沈葉楠,馬敏,李雯
分類樹模型的腦卒中后偏癱患者心理狀態(tài)與肢體功能的相關(guān)性
沈葉楠,馬敏,李雯
浙江大學(xué)醫(yī)學(xué)院附屬第二醫(yī)院臨平院區(qū)神經(jīng)內(nèi)科,浙江杭州 311100
研究基于分類樹模型的腦卒中后偏癱患者心理狀態(tài)與肢體功能的相關(guān)性及交互作用。選取2021年3月至2022年11月浙江大學(xué)醫(yī)學(xué)院附屬第二醫(yī)院臨平院區(qū)神經(jīng)內(nèi)科收治的120例腦卒中后偏癱患者,心理狀態(tài)評(píng)估量表(mental status scale in non-psychiatric settings,MSSNS)評(píng)估心理狀態(tài)、Fugl-Meyer評(píng)定量表(Fugl-Meyer assessment scale,F(xiàn)MA)評(píng)估肢體功能;應(yīng)用Pearson相關(guān)性分析法,評(píng)估分析腦卒中后偏癱患者心理狀態(tài)與肢體功能的相關(guān)性。收集入組患者的臨床資料,采用多因素Logistic回歸分析法明確危險(xiǎn)因素,構(gòu)建分類樹模型分析腦卒中后偏癱患者肢體功能影響因素之間的交互作用。腦卒中后偏癱患者M(jìn)SSNS評(píng)分、FMA評(píng)分分別為(88.22±20.36)分和(73.62±15.25)分,Pearson相關(guān)性分析腦卒中后偏癱患者M(jìn)SSNS與FMA評(píng)分呈正相關(guān)(=0.463,<0.05)。Logistic多因素回歸分析提示年齡≥65歲、MSSNS評(píng)分高、空腹血糖(fasting blood glucose,F(xiàn)BG)高影響腦卒中后偏癱患者的肢體功能。構(gòu)建的腦卒中后偏癱患者肢體功能的分類樹模型包括2層、5個(gè)節(jié)點(diǎn)、3個(gè)終末節(jié)點(diǎn),共篩選出2個(gè)解釋變量,分別為年齡≥65歲和MSSNS評(píng)分,該模型的Risk統(tǒng)計(jì)量為0.167,提示該模型擬合效果好;腦卒中后偏癱患者嚴(yán)重肢體功能障礙的影響因素交互作用結(jié)果顯示,年齡和MSSNS評(píng)分之間有正向相加交互作用、無相乘交互作用。腦卒中后偏癱患者心理狀態(tài)與肢體功能呈正相關(guān),年齡、MSSNS評(píng)分、FBG是影響腦卒中后偏癱患者肢體功能的危險(xiǎn)因素,其中年齡與心理狀態(tài)之間對(duì)腦卒中后偏癱患者嚴(yán)重肢體功能障礙的影響具有正向相加交互作用。
腦卒中后偏癱;肢體功能;心理狀態(tài);交互作用;分類樹模型
腦卒中具有發(fā)病急驟、疾病進(jìn)展快等特點(diǎn),多發(fā)于中老年群體,相關(guān)數(shù)據(jù)顯示,我國腦卒中患病率約為1114.8/10萬,致殘率高達(dá)80%以上[1-2]。多數(shù)腦卒中患者伴有偏癱,通常表現(xiàn)為患側(cè)肢體活動(dòng)不利、肌張力高、感覺減退等,部分患者長期臥床會(huì)誘發(fā)壓瘡、感染等多種并發(fā)癥,嚴(yán)重降低患者的生活質(zhì)量[3-4]。隨著現(xiàn)代生物–心理–社會(huì)醫(yī)學(xué)模式的提出,探討腦卒中后偏癱患者心理狀態(tài)與肢體功能的關(guān)系尤為關(guān)鍵。陳曉瑩等[5]研究指出腦卒中后偏癱患者的心理健康狀況往往與生理癥狀存在雙向影響。影響腦卒中后偏癱患者肢體功能的影響因素眾多,當(dāng)兩個(gè)或多個(gè)影響因素存在時(shí),疾病的發(fā)生率與其單獨(dú)作用所估計(jì)的發(fā)病率不同,而當(dāng)兩因素引起的效應(yīng)互不獨(dú)立,且一個(gè)因素對(duì)另一因素有效應(yīng)修飾作用時(shí),即表明兩因素存在相加交互作用,目前研究主要通過模型化的統(tǒng)計(jì)學(xué)方法探究不同因素間的交互作用[6-7]。分類樹模型利用分割的方法深入數(shù)據(jù)局部,簡(jiǎn)潔、直觀地展示影響因素之間的層次關(guān)系,因多數(shù)疾病的心理、生理協(xié)同發(fā)生機(jī)制尚不明確,目前的研究較少分析生理與心理影響因素之間的交互作用[8]?;诖?,本研究旨在探討基于分類樹模型的腦卒中后偏癱患者心理狀態(tài)與肢體功能的相關(guān)性及交互作用,現(xiàn)報(bào)道如下。
選取2021年3月至2022年11月浙江大學(xué)醫(yī)學(xué)院附屬第二醫(yī)院臨平院區(qū)神經(jīng)內(nèi)科收治的120例腦卒中后偏癱患者,其中男性75例,女性45例,年齡45~74歲,平均(62.25±10.25)歲。依據(jù)Fugl-Meyer評(píng)定量表(Fugl-Meyer assessment scale,F(xiàn)MA)評(píng)分,將患者分為輕度肢體功能障礙組(FMA評(píng)分≥95分)、中度肢體功能障礙組(85分 1.2.1 臨床資料收集 收集入組患者的臨床資料,包括性別、年齡、基礎(chǔ)疾病(高血壓、糖尿?。?、心理狀態(tài)評(píng)估量表(mental status scale in non-psychiatric settings,MSSNS)評(píng)分[10]、生化指標(biāo)[空腹血糖(fasting blood glucose,F(xiàn)BG)、白細(xì)胞計(jì)數(shù)(white blood cell count,WBC)、血小板計(jì)數(shù)(platelet count,PLT)、總膽固醇(total cholesterol,TC)、三酰甘油(triglyceride,TG)]。 1.2.2 心理狀態(tài)、肢體功能評(píng)估 心理狀態(tài)采用MSSNS評(píng)估,分?jǐn)?shù)與患者心理狀態(tài)成正比;肢體功能采用FMA評(píng)估,分?jǐn)?shù)與患者肢體功能成正比[11]。 入組患者的MSSNS、FMA評(píng)分分別為(88.22±20.36)分和(73.62±15.25)分,Pearson相關(guān)性分析結(jié)果顯示,腦卒中后偏癱患者的MSSNS與FMA評(píng)分呈正相關(guān)(=0.463,<0.05),即腦卒中偏癱患者的心理狀態(tài)越好,肢體功能越好,見圖1。 圖1 腦卒中后偏癱患者M(jìn)SSNS與FMA評(píng)分的相關(guān)性 與輕度肢體功能障礙組比較,中度、重度肢體功能障礙組偏癱患者的年齡≥65歲比例、合并糖尿病比例、MSSNS評(píng)分、FBG水平均較高,且重度肢體功能障礙組偏癱患者的上述指標(biāo)均高于中度肢體功能障礙組(<0.05),見表1。 將上述差異具有統(tǒng)計(jì)學(xué)意義的指標(biāo)(年齡≥65歲=1、年齡<65歲=0,糖尿病=1、無糖尿病=0,MSSNS評(píng)分、FBG水平)作為自變量(),腦卒中后偏癱患者肢體功能作為因變量(重度肢體功能障礙=1,輕中度肢體功能障礙=0)進(jìn)行多因素Logistic回歸分析,結(jié)果顯示年齡≥65歲、MSSNS評(píng)分高、FBG水平高是影響腦卒中后偏癱患者肢體功能障礙的獨(dú)立危險(xiǎn)因素,見表2。 根據(jù)多因素Logistic回歸分析結(jié)果,將<0.05的影響因素納入分類樹模型,構(gòu)建的腦卒中后偏癱患者肢體功能的分類樹模型包括2層、5個(gè)節(jié)點(diǎn)、3個(gè)終末節(jié)點(diǎn),共篩選出2個(gè)解釋變量,分別為年齡≥65歲、MSSNS評(píng)分,該模型的Risk統(tǒng)計(jì)量為0.167,提示該模型擬合效果好;腦卒中后偏癱患者嚴(yán)重肢體功能障礙的影響因素交互作用結(jié)果顯示,年齡和MSSNS評(píng)分之間有正向相加交互作用、無相乘交互作用,見圖2、表3。 腦部血管阻塞或破裂導(dǎo)致血液不能流入大腦而引起的腦組織損傷即為腦卒中,該病多發(fā)于中老年群體,但隨著人們飲食結(jié)構(gòu)的變化,腦卒中發(fā)病人群日趨年輕化[12-13]。多數(shù)腦卒中患者經(jīng)及時(shí)溶栓治療后仍出現(xiàn)不同程度的功能障礙[14-15]。腦卒中后偏癱患者存在不同程度的肢體功能障礙,患者的身心負(fù)擔(dān)、家庭經(jīng)濟(jì)負(fù)擔(dān)較重,極大可能產(chǎn)生焦慮、抑郁和厭世等不良情緒,而心理狀態(tài)易影響患者治療主動(dòng)性,與遠(yuǎn)期預(yù)后相關(guān)[16]。了解腦卒中后偏癱患者的心理狀態(tài)與肢體功能的關(guān)系有助于臨床更好地制訂后續(xù)治療計(jì)劃,改善患者預(yù)后。本研究分別采用MSSNS、FMA評(píng)分評(píng)估腦卒中后偏癱患者的心理狀態(tài)和肢體功能,Pearson相關(guān)性分析顯示,腦卒中后偏癱患者的MSSNS與FMA評(píng)分呈正相關(guān),提示患者的心理狀態(tài)與生理狀態(tài)密切相關(guān)。 表1 腦卒中后肢體功能障礙不同程度偏癱患者的臨床資料比較 注:與輕度肢體功能障礙組比較,*<0.05;與中度肢體功能障礙組比較,#<0.05 表2 影響腦卒中后偏癱患者肢體功能的因素 圖2 腦卒中后偏癱患者肢體功能的分類樹模型 表3 年齡和MSSNS評(píng)分的交互作用檢驗(yàn) 腦卒中后偏癱患者因肢體功能不同程度受損,后續(xù)可能完全喪失自主生活能力,嚴(yán)重降低患者及家屬的生活質(zhì)量[17]。本研究通過比較輕度、中度、重度肢體功能障礙的腦卒中后偏癱患者的臨床資料發(fā)現(xiàn),與輕度肢體功能障礙組比較,中度、重度肢體功能障礙組偏癱患者的年齡≥65歲比例、合并糖尿病比例、MSSNS評(píng)分、FBG水平均較高,經(jīng)多因素Logistic回歸分析顯示,年齡、MSSNS評(píng)分和FBG水平是腦卒中后偏癱患者肢體功能障礙的獨(dú)立危險(xiǎn)因素。機(jī)體各項(xiàng)生理功能隨年齡增長逐漸衰弱,老年群體血管內(nèi)纖維蛋白減少、膠原組織萎縮,血管結(jié)構(gòu)發(fā)生變化后血管脆性增加,更易在較小外力作用下發(fā)生破裂出血,故老年腦卒中偏癱患者發(fā)生重度肢體功能障礙風(fēng)險(xiǎn)較大[18];Maeshima等[19]研究發(fā)現(xiàn),腦卒中后偏癱患者的焦慮、抑郁程度較未偏癱者更重。本研究結(jié)果顯示腦卒中后重度肢體功能障礙偏癱患者的MSSNS評(píng)分最高,提示腦卒中后偏癱患者的心理狀態(tài)與生理狀態(tài)關(guān)系密切,后續(xù)研究可基于此制定相關(guān)措施對(duì)腦卒中患者實(shí)施早期干預(yù)以降低偏癱發(fā)生風(fēng)險(xiǎn);腦卒中后偏癱患者FBG水平高可歸因于高血糖介導(dǎo)機(jī)體炎癥反應(yīng),誘發(fā)廣泛性微血管內(nèi)皮損傷后加重腦組織血管源性水腫程度,加重神經(jīng)細(xì)胞損傷程度,神經(jīng)細(xì)胞支配的軀體功能異常程度,即肢體功能障礙程度隨之加重[20-21]。 目前關(guān)于疾病影響因素交互作用的研究常采用分類樹模型;相較于傳統(tǒng)Logistic回歸模型,分類樹模型很大程度上可減少研究的工作量,在對(duì)影響因素相互間交互作用識(shí)別方面也更有優(yōu)勢(shì)[22-23]。本研究采用構(gòu)建分類樹模型的方法分析腦卒中后偏癱患者肢體功能影響因素之間的交互作用,分類樹模型共篩選出2個(gè)解釋變量,分別為年齡≥65歲和高M(jìn)SSNS評(píng)分。年齡≥65歲且心理狀態(tài)差的腦卒中患者發(fā)生重度肢體功能障礙的可能性更大,密切監(jiān)測(cè)血糖及其他各項(xiàng)生化指標(biāo),可降低病情惡化、減少重度肢體功能障礙發(fā)生風(fēng)險(xiǎn)。蔣妮等[24-25]研究認(rèn)為,分類樹模型仍存在一定局限性,如分類樹模型在小樣本的穩(wěn)健性欠佳、對(duì)自變量單獨(dú)效應(yīng)的定量解釋不如Logistic回歸模型。后續(xù)可進(jìn)一步優(yōu)化分類樹模型數(shù)據(jù)處理模式,使結(jié)果更加準(zhǔn)確、合理。 綜上,年齡≥65歲、高M(jìn)SSNS評(píng)分和高FBG水平是影響腦卒中后偏癱患者肢體功能障礙的獨(dú)立危險(xiǎn)因素,且年齡與心理狀態(tài)對(duì)腦卒中后偏癱患者嚴(yán)重肢體功能障礙的影響具有正向相加交互作用。 [1] TETSUKA S, OGAWA T, HASHIMOTO R, et al. Clinical features, pathogenesis, and management of stroke-like episodes due to melas[J]. Metab Brain Dis, 2021, 36(8): 2181–2193. [2] 劉美快, 徐樂義, 李海燕, 等. 鏡像療法對(duì)腦卒中患者運(yùn)動(dòng)功能和平衡功能以及脛骨前肌形態(tài)結(jié)構(gòu)的影響[J]. 中華物理醫(yī)學(xué)與康復(fù)雜志, 2020, 42(5): 419–423. [3] KENT D M, SAVER J L, KASNER S E, et al. Heterogeneity of treatment effects in an analysis of pooled individual patient data from randomized trials of device closure of patent foramen ovale after stroke[J]. JAMA, 2021, 326(22): 2277–2286. [4] 陳煌, 謝紅珍, 黎蔚華, 等. 腦卒中肢體功能障礙患者早期康復(fù)護(hù)理的最佳證據(jù)總結(jié)[J]. 解放軍護(hù)理雜志, 2020, 37(6): 6–10. [5] 陳曉瑩, 尹祚平, 朱列和, 等. 腦卒中后抑郁患者的心理狀況及其與認(rèn)知功能的相關(guān)性[J]. 海南醫(yī)學(xué), 2020, 31(3): 306–308. [6] DERAKHSHANFAR M, RAJI P, BAGHERI H, et al. Sensory interventions on motor function, activities of daily living, and spasticity of the upper limb in people with stroke: A randomized clinical trial[J]. J Hand Ther, 2021, 34(4): 515–520. [7] CHEN Y H, CHEN C L, HUANG Y Z, et al. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: A double-blinded, randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 91. [8] 何綱, 張志僑, 葉一農(nóng), 等. 慢加急性肝衰竭患者發(fā)生肝性腦病高危人群的分類樹模型和簡(jiǎn)易風(fēng)險(xiǎn)評(píng)估[J]. 中國熱帶醫(yī)學(xué), 2020, 20(3): 275–280. [9] 中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì)腦血管病學(xué)組. 中國急性缺血性腦卒中診治指南2018[J]. 中華神經(jīng)科雜志, 2018, 51(9): 666–682. [10] MA Y, KAMALIBAIKE M, XIN C, et al. Effect of the intensive psychological nursing on adverse mood and quality of life in patients with cervical cancer[J]. Am J Transl Res, 2021, 13(8): 9633–9638. [11] CECCHI F, CARRABBA C, BERTOLUCCI F, et al. Transcultural translation and validation of Fugl-Meyer assessment to Italian[J]. Disabil Rehabil, 2021, 43(25): 3717–3722. [12] 王思迅, 陸東, 李婕, 等. 應(yīng)用CT腦CTP聯(lián)合頭頸CTA診斷缺血性腦卒中的臨床價(jià)值[J]. 中國CT和MRI雜志, 2022, 20(9): 11–12. [13] MORONE G, MARTINO CINNERA A, PAOLUCCI T, et al. Clinical features of fallers among inpatient subacute stroke: An observational cohort study[J]. Neurol Sci, 2020, 41(9): 2599–2604. [14] SALERNO A, STRAMBO D, NANNONI S, et al. Patterns of ischemic posterior circulation strokes: A clinical, anatomical, and radiological review[J] Int J Stroke, 2022, 17(7): 714–722. [15] 崔林華, 齊叢會(huì), 邢瀟, 等. 五線七針療法治療腦卒中后肢體功能障礙臨床觀察[J]. 中華中醫(yī)藥學(xué)刊, 2020, 38(12): 237–240. [16] 朱倩. 系統(tǒng)化功能訓(xùn)練治療老年缺血性腦卒中患者的療效觀察[J]. 中華物理醫(yī)學(xué)與康復(fù)雜志, 2020, 42(6): 538–540. [17] GUEYE T, DEDKOVA M, ROGALEWICZ V, et al. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: Equally efficient in older patients[J]. Neurol Neurochir Pol, 2021, 55(1): 91–96. [18] LIU X, YU H J, GAO Y, et al. Combined association of multiple chronic diseases and social isolation with the functional disability after stroke in elderly patients: A multicenter cross-sectional study in China[J]. BMC Geriatr, 2021, 21(1): 495. [19] MAESHIMA S, OKAMOTO S, MIZUNO S, et al. Predicting walking ability in hemiplegic patients with putaminal hemorrhage: An observational study in a rehabilitation hospital[J]. Eur J Phys Rehabil Med, 2021, 57(3): 321–326. [20] 韓嘯, 趙越, 尤玉青, 等. 2型糖尿病伴高尿酸患者腦卒中風(fēng)險(xiǎn)及其危險(xiǎn)因素[J]. 醫(yī)學(xué)研究雜志, 2020, 49(10): 115–119. [21] MADSEN T E, LONG D L, CARSON A P, et al. Sex and race differences in the risk of ischemic stroke associated with fasting blood glucose in regards[J]. Neurology, 2021, 97(7): 684–694. [22] IMURA T, IWAMOTO Y, INAGAWA T, et al. Decision tree algorithm identifies stroke patients likely discharge home after rehabilitation using functional and environmental predictors[J]. J Stroke Cerebrovasc Dis, 2021, 30(4): 105636. [23] LYASHEVSKA O, MALONE F, MACCARTHY E, et al. Class imbalance in gradient boosting classification algorithms: Application to experimental stroke data[J]. Stat Methods Med Res, 2021, 30(3): 916–925. [24] 蔣妮, 程港, 賀思敏, 等. 基于決策樹與多元線性回歸模型的出生體重影響因素分析[J]. 中國衛(wèi)生統(tǒng)計(jì), 2022, 39(2): 202–206. [25] SIRIOPOL D, POPA R, MIHAILA M, et al. Application of survival classification and regression tree analysis for identification of subgroups of risk in patients with heart failure and reduced left ventricular ejection fraction[J]. Int J Cardiovasc Imaging, 2021, 37(6): 1853–1861. Correlation between mental status and limb function of hemiplegic patients after stroke based on classification tree model Department of Neurology, Linping District, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, Zhejiang, China To study the correlation and interaction between mental status and limb function in patients with hemiplegia after stroke based on classification tree model.A total of 120 patients with post-stroke hemiplegia admitted to the Department of Neurology, Linping District, the Second Affiliated Hospital of Zhejiang University School of Medicine from March 2021 to November 2022 were selected, mental status scale in non-psychiatric settings (MSSNS) was used to assess the mental status of the patients, and the Fugl-Meyer assessment scale (FMA) was used to assess the limb function of the patients, Pearson correlation analysis was used to analyze the correlation between mental status and limb function in patients with hemiplegia after stroke. The clinical data of enrolled patients were collected, and the risk factors affecting the limb function of poststroke patients with hemiplegia were determined by multivariate Logistic regression analysis. The classification tree model was built to analyze the interaction between the factors affecting the limb function of poststroke patients with hemiplegia.The MSSNS score and FMA score of patients with hemiplegia after stroke were (88.22±20.36) points and (73.62±15.25) points respectively, Pearson correlation analysis showed that there was a significant positive correlation between MSSNS score and FMA score in patients with hemiplegia after stroke (=0.463,<0.05). Multivariate Logistic regression analysis showed that age ≥65 years old, high MSSNS score and high fasting blood glucose (FBG) level were independent risk factors for limb dysfunction in patients with hemiplegia after stroke. The classification tree model of limb function in patients with hemiplegia after stroke consists of 2 layers, 5 nodes and 3 end nodes. Two explanatory variables are screened out, which are age ≥65 years old, MSSNS score, the Risk statistic of the model is 0.167, which indicates that the model has good fitting effect. The results of the interaction of factors influencing severe limb dysfunction in patients with hemiplegia after stroke showed that there was a positive additive interaction between age and MSSNS score, but no multiplicative interaction.There was a positive correlation between mental status and limb function in patients with hemiplegia after stroke, age, MSSNS score and FBG were risk factors affecting the limb function of poststroke patients with hemiplegia, and there was a positive plus interaction between age and mental status on the influence of severe limb dysfunction in poststroke patients with hemiplegia. Hemiplegia after stroke; Limb function; Mental status; Interaction; Classification tree model R473 A 10.3969/j.issn.1673-9701.2023.27.016 沈葉楠,電子信箱:2383316579@qq.com (2022–12–16) (2023–08–25)1.2 方法
1.3 統(tǒng)計(jì)學(xué)方法
2 結(jié)果
2.1 腦卒中后偏癱患者心理狀態(tài)與肢體功能的相關(guān)性
2.2 腦卒中后肢體功能障礙不同程度偏癱患者的臨床資料比較
2.3 影響腦卒中后偏癱患者肢體功能的因素
2.4 腦卒中后偏癱患者肢體功能影響因素之間的交互作用
3 討論