菊根部分離出的多糖,具有無毒、可再生和生物可降解等特性[44-45]。Zhang等[46]利用分子動(dòng)力學(xué)(MD)模擬CMI與CaCO3晶體相互作用,結(jié)果表明CMI能夠有效地吸附在CaCO3表面,抑制CaCO3生長。分析發(fā)現(xiàn)CMI的氫原子和方解石表面的氧原子形成大量氫鍵,有助于CMI吸附在CaCO3晶體表面。此外,CMI的羧基氧原子與方解石表面鈣原子的距離為2.4~2.6 ,與Ca—O鍵長2.39 十分相近,表明羧基和Ca2+之間形成了較強(qiáng)的離子鍵,抑制CaCO3晶體的形成。另外,Kirboga等[47-48]發(fā)現(xiàn)CMI在方解石晶體生長過程中可以誘導(dǎo)其形成不同的晶型。Boels等[49]將CMI與亞甲基膦酸(NTMP)和羥基乙叉二膦酸(HEDP)進(jìn)行比較,CMI也能夠表現(xiàn)出較好的阻垢能力。
Hamdona等[36]利用生姜提取物制作阻垢劑,并進(jìn)行膜礦物結(jié)垢實(shí)驗(yàn),發(fā)現(xiàn)在60 ℃和pH約為6.5時(shí),100 mg/L質(zhì)量濃度的生姜提取物對(duì)CaSO4的阻垢率為98.80%。生姜富含多種化學(xué)成分,包括酚類化合物、多糖和有機(jī)酸等。由此認(rèn)為羥基能與Ca2+結(jié)合,對(duì)CaSO4的形成起到抑制作用。此外,生姜提取物中還含有羧基,與Ca2+有良好的螯合能力,這也可促進(jìn)其阻垢能力。需要注意的是,該提取物在弱酸和低溫時(shí)阻垢效果較好,但可能不適用于實(shí)際循環(huán)水系統(tǒng)中高溫和弱堿的水體環(huán)境。
Khamis等[37]制備了一種褐藻提取物綠色阻垢劑,通過計(jì)時(shí)電流法、電化學(xué)阻抗譜技術(shù)和美國腐蝕工程師協(xié)會(huì)(national association of corrosion engineers,NACE)測試評(píng)估其阻垢性能。結(jié)果表明,褐藻提取液在質(zhì)量濃度為15 mg/L和200 mg/L時(shí),對(duì)CaSO4和CaCO3阻垢效率分別為100%和80%。褐藻提取物富含褐藻酸和水溶性1,3;1,6-3-D-葡聚糖[50-51],結(jié)構(gòu)中的羥基和羧基對(duì)鈣離子具有很強(qiáng)的結(jié)合能力[52],可以破壞CaSO4和CaCO3的晶體結(jié)構(gòu),使它們變得蓬松,從而不易吸附在設(shè)備表面,使提取物具有良好的阻垢效果。但是,與HEDP相比,達(dá)到相同阻垢效果時(shí),所需投加量遠(yuǎn)大于HEDP。
Vasyliev等[38]利用乙醇浸漬法制備了蘿卜提取物溶液(RCE),分別用計(jì)時(shí)電流法和熱結(jié)垢技術(shù)測試了RCE對(duì)CaCO3的阻垢性能。RCE的體積分?jǐn)?shù)為10 mL/L時(shí),阻垢率接近100%,即使在
100 ℃的高溫下,也能有78.7%的阻垢效率,表現(xiàn)出良好的耐溫性。RCE中含有酚類衍生物,結(jié)構(gòu)中有大量的羥基和羧基,與Ca2+形成水溶性絡(luò)合物,阻止CaCO3的沉積。此外,端羧基花青素具有更大的表面積,可以促進(jìn)RCE與更多的鈣離子螯合,提高了其阻垢效果。同時(shí),RCE還具有良好的緩蝕性能。
近年來,除了采用植物提取物作為阻垢劑外,一些學(xué)者也對(duì)動(dòng)植物蛋白和微生物提取物進(jìn)行了研究。Mady等[27]利用動(dòng)態(tài)法研究了動(dòng)植物蛋白(如肉蛋白、大豆、小麥和乳清等)的阻垢性能。結(jié)果發(fā)現(xiàn),牛奶蛋白對(duì)CaCO3和CaSO4的阻垢效果最好,還發(fā)現(xiàn)通過蛋白胨與馬來酸酐的開環(huán)反應(yīng)引入羧基后,阻垢性能得到了顯著地提高。這可能由于增加羧基的影響,或者是未反應(yīng)水解的馬來酸酐和蛋白質(zhì)之間的協(xié)同作用。此外,需要注意的是,動(dòng)植物蛋白的使用是否會(huì)容易滋養(yǎng)細(xì)菌和藻類,導(dǎo)致水體污染,這將需要進(jìn)一步研究。
隨著微生物在化學(xué)領(lǐng)域的日益普及,微生物提取物在阻垢方面的研究也越來越受到重視,蠟樣芽孢桿菌就是典型代表之一。Li等[26]利用蠟樣芽孢桿菌分泌的可溶性胞外聚合物(s-EPS)制作阻垢劑,并探究了其阻垢性能和機(jī)理。在70 ℃,pH為8時(shí),質(zhì)量濃度為80 mg/L的s-EPS對(duì)CaCO3阻垢效率為87.60%。這可能是因?yàn)閟-EPS由多糖、蛋白質(zhì)和腐殖酸類物質(zhì)組成,富含羧基、羥基、氨基和酰胺官能團(tuán),對(duì)Ca2+有優(yōu)異的螯合能力[53]。此外,s-EPS可以通過范德瓦耳斯或靜電相互作用緊密吸附在CaCO3晶體表面生長位點(diǎn)上[54],導(dǎo)致CaCO3的生物礦化,從而抑制CaCO3晶體的生長。最近,Gao等[55]利用s-EPS和沸石咪唑骨架-8(ZIF-8)[JP]合成了一種新型親水性阻垢劑,即ZIF-8@s-EPS。實(shí)驗(yàn)結(jié)果表明,在溫度為20 ℃條件下,質(zhì)量濃度僅為20 mg/L的ZIF-8@s-EPS對(duì)CaCO3的阻垢率就能達(dá)到98.63%。ZIF具有高比表面積、耐高溫性和化學(xué)穩(wěn)定性,這將有助于保護(hù)DNA、蛋白質(zhì)、酶等生物大分子免受失活或變性[56],也有助于ZIF-8@s-EPS對(duì)CaCO3生物礦化[57]。此外,研究表明,ZIF-8@s-EPS還表現(xiàn)出防污和抗菌的多功能性能,這將為解決實(shí)際循環(huán)水系統(tǒng)中含有污垢和微生物問題提供新的思路。
1.2 基于改性的天然有機(jī)阻垢劑
天然提取物阻垢劑所需投加量大、雜質(zhì)含量高、在高溫環(huán)境下易分解,且阻垢效果并不十分理想[58-59]。此外,大部分天然高分子物質(zhì),如淀粉、纖維素和殼聚糖等屬于多糖物質(zhì),它們本身通常表現(xiàn)出較差的阻垢效果[60]。因此,需要對(duì)天然有機(jī)物質(zhì)進(jìn)行改性研究,進(jìn)而提高阻垢性能[61-63]。
1.2.1 檸檬酸
檸檬酸(CA)是一種天然有機(jī)酸,價(jià)格低廉,存在于各種水果和蔬菜中,常在食品工業(yè)中被用作芳香劑或飲料防腐劑[64]。此外,它也是一種環(huán)境友好型化合物,由于其結(jié)構(gòu)中存在羧基,能與Ca2+螯合[65],被用作阻垢劑[66-67]。
Yuan等[68]利用CA分別與天冬氨酸、谷氨酸和甘氨酸合成了
姜黃-檸檬酸-天冬氨酸聚合物(PCCA)、姜黃-檸檬酸-谷氨酸聚合物(PCCG)和姜黃-檸檬酸-甘氨酸聚合物(PCCD),并通過靜態(tài)阻垢實(shí)驗(yàn)研究了它們阻垢性能, PCCA的阻垢性能最好,這可能是由于氨基酸種類對(duì)聚合物的阻垢性能起到了重要作用,因?yàn)樗嵝栽綇?qiáng)越容易解離出—COO-,越有利于阻垢。此外,質(zhì)量濃度僅為4 mg/L的PCCA對(duì)CaSO4的最大抑制率為99.7%,在20 mg/L的用量下,對(duì)CaCO3的抑制率可達(dá)98.8%。PCCA良好的阻垢效果跟羧基與Ca2+的強(qiáng)親和力[69]和酰胺基在晶體表面強(qiáng)吸附力有關(guān),能有效抑制鈣垢的生長。另外,PCCA不僅投加量少,還適用于高溫、高硬度、高SO2-4濃度的水環(huán)境中,并能長時(shí)間抑制CaSO4垢的形成。
Zhang等[70]研制了10-甲基吖啶碘化銨(MAI)和檸檬酸鈉(SC)組成的環(huán)境友好型緩蝕阻垢劑(MAI-SC),[JP]并通過電化學(xué)和靜態(tài)阻垢實(shí)驗(yàn)研究了其阻垢性能。結(jié)果表明,在MAI與SC的最佳配比下,緩蝕率高達(dá)92.7%(mMAI:mSC=1[JX-*4]:[JX*4]2),CaCO3的阻垢率為98.3% (mMAI:mSC=1[JX-*4]:[JX*4]3)。這可能是由于MAI-SC中羧基的增加,加強(qiáng)了與Ca2+的螯合能力,附著并干擾鈣垢晶體的生長,破壞晶體結(jié)構(gòu),起到良好的阻垢作用。此外,量子化學(xué)計(jì)算表明,MAI-SC主要對(duì)方解石的(104)和(110)面以及球霰石的(002)和(020)面起抑制作用。
Zhao等[3]通過縮聚反應(yīng)成功地制備了聚檸檬酸(PCA),實(shí)驗(yàn)結(jié)果表明,PCA用量為25 mg/L時(shí),阻垢率可達(dá)98.8%。這可能是由于PCA分子吸附在生長的CaSO4晶面的活性位點(diǎn)上,使CaSO4晶格發(fā)生扭曲,抑制其生長,從而達(dá)到良好的阻垢效果。相同條件下,與PASP、PESA和HEDP相比,PCA的阻垢效果最好。此外,PCA中可水解為檸檬酸,且易生物降解[71]。然而,在85 ℃時(shí),阻垢效果明顯下降,表明PCA耐溫性不好,不適用于高溫環(huán)境中。
1.2.2 淀粉
眾所周知,淀粉是一種天然高分子阻垢劑[63],來源十分廣泛,但其水溶性低,阻垢性能不大理想,所以眾多學(xué)者對(duì)淀粉進(jìn)行了氧化或接枝等改性[49,72]。氧化淀粉(OS)是一種氧化改性淀粉[60],將淀粉上的部分羥甲基氧化成羧基[73],從而增強(qiáng)了其阻垢分散性能。
Chen等[74]采用分子動(dòng)力學(xué)(molecular dynamics,MD)模擬和量子化學(xué)計(jì)算對(duì)OS的阻垢性能和機(jī)理進(jìn)行分析,結(jié)果發(fā)現(xiàn),OS主要通過羧基與Ca2+結(jié)合形成絡(luò)合物,并可以吸附在晶體表面的活性位點(diǎn)上,使鈣垢發(fā)生晶格畸變,從而抑制鈣垢的生長。徑向分布函數(shù)(RDF)分析結(jié)果表明,OS和晶體表面之間能夠形成離子鍵,使晶體表面變形,對(duì)鈣垢產(chǎn)生抑制效應(yīng)。但是OS的用量太大,成本也會(huì)增加,因此,也需要對(duì)OS改性或與其他材料結(jié)合。
Yu等[54]以聚琥珀酰亞胺(PSI)和OS為原料合成了一種新型高效二元阻垢劑,即PASP/OS,并研究了其阻垢性能。在50 ℃,PASP/OS質(zhì)量濃度為8 mg/L時(shí),對(duì)CaCO3的抑制率能夠達(dá)到100%,即使在100 ℃時(shí),阻垢率也能夠達(dá)到83.57%,表現(xiàn)出良好的耐高溫性。PASP/OS的阻垢機(jī)理包括三個(gè)方面:PASP/OS的羧基和羥基可以與Ca2+螯合形成可溶性螯合物,防止鈣垢形成;通過靜電作用吸附懸浮在溶液中的新形成的垢顆粒表面,使垢顆粒表面具有相同的負(fù)電荷相互排斥,達(dá)到分散的作用;PASP/OS的氮原子和氧原子上的孤對(duì)電子可以吸附在鈣垢晶體的活性位點(diǎn)上,從而破壞原有的晶體結(jié)構(gòu)[63,75-76]。此外,他們還研究了加熱時(shí)間、pH和Ca2+濃度對(duì)PASP/OS阻垢效果的影響,結(jié)果表明,與PASP相比,PASP/OS在高堿、高硬度等條件下,仍具有較好的抑制效果,且表現(xiàn)出良好的可持續(xù)性阻垢效果。
1.2.3 纖維素
纖維素是世界上最豐富的天然有機(jī)物,占植物含碳量的50%以上。纖維素及其衍生物廣泛應(yīng)用于食品、醫(yī)藥、緩蝕阻垢劑等領(lǐng)域[77-79]。羧甲基纖維素(CMC)是其最簡單的線性鏈結(jié)構(gòu)衍生物之一,由于引入了羧基,也表現(xiàn)出良好的阻垢性能[61-62,80]。
隨著研究的深入,很多學(xué)者通過對(duì)CMC進(jìn)行接枝等化學(xué)改性來提高其阻垢性能[55,81-85]。Yu等[85]通過羧甲基纖維素(CMC)與丙烯酸(AA)的接枝共聚,合成了一種高效的纖維素阻垢劑——羧甲基纖維素接枝聚丙烯酸(CMC-g-PAA),并通過反滲透和靜態(tài)試驗(yàn)系統(tǒng)地研究了其阻垢性能。在接枝率相近的情況下,由于含有更多的活性抑制位點(diǎn),平均接枝鏈數(shù)越高,CMC-g-PAA的阻垢性能越好。然而,在接枝率相同的情況下,接枝鏈較長的CMC-g-PAA會(huì)增強(qiáng)架橋絮凝效果[85-87],反而削弱了分散效果,導(dǎo)致其阻垢性能變差。當(dāng)CMC與AA的質(zhì)量比為1:0.3,引發(fā)劑質(zhì)量為0.5 g時(shí),得到的CMC-g-PAA接枝率為59%,阻垢性能最好。在pH為8.0、溫度為70 ℃和Ca2+濃度為75 mmol/L條件下,6 mg/L的CMC-g-PAA的阻垢率能夠達(dá)到95.5%。與CMC相比,一方面, CMC-g-PAA的兩個(gè)相鄰的接枝鏈對(duì)Ca2+的螯合作用具有協(xié)同作用,這增強(qiáng)了CMC-g-PAA的穩(wěn)定性[49,62,63]。另一方面,含氮量較高的CMC-g-PAA中存在較多的端基,使CMC-g-PAA的活性更高,增強(qiáng)了與鈣垢的相互作用,從而表現(xiàn)出更好的阻垢性能。但需要注意的是,聚丙烯酸難以降解,可能使CMC-g-PAA的生物降解性變差,這將有待進(jìn)一步研究[88-89]。
Zhao等[90]利用動(dòng)態(tài)阻垢試驗(yàn)和MD模擬研究了溫度對(duì)羧甲基纖維素鈉(SCMC)阻垢性能的影響,結(jié)果表明,溫度在293~343 K內(nèi),當(dāng)SCMC加入量為20 mg/L時(shí),CaCO3的污垢熱阻降低,阻垢效率會(huì)隨著溫度的升高而增加,343 K時(shí)的最高阻垢率為99.8%。這可能是由于隨著溫度的升高,SCMC與方解石面的結(jié)合能以及SCMC與Ca2+結(jié)合的幾率均增大,從而能有效地阻止CaCO3垢在傳熱表面的生長。RDF結(jié)果表明,SCMC與方解石面絕大部分是通過氫鍵和化學(xué)鍵結(jié)合,且主要以羧基中的氧原子和晶面鈣原子之間形成的離子鍵為主,這種強(qiáng)相互作用會(huì)使方解石晶格畸變,阻礙方解石晶體的正常生長。此外,SCMC在方解石(104)[JP]面上的MD吸附構(gòu)型以及結(jié)合能與實(shí)驗(yàn)結(jié)果相一致,這些發(fā)現(xiàn)有利于指導(dǎo)高效水處理阻垢劑的開發(fā)。
1.2.4 其他改性天然有機(jī)阻垢劑
除了對(duì)上述天然有機(jī)聚合物阻垢劑研究外,還有學(xué)者對(duì)單寧酸、殼聚糖等進(jìn)行了改性研究,并考察了它們的阻垢性能。單寧和殼聚糖具有許多活性基團(tuán),如羥基,可以很容易地通過在其主干上引入各種官能團(tuán)進(jìn)行化學(xué)修飾,如酯化、醚化和接枝共聚,以克服溶解性差的問題[91-95]。
Zhang等[96]采用電導(dǎo)法和靜態(tài)試驗(yàn)對(duì)羧甲基季銨鹽低聚殼聚糖(CM-QAOC)的阻垢性能進(jìn)行評(píng)價(jià),在Ca2+質(zhì)量濃度為240 mg/L 和pH為8.0條件下,投加量為50 mg/L的CM-QAOC的阻垢效率可以超過98%,但與含磷阻垢劑相比,阻垢效果偏差。Zeng等[97]以聚琥珀酰亞胺和殼聚糖為原料,合成了聚天冬氨酸/殼聚糖接枝共聚物(PASP/CS),靜態(tài)阻垢實(shí)驗(yàn)結(jié)果表明,當(dāng)阻垢劑質(zhì)量濃度為8 mg/L時(shí),PASP/CS對(duì)碳酸鈣垢的抑制效率為92%, 然而PASP 僅有68%。此外,相比PASP,PASP/CS的耐溫性、耐鹽性和耐堿性明顯得到提高,且對(duì)Ca2(PO4)3也表現(xiàn)出優(yōu)異的阻垢效果。但是,PASP/CS的合成過程中耗能巨大,會(huì)增加生產(chǎn)成本且不利于生產(chǎn)應(yīng)用。Maher等[43]利用胍基對(duì)殼聚糖改性并成功合成了殼聚糖雙胍鹽酸鹽(CG),實(shí)驗(yàn)結(jié)果表明,CG質(zhì)量濃度為10~15 mg/L時(shí),對(duì)CaCO3和CaSO4的阻垢性能最好。胍基中含有胺基結(jié)構(gòu),羥基和氨基協(xié)同作用不但有助于改善殼聚糖的溶解性和抗菌活性,還能提高CG在鈣垢晶體表面的吸附能力,增強(qiáng)殼聚糖的阻垢能力。CG的阻垢機(jī)理為兩種:一是羥基與Ca2+螯合,增加了Ca2+的溶解度,延緩鈣垢結(jié)晶;二是CG吸附在鈣垢晶體表面,占據(jù)生長活性位點(diǎn),引起晶格畸變,抑制鈣垢的形成。
Cui等[39]基于自由基聚合原理,以衣康酸、2-丙烯酰胺-2-甲基丙磺酸和單寧酸為單體,成功制備了一種共聚物阻垢劑。研究發(fā)現(xiàn),當(dāng)反應(yīng)時(shí)間為3.5 h,反應(yīng)溫度為75 ℃,單寧酸加入量為4 g,引發(fā)劑用量為單體總質(zhì)量的5%時(shí),共聚物的阻垢性能最好。由于含有單寧酸,分子結(jié)構(gòu)中相鄰的羥基可與Ca2+形成溶解性較大的絡(luò)合物,增大了Ca2+的溶解度,延緩CaCO3晶體的形成。共聚物中還含有羧基、磺酸基和酰胺基,這些官能團(tuán)能夠促進(jìn)阻垢劑吸附在鈣垢晶體表面生長活性位點(diǎn)上,阻止鈣垢晶體正常生長,從而起到抑制鈣垢形成的作用。此外,合成的共聚物阻垢劑即使在高溫、高硬度和高堿性的水環(huán)境中也能表現(xiàn)出較好的阻垢效果,具有更大的應(yīng)用前景。
2 人工合成的綠色聚合物阻垢劑
隨著公眾對(duì)環(huán)境保護(hù)的關(guān)注,環(huán)保型無磷綠色阻垢劑成為了眾多學(xué)者關(guān)注的熱點(diǎn)。聚天冬氨酸(PASP)和聚環(huán)氧琥珀酸(PESA)是典型的人工合成綠色聚合物阻垢劑[98-99],由于它們顯示出良好的阻垢性能和生物降解性得到國內(nèi)外廣泛研究和應(yīng)用[18,100]。表3列舉了幾種研究較多的綠色阻垢劑的結(jié)構(gòu)和特性。
2.1 聚天冬氨酸類
PASP是一種環(huán)境友好型多功能聚合材料,因其無毒、無磷和良好的生物降解性而呈現(xiàn)出良好的發(fā)展前景[104-105]。同時(shí),PASP分子中含有羧基,具有良好的螯合能力和分散性[18,106-107]。然而,PASP在高溫環(huán)境下阻垢性能并不好[108],且當(dāng)溶液中Ca2+濃度較高時(shí),PASP的阻垢效果也不是很好[109],這些因素限制了PASP的應(yīng)用范圍。研究發(fā)現(xiàn),通過在其側(cè)鏈引入羥基、磺酸基和氨基等基團(tuán)對(duì)PASP進(jìn)行化學(xué)改性后,能夠提高PASP的阻垢性能,以及在高溫、高硬度環(huán)境下的穩(wěn)定性[110-113]。
Zhang等[114]通過酪氨酸或色氨酸同時(shí)引入羧基和磺酸基團(tuán),與PASP接枝共聚制備了改性聚天冬氨酸阻垢劑(Tyr-SA-PASP和Trp-SA-PASP)。靜態(tài)阻垢實(shí)驗(yàn)結(jié)果表明,當(dāng)Tyr-SA-PASP和Trp-SA-PASP的投加質(zhì)量濃度分別僅為4 mg/L和5 mg/L時(shí),最大阻垢效率都能夠達(dá)到98%,并且還能延長CaSO4結(jié)晶誘導(dǎo)時(shí)間。通過差分吸收光譜和密度泛函理論(DFT)分析,Ca2+通過與Tyr-SA-PASP和Trp-SA-PASP分子的配位作用,導(dǎo)致Tyr-SA-PASP和Trp-SA-PASP分子去質(zhì)子化,這將破壞CaSO4的晶體結(jié)構(gòu),從而提高Tyr-SA-PASP和Trp-SA-PASP的阻垢性能。此外,磺酸基也具有配位和分散效果,在一定程度上也能夠提高阻垢效果。與常用阻垢劑PASP、PAPEMP, JH-907相比,達(dá)到最大阻垢效率時(shí),Trp-SA-PASP的投加量卻少很多。
Zhang等[109]以PSI和尿素為原料,合成了聚天冬氨酸/尿素接枝共聚物(PASP/Urea)。結(jié)果表明,在溶液pH為9、溫度為80 ℃條件下,當(dāng)PASP/Urea質(zhì)量濃度為10 mg/L時(shí),對(duì)CaCO3的阻垢率為93%;質(zhì)量濃度為4 mg/L時(shí),對(duì)CaSO4的阻垢率提高到了97%,質(zhì)量濃度為12 mg/L時(shí),對(duì)Ca3(PO4)2的阻垢率高達(dá)100%,表明PASP/Urea能適用于含有多種鈣鹽離子的復(fù)雜水體環(huán)境。這可能是因?yàn)镻ASP/Urea結(jié)構(gòu)中的大量羧基,是抑制鈣垢形成的主要官能團(tuán),具有優(yōu)異的螯合能力和分散性能[108,115]。此外,與PASP相比,PASP/Urea中同時(shí)含有羥基離子和酰胺基。不僅羥基能夠與Ca2+結(jié)合,而且具有孤對(duì)電子的酰胺基中的氮原子也可以與Ca2+螯合,延緩水垢的形成,提高PASP/Urea的阻垢性能[23,116]。
Chen等[117]以聚天冬氨酸(PASP)和氧化石墨烯為原料合成了一種聚天冬氨酸/氧化石墨烯接枝共聚物(PASP/GO)阻垢劑。結(jié)果表明,同時(shí)引入了羧基和羥基后,在80 ℃,pH為8時(shí),向250 mg/L Ca2+溶液中加入8 mg/L PASP/GO,對(duì)CaCO3的阻垢效率為100%;在70 ℃,pH為7時(shí),10 mg/L PASP/GO加入到6 800 mg/L Ca2+溶液中,對(duì)CaSO4的阻垢效率也高達(dá)100%,且阻垢性能都要強(qiáng)于PASP,這可能是由于同濃度的PASP/GO含有的羧基和羥基的數(shù)量要多于PASP,而且在高溫、高鈣或高堿的環(huán)境中,PASP/GO的阻垢性能都非常好,但PASP/GO的制備工藝條件復(fù)雜,在實(shí)際生產(chǎn)過程中較困難。此外,MD模擬分析結(jié)果表明,PASP/GO的阻垢機(jī)理為螯合、晶格畸變和分散作用。值得注意的是,計(jì)算機(jī)模擬和實(shí)驗(yàn)相結(jié)合不僅能夠保證實(shí)驗(yàn)的準(zhǔn)確性,還能夠節(jié)省大量的人力和財(cái)力,并且計(jì)算機(jī)模擬還可以對(duì)實(shí)驗(yàn)有一定的預(yù)測性和指導(dǎo)性。
2.2 聚環(huán)氧琥珀酸類
PESA是20世紀(jì)90年代初分別由美國寶潔公司和貝茨公司合成的一種阻垢緩蝕劑。由于其結(jié)構(gòu)中含有羧基和醚基,PESA不但可以和Ca2+發(fā)生螯合反應(yīng),還能夠表現(xiàn)出良好的分散和阻垢性能[118-119]。此外,PESA因其無氮、無磷和可生物降解的特點(diǎn)已被廣泛應(yīng)用[120-122]。Li等[123]通過MD模擬和DFT對(duì)PESA和PASP進(jìn)行了阻垢性能和機(jī)理研究,結(jié)果發(fā)現(xiàn),PESA的阻垢性能和分散性都要優(yōu)于PASP。然而,PESA存在投加量大、Ca2+耐受性差和耐溫性差等缺點(diǎn)[78,124],所以需要對(duì)PESA進(jìn)行改性研究,彌補(bǔ)這些不足。
Zhang等[125]以馬來酸酐和精氨酸為原料成功合成了一種新型綠色阻垢劑——精氨酸改性聚環(huán)氧琥珀酸(Arg-PESA),并利用靜態(tài)阻垢測試和MD模擬對(duì)Arg-PESA阻垢性能和機(jī)理進(jìn)行研究。結(jié)果表明,在80 ℃和60 ℃時(shí),6 mg/L的Arg-PESA對(duì)250 mg/L Ca2+溶液中CaCO3的阻垢率都可達(dá)到100%,而此時(shí)PESA阻垢率分別只有60%和80%。因?yàn)榻?jīng)過左旋精氨酸接枝后,酰胺、氨基和羧基的存在增加了分子的電負(fù)性,更容易與Ca2+螯合。且Arg-PESA更易與吸附在活性位點(diǎn)上,引起晶格畸變,阻礙晶體的正常生長,達(dá)到更好的阻垢效果。此外,與PESA相比,即使在弱堿、Ca2+濃度較高的條件下,Arg-PESA也能夠表現(xiàn)出良好的阻垢性能,且對(duì)Fe2O3有更好的分散性能。
Huang等[124]通過縮水甘油基和環(huán)氧琥珀酸酯的共聚反應(yīng)合成了具有線性和超支化的聚環(huán)氧琥珀酸(HBP),并評(píng)價(jià)HBPs對(duì)碳酸鈣的阻垢性能。結(jié)果表明,當(dāng)Ca2+為125 mg/L時(shí),HBPs質(zhì)量濃度為15 mg/L對(duì)CaCO3阻垢率高達(dá)95.9%,遠(yuǎn)高于長鏈PESA(L-PESA)的阻垢率。此外,在高堿度、高硬度的條件下,HBPs的阻垢效果也都要優(yōu)于L-PESA。與L-PESA相比,HBPs具有三維立體結(jié)構(gòu),可以提高與Ca2+的結(jié)合能力[109],而且在相同分子量下,HBPs醚鍵的數(shù)量要多于L-PESA,帶有孤對(duì)電子的醚基有利于HBPs吸附在CaCO3晶體表面,因此,即使HBPs在較低的濃度也可以表現(xiàn)出優(yōu)異的阻垢性能[126]。機(jī)理研究表明,HBPs不僅可以通過提高CaCO3的溶解度和抑制晶核的形成來延長誘導(dǎo)期,而且在晶體生長過程中,可以吸附在晶體表面活性位點(diǎn)上,從而對(duì)晶體生長造成干擾和抑制。此外,HBPs可生物降解,雖然生物降解性比L-PESA差,但也可以在天然水中降解。
Shi等[121]利用衣康酸(IA)和環(huán)氧琥珀酸(ESA)合成了一種聚衣康酸-環(huán)氧琥珀酸(PIA-co-ESA)新型阻垢劑。通過單因素試驗(yàn)確定,當(dāng)單體配比(nIA: nESA)為4:1,引發(fā)劑用量為11%,反應(yīng)溫度為85 ℃,反應(yīng)時(shí)間為4 h時(shí),PIA-co-ESA表現(xiàn)出最優(yōu)異的阻垢性能。靜態(tài)試驗(yàn)結(jié)果表明,Ca2+為125 mg/L時(shí),PIA-co-ESA為18 mg/L時(shí)對(duì)CaCO3阻垢效率高達(dá)100%。阻垢機(jī)理可能為PIA-co-ESA占據(jù)晶體表面活性位點(diǎn),使晶體表面發(fā)生扭曲,導(dǎo)致晶格畸變,抑制晶體的生長。
Yan等[127]以ESA、IA和甲基丙烯磺酸鈉(SMAS)為原料,合成了一種新型無磷無氮阻垢劑(ESA/IA/SMAS),并探究了其阻垢性能。在80 ℃和pH為9時(shí),向600 mg/L的Ca2+溶液中加入20 mg/L的ESA/IA/SMAS,10 h對(duì)CaCO3阻垢率為100%。在70 ℃時(shí),向5 000 mg/L的Ca2+溶液中加入10 mg/L的ESA/IA/SMAS,對(duì)CaSO4阻垢率為100%。這可能是由于羧基和磺酸基團(tuán)的存在,ESA/IA/SMAS能夠吸附在鈣垢顆粒表面,使得鈣垢顆粒表面電荷密度和顆粒間的排斥力增加,從而阻止了碳酸鈣晶體的形成和生長。此外,羧基和磺酸基團(tuán)能夠與Ca2+相互作用,促使ESA/IA/SMAS占據(jù)晶體生長的活性中心,擾亂晶體的正常生長。值得注意的是,ESA/IA/SMAS具有良好的生物可降解性,在第21天時(shí),生物可降解率達(dá)到近63.3%。
2.3 其他新型綠色阻垢劑
除了上述綠色阻垢劑外,部分學(xué)者在碳納米技術(shù)方向的研究也為綠色阻垢劑研究提供了新的思路。
碳納米材料具有高比表面積和良好的吸附能力。Wan等[128]利用碳納米顆粒合成了一種新型納米流體阻垢劑。實(shí)驗(yàn)結(jié)果表明,碳納米顆??梢砸种茻峤粨Q裝置表面CaCO3垢的形成,具有良好的阻垢效果,當(dāng)其質(zhì)量濃度為75 mg/L時(shí),阻垢效率可達(dá)97.31%。同時(shí),碳納米顆粒的阻垢作用主要是改變CaCO3晶體形態(tài),能將CaCO3晶體從方解石轉(zhuǎn)變?yōu)槲氖蛊潆y以黏附在設(shè)備表面。
碳納米管的強(qiáng)吸附能力可以使阻垢劑具有保留時(shí)間長和高吸附濃度等優(yōu)點(diǎn)。Teng等[129]利用乙二胺四乙酸(EDTA)處理多壁碳納米管(MWCNT)納米流體得到一種MWCNT-EDTA阻垢劑,并評(píng)估其對(duì)碳酸鈣結(jié)垢的抑制效果。研究發(fā)現(xiàn),MWCNT-EDTA能夠延長鈣垢結(jié)晶時(shí)間,從而起到抑制鈣垢的作用。這是由于EDTA中含有大量羧基,可以螯合Ca2+,減少其與CO2-3的有效碰撞,延長結(jié)晶誘導(dǎo)期。此外,MWCNT中還含有羥基,這也有助于提高M(jìn)WCNT-EDTA的阻垢性能。
碳量子點(diǎn)(CQDs)具有高比表面積,含有羧基和羥基等親水性基團(tuán)。Hao等[130]采用檸檬酸熱分解法合成了羧基碳量子點(diǎn)(CCQDs),通過0~80 ℃靜態(tài)阻垢試驗(yàn),在CCQDs加入量較低的情況下,對(duì)CaSO4阻垢率可達(dá)100%,然而,檸檬酸在同等條件的阻垢率僅有20%。此外,CCQDs對(duì)BaSO4也具有優(yōu)異的阻垢性能,而且相比檸檬酸其耐溫和耐堿性有了巨大的提高。同時(shí),CCQDs具有物料豐富、低毒性、生物相容和環(huán)境友好等優(yōu)點(diǎn)。
3 阻垢機(jī)理
3.1 鈣垢的形成機(jī)理
在循環(huán)水系統(tǒng)中,大部分循環(huán)水來自于經(jīng)過處理后的污水,其中含有Ca2+、Mg2+、CO2-3、SO2-4等離子,在重復(fù)使用過程中水分不斷揮發(fā),水中無機(jī)鹽濃度持續(xù)升高,容易形成不溶性鹽,從水溶液中析出,在設(shè)備表面沉積形成鈣垢。鈣垢的形成主要分三個(gè)過程:
(1)形成過飽和溶液。冷卻水在循環(huán)過程中蒸發(fā),Ca2+在水中不斷濃縮積累,當(dāng)鈣鹽的濃度達(dá)到其溶解度時(shí),溶液將達(dá)到過飽和狀態(tài)。此外,溫度的升高會(huì)降低鈣鹽的溶解度,這將進(jìn)一步促進(jìn)溶液達(dá)到過飽和狀態(tài)。
(2)晶核形成。當(dāng)鈣鹽濃度超過其溶解度時(shí),離子開始碰撞形成離子對(duì)并聚集成微核。少部分微核會(huì)成為成核中心,然后離子團(tuán)開始以有序的方式排列,形成穩(wěn)定的晶核。
(3)晶體生長。當(dāng)晶核形成后,成垢離子不斷向晶核聚集,晶核逐漸成長成微晶顆粒,這一過程是不可逆的[131],微晶顆粒由于布朗運(yùn)動(dòng)不斷地碰撞聚集在一起,使得晶體不斷生長,從而形成鈣垢。
因此,擾亂其中一個(gè)或多個(gè)過程都能夠有效地延緩或抑制鈣垢的形成。目前使用的阻垢劑所具備的功能就是影響這些過程,抑制晶核或晶體的形成,擾亂晶體的生長,從而達(dá)到阻垢的效果。
3.2 常見的阻垢機(jī)理
阻垢劑的作用機(jī)理取決于其化學(xué)性質(zhì),無論是螯合劑還是閾值阻垢劑,它可以通過一個(gè)或多個(gè)機(jī)制發(fā)揮阻垢作用。一般而言,阻垢劑中通常含有豐富的官能團(tuán),通過干擾一個(gè)或多個(gè)結(jié)晶階段來影響鈣垢形成,例如膦酸基、羧基、羥基和磺酸基等,通過一種或多種抑制機(jī)理,如螯合、分散、晶格畸變和閾值效應(yīng)[131-134],與鈣垢相互作用達(dá)到抑制結(jié)垢的效果。
3.2.1 螯合增溶作用
在結(jié)晶誘導(dǎo)期,含有羧酸、膦酸或磺酸基團(tuán)等官能團(tuán)的阻垢劑,如EDTA、ATMP[24]和2-丙烯酰胺-2-甲基磺酸(AMPS)[24]等,在水溶液中能夠發(fā)生電離形成含有負(fù)電荷的官能團(tuán)或分子長鏈,它們會(huì)和溶液體系中的Ca2+、Mg2+等金屬陽離子形成配位鍵,形成可溶性的螯合物,提高了Ca2+在水溶液中的溶解度以及降低了Ca2+與CO2-3、SO2-4等陰離子碰撞的幾率,在一定程度上能夠延緩和抑制鈣垢的形成[63,121]。根據(jù)化學(xué)計(jì)量比,阻垢劑分子結(jié)合的Ca2+越多,Ca2+與阻垢劑負(fù)離子間的配位鍵越強(qiáng),阻垢效果越好。但是,螯合劑只能在一定程度的過飽和溶液中防止結(jié)垢,如果平衡系統(tǒng)被破壞,則會(huì)開始沉淀。
3.2.2 凝聚分散作用
凝聚分散作用是指阻垢劑通過減少CaCO3微晶顆粒相互之間的碰撞凝聚,降低微晶成垢的形成速度,從而達(dá)到阻垢的效果。陰離子型聚合物阻垢劑能夠在溶液中電離出帶有電負(fù)性的基團(tuán),如羧酸類阻垢劑,含有電負(fù)性的基團(tuán)能與微晶顆粒相互碰撞并吸附在微晶表面,使微晶表面帶有大量的負(fù)電荷,由于同種電荷相互排斥,靜電斥力作用能夠阻止微晶顆粒之間的有效碰撞、生長和沉積,有效地將微晶顆粒分散在水體中,達(dá)到阻垢效果[3,135]。
3.2.3 晶格畸變作用
在晶體生長階段,阻垢劑分子可以吸附在鈣垢晶體表面,占據(jù)生長活性位點(diǎn),使晶體表面發(fā)生扭曲,導(dǎo)致晶格畸變,從而抑制晶體生長[118]。當(dāng)阻垢劑分子中含有羥基、羧基、氨基或磺酸基等[54,111,122]具有螯合作用的官能團(tuán)時(shí),這些官能團(tuán)中的氧原子會(huì)與晶體表面的鈣原子以化學(xué)鍵的方式結(jié)合,占據(jù)晶體表面活性位點(diǎn),引起晶格畸變,阻礙晶體的正常生長[90]。此外,阻垢劑能夠吸附并包裹在晶體表面,減少鈣垢微晶之間的有效碰撞,導(dǎo)致晶體的有序性發(fā)生改變,使原有的晶體結(jié)構(gòu)變得不穩(wěn)定,鈣垢變得疏松多孔,容易被水溶液沖走,從而起到抑制鈣垢生成的作用。
4 總結(jié)與展望
隨著國家環(huán)保法規(guī)的完善,水體排放標(biāo)準(zhǔn)日趨嚴(yán)格,傳統(tǒng)化學(xué)阻垢劑因其會(huì)給環(huán)境帶來二次污染,已經(jīng)不能滿足當(dāng)前發(fā)展要求,研發(fā)新型、高效綠色阻垢劑將會(huì)成為未來發(fā)展趨勢。近年來,植物提取物類阻垢劑因來源廣泛、無毒不含磷、生物可降解性以及良好的阻垢性能具有巨大的發(fā)展前景。但也要注意到植物提取物目前存在不確定成分較多、提取工藝復(fù)雜、添加量大、適應(yīng)性較差等主要問題,而且對(duì)其阻垢機(jī)理的研究也不夠深入。PASP和PESA類人工合成的阻垢劑在進(jìn)行改性后,即使在高溫、高硬度和高堿環(huán)境下,也能夠表現(xiàn)出不俗的阻垢性能,這將有助于提高它們?cè)趯?shí)際循環(huán)水系統(tǒng)的實(shí)用性。為了落實(shí)可持續(xù)發(fā)展理念,防止生態(tài)環(huán)境受到污染和破壞,預(yù)計(jì)今后新型、高效綠色阻垢劑的研究會(huì)朝以下幾個(gè)方向發(fā)展:
(1)堅(jiān)持“綠色”發(fā)展理念。在阻垢劑的研究過程中,不僅要求最終阻垢劑產(chǎn)品無毒無害,而且在原材料和生產(chǎn)過程中都應(yīng)堅(jiān)持綠色、環(huán)保發(fā)展理念。
(2)追求阻垢劑多功能化。單一阻垢劑已不能滿足實(shí)際復(fù)雜水體的除垢要求,可以結(jié)合實(shí)際情況對(duì)單體進(jìn)行接枝聚合、氧化或者酯化等化學(xué)改性,不僅能夠提高其阻垢性能,還能使得聚合物具有分散、緩蝕或抗菌等功能。但需要注意的是,在引入其他官能團(tuán)后,如磺酸基,可能會(huì)降低阻垢劑的生物可降解性。
(3)深入了解阻垢機(jī)理。目前對(duì)阻垢機(jī)理的研究主要基于傳統(tǒng)的研究手段,包括紫外-可見光譜、掃描電子顯微鏡和X光衍射等,側(cè)重于宏觀尺度的表征,以推測微觀機(jī)理,對(duì)阻垢機(jī)理研究不夠深入,特別是植物提取物的阻垢機(jī)理還不夠明確??梢越Y(jié)合分子動(dòng)力學(xué)模擬、密度泛函理論計(jì)算和阻垢機(jī)理之間的關(guān)系,從原子間相互作用的微觀角度去分析和設(shè)計(jì)分子結(jié)構(gòu),闡述結(jié)構(gòu)與性質(zhì)的關(guān)系。
(4)融合納米新技術(shù)。碳納米材料,如碳量子點(diǎn)(CQDs),與阻垢劑一起使用能夠提高阻垢劑的阻垢性能。碳納米材料在阻垢劑中的應(yīng)用具有廣泛的前景,建議以碳納米材料為載體,將更多種類的阻垢劑融入到碳納米材料中,研究其阻垢性能和探究其阻垢機(jī)理,以提高其阻垢和分散性能,適應(yīng)實(shí)際復(fù)雜的水體環(huán)境。
(5)貫徹產(chǎn)品經(jīng)濟(jì)化。在滿足所需功能的反應(yīng)單體之間,盡可能尋求低毒、易生物降解和經(jīng)濟(jì)的綠色單體。在阻垢劑選擇方面,應(yīng)滿足原料易得,制備簡單,價(jià)格低廉,易于運(yùn)輸和貯備,制備工藝簡單,所需耗能小的要求。與緩蝕劑、殺菌劑并用時(shí),阻垢效果應(yīng)不明顯下降,且不影響緩蝕和殺菌的效果。
參考文獻(xiàn):
[1]RAHMANI K, JADIDIAN R, HAGHTALAB S. Evaluation of inhibitors and biocides on thecorrosion, scaling and biofouling control of carbon steel and copper-nickel alloys in a power plant cooling water system[J]. Desalination, 2016, 393: 174-185. DOI: 10.1016/j.desal.2015.07.026.
[2]ZHU T Z, WANG L D, SUN W, et al. The role of corrosion inhibition in the mitigation of CaCO3 scaling on steel surface[J]. Corrosion Science, 2018, 140: 182-195. DOI: 10.1016/j.corsci.2018.06.003.
[3]ZHAO Y Z, JIA L L, LIU K Y, et al. Inhibition of calcium sulfate scale by poly (citric acid)[J]. Desalination, 2016, 392: 1-7.[JP] DOI: 10.1016/j.desal.2016.04.010.
[4]CAN H K, NER G. Water-soluble anhydride containing alternating copolymers as scale inhibitors[J]. Desalination, 2015, 355: 225-232. DOI: 10.1016/j.desal.2014.11.001.
[5]WANG C, SHEN T, LI S, et al. Investigation of influence of low phosphorous co-polymer antiscalant on calcium sulfate dihydrate crystal morphologies[J]. Desalination, 2014, 348: 89-93. DOI: 10.1016/j.desal.2014.06.017.
[6]MIGAHED M A, RASHWAN S M,KAMEL M M, et al. Synthesis, characterization of polyaspartic acid-glycine adduct and evaluation of their performance as scale and corrosion inhibitor in desalination water plants[J]. Journal of Molecular Liquids, 2016, 224: 849-858. DOI: 10.1016/j.molliq.2016.10.091.
[7]LIU G Q, ZHOU Y M, HUANG J Y, et al. Acrylic acid-allylpolyethoxy carboxylate copolymer as an effective inhibitor for calcium phosphate and iron(III) scales in cooling water systems[J]. CLEAN - Soil, Air, Water, 2015, 43(7): 989-994. DOI: 10.1002/clen.201100569.
[8]BUTT F H, RAHMAN F, BADURUTHAMAL U. Evaluation of SHMP and advanced scale inhibitors for control of CaSO4, SrSO4, and CaCO3 scales in RO desalination[J]. Desalination, 1997, 109(3): 323-332. DOI: 10.1016/s0011-9164(97)00078-7.
[9]ZUO Z, YANG W, ZHANG K,et al. Effect of scale inhibitors on the structure and morphology of CaCO3 crystal electrochemically deposited on TA1 alloy[J]. Journal of Colloid and Interface Science, 2020, 562: 558-566. DOI: 10.1016/j.jcis.2019.11.078.
[10]JI Y, CHEN Y, LE J X, et al. Highly effective scale inhibition performance of amino trimethylenephosphonic acid on calcium carbonate[J]. Desalination, 2017, 422: 165-173. DOI: 10.1016/j.desal.2017.08.027.
[11]LUPU C, ARVIDSON R S, LUTTGE A, et al. Phosphonate mediated surface reaction and reorganization: Implications for the mechanism controlling cement hydration inhibition[J]. Chemical Communications (Cambridge, England), 2005(18): 2354-2356. DOI: 10.1039/b500192g.
[12]LI X, GAO B, YUE Q, et al. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures[J]. Journal of Environmental Sciences, 2015, 29: 124-130. DOI: 10.1016/j.jes.2014.09.027.
[13]SHEIKHI A, LI N, VAN DE VEN T G M, et al. Macromolecule-based platforms for developing tailor-made formulations for scale inhibition[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 71-84. DOI: 10.1039/C5EW00158G.
[14]ZUO Y W, SUN Y, YANG W Z, et al. Performance and mechanism of 1-hydroxy ethylidene-1, 1-diphosphonic acid and 2-phosphonobutane-1, 2, 4-tricarboxylic acid in the inhibition of calcium carbonate scale[J]. Journal of Molecular Liquids, 2021, 334: 116093. DOI: 10.1016/j.molliq.2021.116093.
[15]GUO X R,QIU F X,DONG K,et al. Preparation and application of copolymer modified with the palygorskite as inhibitor for calcium carbonate scale[J]. Applied Clay Science, 2014, 99: 187-193. DOI: 10.1016/j.clay.2014.06.031.
[16]SHAKKTHIVEL P, VASUDEVAN T. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems[J]. Desalination, 2006, 197(1/2/3): 179-189. DOI: 10.1016/j.desal.2005.12.023.
[17]AMJAD Z, KOUTSOUKOS P G. Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications[J]. Desalination, 2014, 335(1): 55-63. DOI: 10.1016/j.desal.2013.12.012.
[18] YANG L, YANG W, XU B, et al. Synthesis and scale inhibition performance of a novel environmental friendly and hydrophilic terpolymer inhibitor[J]. Desalination, 2017, 416: 166-174. DOI: 10.1016/j.desal.2017.05.010.
[19]CHAUSSEMIER M, POURMOHTASHAM E, GELUS D, et al. State of art of natural inhibitors of calcium carbonate scaling: a review article[J]. Desalination, 2015, 356: 47-55. DOI: 10.1016/j.desal.2014.10.014.
[20]ZHANG H X, WANG F, JIN X H, et al. A botanical polysaccharide extracted from abandoned corn stalks: modification and evaluation of its scale inhibition and dispersion performance[J]. Desalination, 2013, 326: 55-61. DOI: 10.1016/j.desal.2013.07.015.
[21]LIU D,DONG W B,LI F T,et al. Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods[J]. Desalination, 2012, 304: 1-10. DOI: 10.1016/j.desal.2012.07.032.
[22]SHI W Y, DING C, YAN J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces[J]. Desalination, 2012, 291: 8-14. DOI: 10.1016/j.desal.2012.01.019.
[23]GUO X, QIU F, DONG K, et al. Preparation, characterization and scale performance of scale inhibitor copolymer modification with chitosan[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2177-2183. DOI: 10.1016/j.jiec.2012.06.015.
[24]ZHANG B, ZHOU D, LV X, et al. Synthesis of polyaspartic acid/3-amino-1H-1, 2, 4-triazole-5-carboxylic acid hydrate graft copolymer and evaluation of its corrosion inhibition and scale inhibition performance[J]. Desalination, 2013, 327: 32-38. DOI: 10.1016/j.desal.2013.08.005.
[25]LOURTEAU T, BERRICHE H, KCILI K, et al. Scale inhibition effect of Hylocereus undatus solution on calcium carbonate formation[J]. Journal of Crystal Growth, 2019, 524: 125161. DOI: 10.1016/j.jcrysgro.2019.125161.
[26]LI S L, QU Q, LI L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Research, 2019, 166: 115094. DOI: 10.1016/j.watres.2019.115094.
[27]MADY M F, KELLAND M A. Study on various readily available proteins as new green scale inhibitors for oil field scale control[J]. Energy & Fuels, 2017, 31(6): 5940-5947. DOI: 10.1021/acs.energyfuels.7b00508.
[28]CASTILLO L A, TORIN E V, GARCIA J A, et al. New product for inhibition of calcium carbonate scale in natural gas and oil facilities based on Aloe vera: Application in venezuelan oilfields[C]//All Days. Cartagena de Indias, Colombia: SPE, 2009. DOI: 10.2118/123007-ms.
[29]ABDEL-GABER A M, ABD-EL-NABEY B A, KHAMIS E, et al. A natural extract as scale and corrosion inhibitor for steel surface in brine solution[J]. Desalination, 2011, 278(1/2/3): 337-342. DOI: 10.1016/j.desal.2011.05.048.
[30]ABD-EL-KHALEK D E, ABD-EL-NABEY B A, ABDEL-KAWI M A, et al. Investigation of a novel environmentally friendly inhibitor for calcium carbonate scaling in cooling water[J]. Desalination and Water Treatment, 2016, 57(7): 2870-2876. DOI: 10.1080/19443994.2014.987174.
[31]KHALED R H, ABDEL-GABER A M,RAHAL H T, et al. A potential green anti-scaling and corrosion inhibitor for mild steel in brine solution[J]. International Journal of Electrochemical Science, 2020, 15(7): 6790-6801. DOI: 10.20964/2020.07.54.
[32]AIDOUD R, KAHOUL A, NAAMOUNE F. Inhibition of calcium carbonate deposition on stainless steel using olive leaf extract as a green inhibitor[J]. Environmental Technology, 2017, 38(1): 14-22. DOI: 10.1080/09593330.2016.1183716.
[33]GHIZELLAOUI S, BOUMAGOURA M, RHOUATI S, et al. Inhibition of CaCO3 growth in hard water by quercetin as green inhibitor[J]. Water and Environment Journal, 2020, 34(S1): 263-272. DOI: 10.1111/wej.12524.
[34]MOHAMMADI Z, RAHSEPAR M. The use of green Bistorta Officinalis extract for effective inhibition of corrosion and scale formation problems in cooling water system[J]. Journal of Alloys and Compounds, 2019, 770: 669-678. DOI: 10.1016/j.jallcom.2018.08.198.
[35]A S, M. Inhibition of calcium oxalate crystallization by graft copolymers[J]. Crystal Growth & Design, 2009, 9(5): 2159-2167. DOI: 10.1021/cg800802z.
[36]HAMDONA S K, EL-AASSAR A H M, AHMED A E M M, et al. Enhancing anti-scaling resistances of aromatic polyamide reverse osmosis membranes using a new natural materials inhibitor[J]. Chemical Engineering and Processing-Process Intensification, 2021, 164: 108404. DOI:10.1016/j.cep.2021.108404.
[37]KHAMIS E, ABD-EL-KHALEK D E, ABDEL-KAWI M A, et al. New application of brown sea algae as an alternative to phosphorous-containing antiscalant[J]. Environmental Technology, 2022, 43(4): 595-604. DOI: 10.1080/09593330.2020.1797898.
[38]VASYLIEV G, VOROBYOVA V, ZHUK T. Raphanus sativus L. extract as a scale and corrosion inhibitor for mild steel in tap water[J]. Journal of Chemistry, 2020, 2020: 1-9. DOI: 10.1155/2020/5089758.
[39]CUI C C, ZHANG S G. Preparation, characterization and performance evaluation of a novel scale inhibiting and dispersing copolymer containing natural tannin[J]. Journal of Polymers and the Environment, 2020, 28(7): 1869-1879. DOI: 10.1007/s10924-020-01730-x.
[40]CHEN Y, CHEN X S, LIANG Y N, et al. Synthesis of polyaspartic acid-oxidized starch copolymer and evaluation of its inhibition performance and dispersion capacity[J]. Journal of Dispersion Science and Technology, 2021, 42(13): 1926-1935. DOI: 10.1080/01932691.2020.1791172.
[41]XU Z, ZHAO Y, WANG J, et al. Inhibition of calcium carbonate fouling on heat transfer surface using sodium carboxymethyl cellulose[J]. Applied Thermal Engineering, 2019, 148: 1074-1080.
[42]SHAHINI M H, RAMEZANZADEH B, MOHAMMADLOO H E. Recent advances in biopolymers/carbohydrate polymers as effective corrosion inhibitive macro-molecules: a review study from experimental and theoretical views[J]. Journal of Molecular Liquids, 2021, 325: 115110. DOI: 10.1016/j.molliq.2020.115110.
[43]MAHER Y A, ALI M E A, SALAMA H E, et al. Preparation, characterization and evaluation of chitosan biguanidine hydrochloride as a novel antiscalant during membrane desalination process[J]. Arabian Journal of Chemistry, 2020, 13(1): 2964-2981. DOI: 10.1016/j.arabjc.2018.08.006.
[44]LIU J, WILLFR S, XU C L. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5(1): 31-61. DOI: 10.1016/j.bcdf.2014.12.001.
[45]PRO D, HUGUET S, ARKOUN M, et al. From algal polysaccharides to cyclodextrins to stabilize a urease inhibitor[J]. Carbohydrate Polymers, 2014, 112: 145-151. DOI: 10.1016/j.carbpol.2014.05.075.
[46]ZHANG H P, LUO X G, LIN X Y, et al. Biodegradable carboxymethyl inulin as a scale inhibitor for calcite crystal growth: Molecular level understanding[J]. Desalination, 2016, 381: 1-7. DOI: 10.1016/j.desal.2015.11.029.
[47]KIRBOGA S, NER M. Investigation of calcium carbonate precipitation in the presence of carboxymethyl inulin[J]. CrystEngComm, 2013, 15(18): 3678-3686. DOI: 10.1039/C3CE27022J.
[48]KIRBOGA S, NER M. The inhibitory effects of carboxymethyl inulin on the seeded growth of calcium carbonate[J]. Colloids and Surfaces B: Biointerfaces, 2012, 91: 18-25. DOI: 10.1016/j.colsurfb.2011.10.031.
[49]BOELS L, WITKAMP G. Carboxymethyl inulin biopolymers: a green alternative for phosphonate calcium carbonate growth inhibitors[J]. Crystal Growth & Design, 2011, 11(9): 4155-4165. DOI: 10.1021/CG2007183.
[50]SHEVCHENKO N M, ANASTYUK S D, GERASIMENKO N I, et al. Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae[J]. Russian Journal of Bioorganic Chemistry, 2007, 33(1): 88-98. DOI: 10.1134/S1068162007010116.
[51]OBLUCHINSKAYA E D. Comparative chemical composition of the Barents Sea brown algae[J]. Applied Biochemistry and Microbiology, 2008, 44(3): 305-309. DOI: 10.1134/S0003683808030149.
[52]ITUEN E, AKARANTA O, JAMES A. Evaluation of performance of corrosion inhibitors using adsorption isotherm models: an overview[J]. Chemical Science International Journal, 2017, 18(1): 1-34. DOI: 10.9734/csji/2017/28976.
[53]HE C S, DING R R, CHEN J Q, et al. Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge[J]. Water Research, 2020, 178: 115817. DOI: 10.1016/j.watres.2020.115817.
[54]YU W, WANG Y W, LI A M, et al. Evaluation of the structural morphology of starch-graft-poly(acrylic acid) on its scale-inhibition efficiency[J]. Water Research, 2018, 141: 86-95. DOI: 10.1016/j.watres.2018.04.021.
[55]GAO R X, LI Y, ZHU T T, et al. ZIF-8@s-EPS as a novel hydrophilic multifunctional biomaterial for efficient scale inhibition, antibacterial and antifouling in water treatment[J]. The Science of the Total Environment, 2021, 773: 145706. DOI: 10.1016/j.scitotenv.2021.145706.
[56]CHEN G S, HUANG S M, KOU X X, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks[J]. Angewandte Chemie International Edition, 2019, 58(5): 1463-1467. DOI: 10.1002/anie.201813060.
[57]DOONAN C, RICC R, LIANG K, et al. Metal-organic frameworks at the biointerface: synthetic strategies and applications[J]. Accounts of Chemical Research, 2017, 50(6): 1423-1432. DOI: 10.1021/acs.accounts.7b00090.
[58]OUYANG X P, QIU X Q, LOU H M, et al. Corrosion and scale inhibition properties of sodium lignosulfonate and its potential application in recirculating cooling water system[J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5716-5721. DOI: 10.1021/ie0513189.
[59]張惠欣, 葛麗環(huán), 周宏勇, 等. 羧烷基-季銨兩性殼聚糖的制備及其阻垢殺菌性能[J]. 化工進(jìn)展, 2011, 30(9): 2055-2059. DOI: 10.16085/j.issn.1000-6613.2011.09.016.
[60]GUO X R, QIU F X, DONG K, et al. Scale inhibitor copolymer modified with oxidized starch: synthesis and performance on scale inhibition[J]. Polymer-Plastics Technology and Engineering, 2013, 52(3): 261-267. DOI: 10.1080/03602559.2012.747206.
[61]GONCHARUK V V, KAVITSKAYA A A, SKILSKAYA M D. Sodium carboxymethyl cellulose as an inhibitor of scale formation in nanofiltration of hard artesian waters[J]. Desalination and Water Treatment, 2012, 47(1/2/3): 235-242. DOI: 10.1080/19443994.2012.696408.
[62]YU W, SONG D, LI A, et al. Control of gypsum-dominated scaling in reverse osmosis system using carboxymethyl cellulose[J]. Journal of Membrane Science, 2019, 577: 20-30. DOI: 10.1016/j.memsci.2019.01.053.
[63]WANG Y, LI A, YANG H. Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition[J]. Desalination, 2017, 408: 60-69. DOI: 10.1016/j.desal.2017.01.006.
[64]PRISCIANDARO M, MAZZIOTTI DI CELSO G, LANCIA A, et al. Citric acid as a green additive to retard calcium carbonate scales on process equipment[J]. The Canadian Journal of Chemical Engineering, 2020, 98(9): 1973-1979. DOI: 10.1002/cjce.23783.
[65]SINN C G, DIMOVA R, ANTONIETTI M. Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca2+: effects determining the quality of polymeric scale inhibitors[J]. Macromolecules, 2004, 37(9): 3444-3450. DOI: 10.1021/ma030550s.
[66]WADA N, YAMASHITA K, UMEGAKI T. Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions[J]. Journal of Colloid and Interface Science, 1999, 212(2): 357-364. DOI: 10.1006/jcis.1998.6067.
[67]GHIZELLAOUI S, SEMINERAS H. Inhibition of scale formation by electrochemical means in the presence of a green inhibitor: citric acid[J]. Journal of Materials and Environmental Science, 2017, 8(6): 2105-2111.
[68]YUAN X J, DONG S Y, ZHENG Q, et al. Novel and efficient curcumin based fluorescent polymer for scale and corrosion inhibition[J]. Chemical Engineering Journal, 2020, 389: 124296. DOI: 10.1016/j.cej.2020.124296.
[69]AL-SABAGH A M, EL BASIONY N M, SADEEK S A,
et al. Scale and corrosion inhibition performance of the newly synthesized anionic surfactant in desalination plants: experimental, and theoretical investigations[J]. Desalination, 2018, 437: 45-58. DOI: 10.1016/j.desal.2018.01.036.
[70]ZHANG W W, LI H J, CHEN L W, et al. Performance and mechanism of a composite scaling-corrosion inhibitor used in seawater: 10-Methylacridinium iodide and sodium citrate[J]. Desalination, 2020, 486: 114482. DOI: 10.1016/j.desal.2020.114482.
[71]TSUTSUMI N, OYA M, SAKAI W. Biodegradable network polyesters from gluconolactone and citric acid[J]. Macromolecules, 2004, 37(16): 5971-5976. DOI: 10.1021/ma049607g.
[72]DU Q, WANG Y, LI A, et al Scale-inhibition and flocculation dual-functionality of poly(acrylic acid) grafted starch[J]. Journal of Environmental Management, 2018, 210: 273-279. DOI: 10.1016/j.jenvman.2018.01.016.
[73]YU Y, WANG Y N, DING W, et al. Preparation of highly-oxidized starch using hydrogen peroxide and its application as a novel ligand for zirconium tanning of leather[J]. Carbohydrate Polymers, 2017, 174: 823-829. DOI: 10.1016/j.carbpol.2017.06.114.
[74]CHEN X S, CHEN Y, CUI J J, et al. Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor[J]. Computational Materials Science, 2021, 188: 110229. DOI: 10.1016/j.commatsci.2020.110229.
[75]BUTLER M F, GLASER N, WEAVER A C, et al. Calcium carbonate crystallization in the presence of biopolymers[J]. Crystal Growth & Design, 2006, 6(3): 781-794. DOI: 10.1021/cg050436w.
[76]DIETZSCH M, BARZ M, SCHLER T, et al. PAA-PAMPS copolymers as an efficient tool to control CaCO3 scale formation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(9): 3080-3088. DOI: 10.1021/la4000044.
[77]KAZI S N, DUFFY G G, CHEN X D. Fouling mitigation of heat exchangers with natural fibres[J]. Applied Thermal Engineering, 2013, 50(1): 1142-1148. DOI: 10.1016/j.applthermaleng.2012.08.042.
[78]WANG C, ZHU D Y, WANG X K. Low-phosphorus maleic acid and sodium ρ-styrenesulfonate copolymer as calcium carbonate scale inhibitor[J]. Journal of Applied Polymer Science, 2010, 115(4): 2149-2155. DOI: 10.1002/app.31300.
[79]LOPEZ C G, ROGERS S E, COLBY R H, et al. Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study[J]. Journal of Polymer Science Part B, Polymer Physics, 2015, 53(7): 492-501. DOI: 10.1002/polb.23657.
[80]JEDVERT K, HEINZE T. Cellulose modification and shaping: a review[J]. Journal of Polymer Engineering, 2017, 37(9): 845-860. DOI: 10.1515/polyeng-2016-0272.
[81]LI W Z, HUANG S Y, XU D J, et al. Molecular dynamics simulations of the characteristics of sodium carboxymethyl cellulose with different degrees of substitution in a salt solution[J]. Cellulose, 2017, 24(9): 3619-3633. DOI: 10.1007/s10570-017-1364-0.
[82]SHUI T, FENG S H, CHEN G, et al. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk[J]. Biomass and Bioenergy, 2017, 105: 51-58. DOI: 10.1016/j.biombioe.2017.06.016.
[83]TENG K H, KAZI S N,
AMIRI A, et al. Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces[J]. Powder Technology, 2017, 315: 216-226. DOI: 10.1016/j.powtec.2017.03.057.
[84]XU Z M, ZHAO Y, HE J J, et al. Fouling characterization of calcium carbonate on heat transfer surfaces with sodium carboxymethyl cellulose as an inhibitor[J]. International Journal of Thermal Sciences, 2021, 162: 106790. DOI: 10.1016/j.ijthermalsci.2020.106790.
[85]YU W, CHEN W, YANG H. Evaluation of structural effects on the antiscaling performance of various graft cellulose-based antiscalants in RO membrane scaling control[J]. Journal of Membrane Science, 2021, 620: 118893. DOI: 10.1016/j.memsci.2020.118893.
[86]QIANG X, SHENG Z, ZHANG H. Study on scale inhibition performances and interaction mechanism of modified collagen[J]. Desalination, 2013, 309: 237-242. DOI: 10.1016/j.desal.2012.10.025.
[87]HU P, XI Z, LI Y, et al. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant[J]. Chemosphere, 2020, 240: 124866. DOI: 10.1016/j.chemosphere.2019.124866.
[88]MISHRA S, SAXENA P, DEORE D A. Studies on antiscaling effect of polyacrylic acid on boiler[J]. Polymer-Plastics Technology and Engineering, 2005, 44(8/9): 1389-1398. DOI: 10.1080/03602550500209754.
[89]YANG Q F, GU A Z, DING J, et al. Effects of PAA and PBTCA on CaCO3 scaling in pool boiling system[J]. Chinese Journal of Chemical Engineering, 2002, 10(2): 190-197.
[90]ZHAO Y, XU Z M, WANG B B, et al. Scale inhibition performance of sodium carboxymethyl cellulose on heat transfer surface at various temperatures: Experiments and molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2019, 141: 457-463. DOI: 10.1016/j.ijheatmasstransfer.2019.06.091.
[91]BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. DOI: 10.1016/j.watres.2007.03.012.
[92]RINAUDO M. Chitin and chitosan: Properties and applications[J]. ChemInform, 2007, 38(27): 603-632. DOI: 10.1002/chin.200727270.
[93]ZHU F. Composition, structure, physicochemical properties, and modifications of cassava starch[J]. Carbohydrate Polymers, 2015, 122: 456-480. DOI: 10.1016/j.carbpol.2014.10.063.
[94]YANG R, LI H J, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. DOI: 10.1016/j.watres.2016.02.068.
[95]SHAK K P Y, WU T Y. Synthesis and characterization of a plant-based seed gum via etherification for effective treatment of high-strength agro-industrial wastewater[J]. Chemical Engineering Journal, 2017, 307: 928-938. DOI: 10.1016/j.cej.2016.08.045.
[96]ZHANG H X, CAI Z Y, JIN X H, et al. Preparation of modified oligochitosan and evaluation of its scale inhibition and fluorescence properties[J]. Journal of Applied Polymer Science, 2015, 132(37): 42518. DOI: 10.1002/app.42518.
[97]ZENG D F, CHEN T S, ZHOU S J. Synthesis of polyaspartic acid/chitosan graft copolymer and evaluation of its scale inhibition and corrosion inhibition performance[J]. International Journal of Electrochemical Science, 2015, 10(11): 9513-9527. DOI: 10.1016/S1452-3981(23)11197-7.
[98]ZOU Z Y, BERTINETTI L, POLITI Y, et al. Control of polymorph selection in amorphous calcium carbonate crystallization by poly(aspartic acid): two different mechanisms[J]. Small (Weinheim an Der Bergstrasse, Germany), 2017, 13(21): 10.1002/smll.201603100. DOI: 10.1002/smll.201603100.
[99]PRAMANIK B K, GAO Y H, FAN L H, et al. Antiscaling effect of polyaspartic acid and its derivative for RO membranes used for saline wastewater and brackish water desalination[J]. Desalination, 2017, 404: 224-229. DOI: 10.1016/j.desal.2016.11.019.[JP][ZK)]
[100][ZK(#]HASSON D, SHEMER H, SHER A. State of the art of friendly “green” scale control inhibitors: a review article[J]. Industrial & Engineering Chemistry Research, 2011, 50(12): 7601-7607. DOI: 10.1021/ie200370v.
[101]CHHIM N, HADDAD E, NEVEUX T, et al. Performance of green antiscalants and their mixtures in controlled calcium carbonate precipitation conditions reproducing industrial cooling circuits[J]. Water Research, 2020, 186: 116334. DOI: 10.1016/j.watres.2020.116334.
[102]MITHIL KUMAR N, GUPTA S K, JAGADEESH D, et al. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition[J]. Environmental Technology, 2015, 36(10): 1281-1290. DOI: 10.1080/09593330.2014.984773.
[103]MARTINOD A, NEVILLE A, EUVRAD M, et al, et al. Electrodeposition of a calcareous layer: effects of green inhibitors[J].Chemical Engineering Science, 2009, 64(10):2413-2421.DOI:10.1016/j.ces.2009.01.024.
[104]QUAN Z H, CHEN Y C, WANG X R, et al. Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid[J]. Science in China Series B: Chemistry, 2008, 51(7): 695-699. DOI: 10.1007/s11426-008-0063-y.
[105]吳新世, 孫波, 王菁, 等. 一種新型高聚物生物可降解性評(píng)價(jià)[J]. 南開大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 42(4): 13-17.
[106]TOUIR R, CENOUI M, BAKRI M E, et al. Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water[J]. Corrosion Science, 2008, 50(6): 1530-1537. DOI: 10.1016/j.corsci.2008.02.011.
[107]LING L, ZHOU Y M, HUANG J Y, et al. Carboxylate-terminated double-hydrophilic block copolymer as an effective and environmental inhibitor in cooling water systems[J]. Desalination, 2012, 304: 33-40. DOI: 10.1016/j.desal.2012.07.014.
[108]CHEN J X, XU L H, HAN J, et al. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity[J]. Desalination, 2015, 358: 42-48. DOI: 10.1016/j.desal.2014.11.010.
[109]ZHANG Y, YIN H Q, ZHANG Q S, et al. Synthesis and characterization of novel polyaspartic acid/urea graft copolymer with acylamino group and its scale inhibition performance[J]. Desalination, 2016, 395: 92-98. DOI: 10.1016/j.desal.2016.05.020.
[110]余吉良, 王志坤, 霍然, 等. 弱堿環(huán)境中碳酸鈣垢阻垢劑的阻垢性能與阻垢機(jī)理[J]. 油田化學(xué), 2017, 34(4): 699-704. DOI: 10.19346/j.cnki.1000-4092.2017.04.026.
[111]ZHAO L N, ZHOU Y M, YAO Q Z, et al. Calcium scale inhibition of stimulated oilfield produced water using polyaspartic acid/aminomethanesulfonic acid[J]. ChemistrySelect, 2021, 6(15): 3692-3701. DOI: 10.1002/slct.202100853.
[112]CHEN J X, CHEN F J, HAN J, et al. Evaluation of scale and corrosion inhibition of modified polyaspartic acid[J]. Chemical Engineering & Technology, 2020, 43(6): 1048-1058. DOI: 10.1002/ceat.201900518.
[113]GUO X Y, ZHAO X W, XU Y H, et al. The synthesis of polyaspartic acid derivative PASP-Im and investigation of its scale inhibition performance and mechanism in industrial circulating water[J]. RSC Advances, 2020, 10(55): 33595-33601. DOI: 10.1039/d0ra06592g.
[114]ZHANG S P, QU H J, YANG Z, et al. Scale inhibition performance and mechanism of sulfamic/amino acids modified polyaspartic acid against calcium sulfate[J]. Desalination, 2017, 419: 152-159. DOI: 10.1016/j.desal.2017.06.016.
[115]ZHANG B R, HE C J, WANG C, et al. Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water[J]. Corrosion Science, 2015, 94: 6-20. DOI: 10.1016/j.corsci.2014.11.035.
[116]XU Y, ZHAO L L, WANG L N, et al. Synthesis of polyaspartic acid-melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide[J]. Desalination, 2012, 286: 285-289. DOI: 10.1016/j.desal.2011.11.036.
[117]CHEN Y, CHEN X S, LIANG Y N. Synthesis of polyaspartic acid/graphene oxide grafted copolymer and evaluation of scale inhibition and dispersion performance[J]. Diamond and Related Materials, 2020, 108: 107949. DOI: 10.1016/j.diamond.2020.107949.
[118]LI C, ZHANG C, ZHANG W. The inhibition effect mechanisms of four scale inhibitors on the formation and crystal growth of CaCO3 in solution[J]. Scientific Reports, 2019, 9(1): 13366.DOI:10.1038/s41598-019-50012-7.
[119]ZHOU X H, SUN Y H, WANG Y Z. Inhibition and dispersion of polyepoxysuccinate as a scale inhibitor[J]. Journal of Environmental Sciences, 2011, 23: S159-S161. DOI: 10.1016/S1001-0742(11)61102-9.
[120]LIU C, ZHENG Y F, YANG S Y, et al. Exploration of a novel depressant polyepoxysuccinic acid for the flotation separation of pentlandite from lizardite slimes[J]. Applied Clay Science, 2021, 202: 105939. DOI: 10.1016/j.clay.2020.105939.
[121]SHI W Y, XU W, CANG H, et al. Design and synthesis of biodegradable antiscalant based on MD simulation of antiscale mechanism: a case of itaconic acid-epoxysuccinate copolymer[J]. Computational Materials Science, 2017, 136: 118-125. DOI: 10.1016/j.commatsci.2017.04.035.
[122]ZUO Y W, YANG W Z, ZHANG K G, et al. Experimental and theoretical studies of carboxylic polymers with low molecular weight as inhibitors for calcium carbonate scale[J]. Crystals, 2020, 10(5): 406. DOI: 10.3390/cryst10050406.
[123]LI C J, ZHANG C Y, ZHANG W P. The inhibitory effects of four inhibitors on the solution adsorption of CaCO3 on Fe3O4 and Fe2O3 surfaces[J]. Scientific Reports, 2019, 9: 13724. DOI: 10.1038/s41598-019-50127-x.
[124]HUANG H H, YAO Q, JIAO Q, et al. Polyepoxysuccinic acid with hyper-branched structure as an environmentally friendly scale inhibitor and its scale inhibition mechanism[J]. Journal of Saudi Chemical Society, 2019, 23(1): 61-74. DOI: 10.1016/j.jscs.2018.04.003.
[125]ZHANG K F, CHEN F J, HAN J, et al. Evaluation of arginine-modified polyepoxysuccinic acid as anti-scaling and anti-corrosion agent[J]. Chemical Engineering & Technology, 2021, 44(6): 1131-1140. DOI: 10.1002/ceat.202000576.
[126]HUANG H H, YAO Q, LIU B L, et al. Synthesis and characterization of scale and corrosion inhibitors with hyper-branched structure and the mechanism[J]. New Journal of Chemistry, 2017, 41(20): 12205-12217. DOI: 10.1039/C7NJ02201H.
[127]YAN M F, TAN Q Q, LIU Z, et al. Synthesis and application of a phosphorous-free and non-nitrogen polymer as an environmentally friendly scale inhibition and dispersion agent in simulated cooling water systems[J]. ACS Omega, 2020, 5(25): 15487-15494. DOI: 10.1021/acsomega.0c01620.
[128]WAN C, WANG L T, SHA J Y, et al. Effect of carbon nanoparticles on the crystallization of calcium carbonate in aqueous solution[J]. Nanomaterials (Basel, Switzerland), 2019, 9(2): 179. DOI: 10.3390/nano9020179.
[129]TENG K H, AMIRI A, KAZI S N, et al. Fouling mitigation on heat exchanger surfaces by EDTA-treated MWCNT-based water nanofluids[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 445-452. DOI: 10.1016/j.jtice.2015.11.006.
[130]HAO J, LI L Y, ZHAO W W, et al. Synthesis and application of CCQDs as a novel type of environmentally friendly scale inhibitor[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9277-9282. DOI: 10.1021/acsami.8b19015.
[131]ALROOMI Y M, HUSSAIN K F. Potential kinetic model for scaling and scale inhibition mechanism[J]. Desalination, 2016, 393: 186-195. DOI: 10.1016/j.desal.2015.07.025.
[132]AMJAD Z. Mineral scales in biological and industrial systems[J]. Crc Press, 2013, 10.1201/b1: 77-102.
[133]RAHMAN F. Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination[J]. Desalination, 2013, 319: 79-84. DOI: 10.1016/j.desal.2013.03.027.
[134]DOBBERSCHTZ S, NIELSEN M R, SAND K K, et al. The mechanisms of crystal growth inhibition by organic and inorganic inhibitors[J]. Nature Communications, 2018, 9: 1578. DOI: 10.1038/s41467-018-04022-0.
[135]ZHENG Z, YU Z P, YANG M D, et al. Substituent group variations directing the molecular packing, electronic structure, and aggregation-induced emission property of isophorone derivatives[J]. The Journal of Organic Chemistry, 2013, 78(7): 3222-3234. DOI: 10.1021/jo400116j.