陳金磊 王爽 王銘川 王昕
摘要:椎間盤退行性變(IDD)是引起腰腿痛的主要疾病之一,嚴(yán)重影響患者的生活質(zhì)量。近期許多研究發(fā)現(xiàn)白細(xì)胞介素6(IL-6)在退行性變的椎間盤組織和細(xì)胞中高表達(dá),并與IDD的發(fā)生發(fā)展有著密切的聯(lián)系。但關(guān)于IL-6在IDD中的信號(hào)通路和作用還不完全了解。因此,本文就IL-6在IDD中的信號(hào)通路及作用的研究進(jìn)展進(jìn)行綜述,以期對臨床工作及后續(xù)的科研工作提供幫助。
關(guān)鍵詞:白細(xì)胞介素6;椎間盤退行性變;炎癥反應(yīng)
中圖分類號(hào): R364.5? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào):1000-503X(2023)01-0134-09
DOI:10.3881/j.issn.1000-503X.14709
Research Progressin the Relationship between Interleukin-6 and Intervertebral Disc Degeneration
CHEN Jinlei1,WANG Shuang2,WANG Mingchuan1,WANG Xin1,3,4
1The First Clinical Medical School of Lanzhou University,Lanzhou 730000,China
2School of Public Health,Lanzhou University,Lanzhou 730000,China
3Department of Orthopedics,905th Hospital,Naval Medical University,Shanghai 200003,China
4Department of Spine,Changzheng Hospital,Naval Medical University,Shanghai 200003,China
Corresponding author:WANG Xin Tel:17693434483,E-mail:wangxinldyy@126.com
ABSTRACT:Intervertebral disc degeneration (IDD) is one of the main diseases causing low back pain,which seriously affects the quality of life of patients.Recent studies have discovered that interleukin-6 (IL-6) is highly expressed in the tissues and cells of degenerative intervertebral disc and is closely related to the occurrence and development of IDD.However,the signaling pathway and role of IL-6 in IDD remain to be understood.Therefore,this article reviews the recent studies about the signaling pathway and role of IL-6 in IDD,aiming to facilitate the clinical work and subsequent research progress.
Key words:interleukin-6;intervertebral disc degeneration;inflammatory responses
Acta Acad Med Sin,2023,45(1):134-142
下腰痛(low back pain,LBP)目前是全世界最常見的疾病癥狀之一,高發(fā)于各年齡段,是造成患者殘疾的頭號(hào)原因[1-2]。全世界約80%的人口會(huì)在不同的年齡段經(jīng)受LBP的折磨[3-4],由椎間盤退行性變(intervertebral disc degeneration,IDD)引起的約占40%[5]。由于LBP患病率極高,病情又遷延不愈,給全球醫(yī)療保健系統(tǒng)帶來了沉重負(fù)擔(dān)[6]。
椎間盤(intervertebral disc,IVD)是連接兩個(gè)相鄰椎體的纖維軟骨組織,由髓核(nucleus pulposus,NP)、纖維環(huán)(annular fibrosus,AF)和軟骨終板(cartilage endplate,CEP)3部分組成[7]。IVD是人體內(nèi)最大的無血管結(jié)構(gòu),NP細(xì)胞所需的氧氣及營養(yǎng)物質(zhì)主要通過CEP擴(kuò)散進(jìn)入IVD[8]。因此當(dāng)CEP損傷或退化時(shí),IVD內(nèi)氧氣減少、pH值下降、NP細(xì)胞凋亡增加、細(xì)胞外基質(zhì)(extracellular matrix,ECM)分解增加、對機(jī)械應(yīng)力的承受力降低、炎癥介質(zhì)增加,會(huì)促進(jìn)IDD惡性循環(huán)的發(fā)生[9]。炎癥是IDD中至關(guān)重要的一環(huán),也是產(chǎn)生LBP的關(guān)鍵因素之一[10-11]。白細(xì)胞介素(interleukin,IL)-6是一種經(jīng)典的細(xì)胞因子,在維持機(jī)體內(nèi)環(huán)境穩(wěn)定、機(jī)體免疫反應(yīng)和炎癥等方面發(fā)揮著巨大作用。IL-6在大鼠尾椎穿刺模型中高表達(dá),可增強(qiáng)IL-1和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)對IVD穩(wěn)態(tài)的破壞作用[12]。IL-6可以加強(qiáng)NP細(xì)胞中前列腺素E2(prostaglandin E2,PGE2)和基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)-13的表達(dá),降低蛋白多糖的合成[13]。此外,有研究證明神經(jīng)根炎性疼痛可能與IL-6的過表達(dá)高度相關(guān)[14-15]。IL-6的基因變異與以坐骨神經(jīng)痛為特征的IVD疾病高度相關(guān)[16]。退行性脊髓型頸椎病患者的血清中IL-6水平顯著升高,并且其濃度與癥狀嚴(yán)重程度呈正相關(guān)。大鼠IVD中輸注IL-6也會(huì)出現(xiàn)明顯的脊髓病癥狀[17]。綜上所述,IL-6與IDD密切相關(guān),本文總結(jié)了IL-6在IDD中的表達(dá)模式和作用,并描述了其作為IVD退變生物治療方法的前沿進(jìn)展。
IL-6的結(jié)構(gòu)
Weissenbach等[18]于1980年發(fā)現(xiàn)IL-6并命名為β2干擾素,在之后的研究中IL-6不斷被其他人發(fā)現(xiàn)并被先后命名為雜交瘤/漿細(xì)胞瘤生長因子、B細(xì)胞生長因子、肝細(xì)胞刺激因子等,直到這些細(xì)胞因子的基因被克隆出來后,才最終被命名為IL-6[19]。人類IL-6的基因位于7號(hào)染色體p15-p21,而小鼠的IL-6基因位于5號(hào)染色體的近端。人類和小鼠IL-6基因均由5個(gè)外顯子和4個(gè)內(nèi)含子組成[20]。該基因與粒細(xì)胞集落刺激因子基因高度同源,提示這兩種基因可能是來源于一種源基因。在IL-6基因-225和-113之間的5邊界處,存在類似于人類c-fos基因調(diào)控元件的序列,可能包含負(fù)責(zé)激活I(lǐng)L-6啟動(dòng)子的主要順式作用元件[21]。1.3kb的IL-6 mRNA被翻譯成1個(gè)相對分子質(zhì)量為26 000的由212個(gè)氨基酸組成的前體蛋白,因此,以前稱為26k蛋白,去除1個(gè)由28個(gè)氨基酸組成的信號(hào)肽后,剩余的184個(gè)氨基酸蛋白包含兩個(gè)糖基化位點(diǎn),被N-糖基化和O-糖基化后被分泌[22]。
IDD中IL-6的來源及表達(dá)模式
IDD中IL-6的來源 IDD病理過程涉及多種細(xì)胞,包括IVD固有細(xì)胞如NP細(xì)胞、AF細(xì)胞和CEP細(xì)胞,以及退變過程中血管長入、炎癥浸潤所帶來的多種免疫細(xì)胞,并且這些細(xì)胞都可被多種因素調(diào)節(jié),誘導(dǎo)產(chǎn)生和分泌IL-6。NP細(xì)胞、AF細(xì)胞和CEP細(xì)胞已被證明會(huì)在IDD中合成和分泌IL-6。IL-6在IVD中的分布也與組織類型有關(guān)。與NP細(xì)胞相比,受到IL-1β刺激的AF細(xì)胞會(huì)表達(dá)出更高水平的IL-6[23]。研究發(fā)現(xiàn),IL-6及其受體在IDD患者的CEP中高表達(dá),高表達(dá)的IL-6會(huì)誘導(dǎo)氧化應(yīng)激并導(dǎo)致CEP細(xì)胞鐵死亡[24]。雖然IVD是人體內(nèi)最大的無血管結(jié)構(gòu),但有研究報(bào)道IVD內(nèi)存在有巨噬細(xì)胞,稱為常駐巨噬細(xì)胞。當(dāng)IVD髓核突出或IVD受到損傷后會(huì)聚集巨噬細(xì)胞,而聚集的巨噬細(xì)胞會(huì)被IL-6等炎性因子極化為M1型巨噬細(xì)胞,后者會(huì)通過自分泌加強(qiáng)各種炎性介質(zhì)的分泌,構(gòu)成IDD的惡性循環(huán)[25]。多項(xiàng)研究表明,隨著IDD的發(fā)展,IVD內(nèi)會(huì)有血管和神經(jīng)長入,且與IDD嚴(yán)重程度呈正相關(guān)。隨著血管的長入,IVD內(nèi)炎癥浸潤,炎性細(xì)胞大量聚集,IL-6表達(dá)水平急劇增加,促進(jìn)炎癥微環(huán)境惡性循環(huán)的同時(shí)刺激長入的神經(jīng),加劇患者的疼痛癥狀[26]。
IDD中IL-6的表達(dá)模式 研究表明,健康成年人的IVD中IL-6水平較低,而在退變的IVD中IL-6的表達(dá)水平明顯升高,并且其水平與患者腰痛程度相關(guān)[27-28]。IL-6的表達(dá)水平也與年齡、IVD退變程度呈正相關(guān)[27,29]。此外,有研究還發(fā)現(xiàn)IVD中IL-6的表達(dá)水平也與腰椎融合術(shù)后患者的早期預(yù)后密切相關(guān)[30]。IL-6基因多態(tài)性(rs1800795和rs1800797)與IDD易感性顯著相關(guān),IL-6高表達(dá)可能是導(dǎo)致IDD的重要危險(xiǎn)因素之一[31]??偟膩碚f,IL-6在退變的IVD中高表達(dá),它的過表達(dá)可能是IDD的重要致病因素之一,也可能是LBP遷延不愈的原因之一[32]。
IL-6在IDD中的信號(hào)傳導(dǎo)
誘導(dǎo)IL-6合成與分泌的信號(hào)傳導(dǎo) 在IDD中,各類刺激信號(hào)可通過c-Jun氨基末端蛋白激酶(c-Jun NH2-terminal kinase,JNK)、細(xì)胞外調(diào)節(jié)蛋白激酶1/2(extracellularregulatedproteinkinases1/2,ERK1/2)、p38絲裂原活化蛋白激酶(p38 mitogen activated protein kinases,p38MAPK)、核因子κB(nuclear factor kappa-B,NF-κB)和巨噬細(xì)胞遷移抑制因子等多條信號(hào)通路誘導(dǎo)細(xì)胞分泌IL-6。這些信號(hào)通路并不是孤立存在的,而是形成了一個(gè)復(fù)雜的網(wǎng)狀調(diào)控結(jié)構(gòu)。如內(nèi)質(zhì)網(wǎng)應(yīng)激可以通過兩條信號(hào)轉(zhuǎn)導(dǎo)通路刺激IVD細(xì)胞上調(diào)IL-6的表達(dá),一條是通過p38MAPK和CCAAT增強(qiáng)子結(jié)合蛋白同源蛋白(C/EBP-homologous protein,CHOP)傳遞信息,另一條是通過NF-κB信號(hào)通路傳遞信息[33]。并且第1條途徑中的CHOP蛋白還會(huì)負(fù)調(diào)控NF-κB的激活[34]。M1型巨噬細(xì)胞可以同時(shí)通過JNK和ERK1/2兩條信號(hào)通路促進(jìn)IVD的退變,但研究發(fā)現(xiàn)只有阻斷JNK通路可以適度地抑制M1型巨噬細(xì)胞對IL-6表達(dá)的上調(diào),這表明這種調(diào)節(jié)涉及多個(gè)信號(hào)通路,是一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò)[35]。
IL-6的胞內(nèi)信號(hào)傳導(dǎo) 當(dāng)IDD中IL-6的水平顯著上調(diào)后,IL-6可以通過與膜結(jié)合受體(IL-6 receptor,IL-6R)和可溶性受體(sIL-6 receptor,sIL-6R)結(jié)合的方式進(jìn)行信號(hào)傳導(dǎo)。這兩條途經(jīng)分別稱是經(jīng)典信號(hào)通路和反式信號(hào)傳導(dǎo)通路[36]。IL-6與其受體形成復(fù)合物后,與信號(hào)受體亞基膜糖蛋白130(membrane glycoprotein130,GP130)分子結(jié)合,激活胞內(nèi)JAK/STATs及Ras/MAPK信號(hào)通路。值得注意的是,這兩種途徑在生物學(xué)作用上有很大的不同。通過膜結(jié)合受體的經(jīng)典IL-6信號(hào)通路主要對細(xì)胞起到保護(hù)作用,而反式信號(hào)通路則主要促進(jìn)炎癥反應(yīng)的發(fā)生發(fā)展[37-38]。IL-6R只在特定的細(xì)胞類型中表達(dá),如肝細(xì)胞、巨噬細(xì)胞、T細(xì)胞、中性粒細(xì)胞和巨核細(xì)胞。而GP130則存在于大部分組織和細(xì)胞中,sIL-6R和IL-6結(jié)合后則可以作用于大部分細(xì)胞和組織。因此,在IDD過程中IL-6可能多通過反式信號(hào)通路發(fā)揮調(diào)控作用。
IL-6在IDD中的作用
促進(jìn)炎癥反應(yīng) 炎癥通常被認(rèn)為是機(jī)體對感染或組織損傷的一種反應(yīng)。越來越多的證據(jù)表明,炎癥是導(dǎo)致IDD的關(guān)鍵因素,而IL-6是重要的炎性介質(zhì)之一。相較健康NP組織,IVD突出伴神經(jīng)根性疼痛癥狀患者的NP組織含有更高水平的IL-6、更低水平的Ⅱ型膠原蛋白(collagentypeⅡprotein,ColⅡ)和蛋白多糖;并且其中的IL-6水平可被miR-21所調(diào)控,miR-21高表達(dá)可增加IL-6的表達(dá),降低細(xì)胞自噬能力[39]。另外,IL-6及其下游的JAK/STAT3通路參與了IDD的發(fā)?。?0]。IL-6激活JAK/STAT3通路,增加了環(huán)氧合酶-2(cyclooxygenase-2,COX-2)和MMP-13的表達(dá)水平,從而在不涉及“經(jīng)典炎性因子”IL-1β或TNF-α的情況下引起IDD。MiR-146a可增強(qiáng)IL-6/STAT3信號(hào)通路的表達(dá),促進(jìn)IDD中炎性細(xì)胞因子和分解代謝基因的表達(dá)[41]。白藜蘆醇是一種在紅酒中發(fā)現(xiàn)的多酚植物抗炎蛋白,已被證明在各種細(xì)胞類型和組織中具有強(qiáng)大的抗炎作用。Wu等[42]的研究成果表明白藜蘆醇可以通過阻斷IL-6/JAK/STAT3信號(hào)通路來抑制人IVD細(xì)胞合成部分炎性介質(zhì),這提示白藜蘆醇在未來有可能成為一種治療IDD的潛在措施。IL-6通過反式信號(hào)通路促進(jìn)COX-2和PGE2的表達(dá),從而上調(diào)巨噬細(xì)胞表達(dá)MMP-9,該途徑可被IL-10所調(diào)節(jié)[43]。IL-6與sIL-6R結(jié)合減少了ColⅡ、蛋白聚糖和蛋白多糖的合成,增加了PGE-2和COX-2 mRNA的表達(dá),更重要的是,IL-6與sIL-6R結(jié)合還放大了IL-1β和TNF-α在IDD中的促炎作用。在暴露于IL-1β和TNF-α的細(xì)胞中,IL-6+sIL-6R誘導(dǎo)IL-6基因表達(dá),并加倍誘導(dǎo)MMP-3基因的表達(dá);并且還會(huì)促進(jìn)TNF-α對MMP-13的誘導(dǎo),將TNF-α促進(jìn)IL-6表達(dá)的作用增強(qiáng)4倍,進(jìn)一步加強(qiáng)IL-1β和TNF-α對PGE-2表達(dá)的上調(diào)作用[44],研究結(jié)果表明,這3種細(xì)胞因子之間存在著正反饋循環(huán),有助于形成持續(xù)的局部炎癥微環(huán)境,并進(jìn)一步放大IVD內(nèi)的炎癥反應(yīng)。進(jìn)一步研究發(fā)現(xiàn)間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)及其分泌體可以部分遏制這一正反饋循環(huán),通過抑制IL-1誘導(dǎo)AF細(xì)胞合成分泌IL-6,減少AF中膠原蛋白的分解并由此維持AF的機(jī)械強(qiáng)度[45]。綜上所述,盡管IL-6不如IL-1β和TNF-α經(jīng)典,但其在促進(jìn)IDD炎癥反應(yīng)方面也具有很大的作用。
促進(jìn)ECM分解 ECM的主要成分是Col Ⅱ和蛋白多糖。在健康的IVD中,由于生長因子和分解代謝因子的復(fù)雜調(diào)節(jié),ECM的合成和分解處于平衡狀態(tài)。當(dāng)ECM的分解大于合成時(shí),IDD就會(huì)發(fā)生。MMP和Ⅰ型白小板結(jié)合蛋白基序的解聚蛋白樣金屬蛋白酶(a disintegrin and metallo-proteinase with thrombospondin motif,ADAMTS)是分解ECM成分的主要酶類。有大量證據(jù)表明,MMP和ADAMTS的許多成員在退化的IVD組織和細(xì)胞中高度表達(dá),這些酶深入?yún)⑴c了ECM的分解和IDD的發(fā)生發(fā)展[46]。MMP和ADAMTS的失活或敲除對促進(jìn)ECM修復(fù)和緩解IDD的發(fā)展有很大幫助。
越來越多的證據(jù)表明,IL-6可以刺激IVD細(xì)胞產(chǎn)生MMP和ADAMTS,抑制Col Ⅱ及蛋白多糖的表達(dá),使ECM合成與分解的平衡被打破,促進(jìn)IDD發(fā)展。IL-6可以通過反式信號(hào)通路抑制NP細(xì)胞產(chǎn)生Col Ⅱ及蛋白多糖,誘導(dǎo)NP細(xì)胞分泌MMP-2、MMP-13、COX-2和PGE2,加速ECM的分解,放大IL-1和TNF-α促進(jìn)ECM分解的作用[44]。與此同時(shí),有研究表明IL-6可以通過JAK/STAT3信號(hào)通路誘導(dǎo)AF細(xì)胞合成和分泌COX-2和MMP-13,促進(jìn)基質(zhì)的分解代謝[40]。IL-6還可以上調(diào)miR-625-5p的表達(dá)水平,而miR-625-5p可以特異性與ColⅠ基因的幾個(gè)位點(diǎn)結(jié)合,抑制其轉(zhuǎn)錄,導(dǎo)致ColⅠ表達(dá)水平下降[47]。miR-98失調(diào)也可以通過靶向IL-6/STAT3信號(hào)通路促進(jìn)ECM分解[48]。研究證實(shí),IL-6可通過Src蛋白酪氨酸激酶磷酸化Yes相關(guān)蛋白1(Yes-associated protein 1,YAP1)的酪氨酸,激活并上調(diào)YAP1的表達(dá)。YAP1過表達(dá)會(huì)激活Wnt/β-連環(huán)蛋白信號(hào)通路,使IVD細(xì)胞顯著下調(diào)Sox-9、ColⅡ和蛋白多糖的表達(dá),同時(shí)增加MMP-13的表達(dá),加速ECM的分解[49]。IL-6還會(huì)抑制CEP細(xì)胞的基質(zhì)合成作用,促進(jìn)IDD[50]。
誘導(dǎo)分化,促進(jìn)巨噬細(xì)胞浸潤 研究表明,IVD組織和巨噬細(xì)胞之間的相互作用是上調(diào)IL-6所必需的。單獨(dú)變性IVD或單獨(dú)巨噬細(xì)胞僅產(chǎn)生少量的PGE2和IL-6,然而,當(dāng)兩者共培養(yǎng)時(shí),所產(chǎn)生的PGE2和IL-6會(huì)顯著上升[51]。為此研究人員設(shè)計(jì)實(shí)驗(yàn)發(fā)現(xiàn)IL-6可以通過反式信號(hào)通路誘導(dǎo)單核細(xì)胞分化為M1型巨噬細(xì)胞,并趨化其浸潤IVD組織,而后巨噬細(xì)胞會(huì)通過自分泌上調(diào)IL-6的表達(dá),并通過p38MAPK通路傳遞信號(hào),刺激NP和AF細(xì)胞產(chǎn)生更多的IL-6,構(gòu)成惡性循環(huán)。p38 MAPK抑制劑在炎癥反應(yīng)過程中有效地抑制了IL-6的表達(dá),并且JNK和ERK1/2抑制劑也可以阻斷巨噬細(xì)胞與IVD細(xì)胞之間的部分相互作用,抑制了一部分炎性細(xì)胞因子的產(chǎn)生[52]。因此,對這些信號(hào)的選擇性阻斷可作為癥狀性IVD變性的治療方法。由以上發(fā)現(xiàn)可以推斷,IL-6可以誘導(dǎo)分化以及趨化巨噬細(xì)胞,促進(jìn)巨噬細(xì)胞浸潤IVD。
致敏痛覺感受神經(jīng)元 疼痛是IDD患者最主要和最常見的癥狀,往往也是最先發(fā)生的癥狀。炎癥因子TNF-α、IL-1β和IL-6已被證明可使傷害性神經(jīng)元對熱刺激敏感并誘導(dǎo)熱痛覺過敏。血清中IL-6水平與神經(jīng)根疼痛患者的恢復(fù)情況呈負(fù)相關(guān),血清中IL-6的水平越高,患者的預(yù)后也就越差[53]。血清中IL-6的水平還與IVD源性LBP改良日本骨科學(xué)會(huì)(Japanese Orthopaedic Association,JOA)評分呈負(fù)相關(guān),血清中IL-6的水平越高,患者的JOA評分也就越低[54]。皮爾遜積差相關(guān)分析顯示,IVD組織中趨化因子(C-C基元)受體6[chemokine(C-Cmotif)receptor 6,CCR6]和IL-6的表達(dá)水平與全血樣本中CCR6和IL-6的表達(dá)水平呈正相關(guān)。全血中IL-6和CCR6 mRNA表達(dá)水平與患者當(dāng)前疼痛、最大疼痛和平均疼痛顯著相關(guān)[55]。IDD患者的腰痛ODI評分(The Oswestry Disability Index,ODI)和視覺模擬評分法(visual analogue scale,VAS)也與IVD組織中IL-6的表達(dá)水平呈正相關(guān)[56]。由以上結(jié)果可知,IL-6表達(dá)水平與IVD源性疼痛密切相關(guān)。
既往研究已證實(shí)在損傷小鼠模型中IL-6和IL-6R的表達(dá)顯著增加;IL-6和IL-6R在受損IVD中的表達(dá)主要位于AF和CEP,并且在IVD內(nèi)注射IL-6抑制劑可以抑制背根神經(jīng)節(jié)(dorsal root ganglion,DRG)神經(jīng)元中降鈣素基因相關(guān)肽(calcitonin gene-related peptide,CGRP)的表達(dá)。這些結(jié)果表明IL-6和IL-6R的表達(dá)水平對IVD損傷有反應(yīng),抑制IL-6/IL-6R信號(hào)通路可能會(huì)有效抑制因IDD而產(chǎn)生的LBP[57]。在DRG中局部應(yīng)用IL-6可以促進(jìn)TNF-α表達(dá),并會(huì)誘導(dǎo)DRG神經(jīng)元細(xì)胞凋亡[58]。IL-6與其受體結(jié)合,激活反式信號(hào)通路JAK/STATs及Ras/MAPK,誘導(dǎo)DRG神經(jīng)元釋放CGRP,產(chǎn)生神經(jīng)性疼痛[59]。但I(xiàn)L-6、TNF-α和IL-1β信號(hào)通路的聯(lián)合激活才是IDD中誘導(dǎo)神經(jīng)元活動(dòng)升高的主要原因。這些多重信號(hào)通路是IVD源性疼痛的潛在機(jī)制,表明成功治療IVD源性疼痛需要靶向抑制多種炎癥信號(hào)通路,而不是寄希望于抑制單因子信號(hào)通路[60]。
加重氧化應(yīng)激,誘導(dǎo)細(xì)胞鐵死亡 氧化應(yīng)激被定義為促氧化劑-抗氧化劑平衡紊亂,導(dǎo)致氧化加劇,從而對機(jī)體造成潛在損害。在氧化應(yīng)激下,IVD細(xì)胞對自噬和凋亡的反應(yīng)顯著增加,導(dǎo)致ECM分解和IDD進(jìn)展加劇。并且氧化應(yīng)激還會(huì)促進(jìn)炎性基因的表達(dá),進(jìn)一步加劇IDD的進(jìn)展[61]。因此,與前述因素類似,氧化應(yīng)激也是導(dǎo)致IDD的重要因素。人類臨床試驗(yàn)和動(dòng)物模型研究表明,細(xì)胞死亡,特別是凋亡和自噬也是導(dǎo)致IDD的主要原因之一,凋亡和自噬可被多種因素引起[62]。鐵死亡是一種新型的細(xì)胞程序性死亡,它依賴于鐵,不同于細(xì)胞凋亡、壞死和自噬,從機(jī)制上講,富含在細(xì)胞膜上的不飽和脂肪酸在二價(jià)鐵和/或加氧酶的作用下被催化,經(jīng)歷脂質(zhì)體過氧化,從而導(dǎo)致細(xì)胞死亡,稱為細(xì)胞鐵死亡。
研究發(fā)現(xiàn),IL-6及其受體在IDD患者的CEP組織中高表達(dá)。用IL-6梯度處理原代CEP細(xì)胞24 h后,細(xì)胞存活率結(jié)果顯示,50 ng/ml和100 ng/ml的IL-6均可使CEP細(xì)胞數(shù)量顯著減少;同時(shí),細(xì)胞內(nèi)脂質(zhì)過氧化的標(biāo)志物丙二醛、活性氧以及亞鐵含量都顯著增加。這些結(jié)果表明,炎癥因子IL-6可以誘導(dǎo)氧化應(yīng)激并中斷CEP細(xì)胞中的鐵穩(wěn)態(tài),并且這一過程是通過IL-6/miR-10a-5p/IL-6R軸完成的,IL-6會(huì)抑制miR-10a-5p的表達(dá),導(dǎo)致IL-6R表達(dá)上調(diào),從而激活細(xì)胞內(nèi)信號(hào)通路,誘導(dǎo)氧化應(yīng)激和CEP細(xì)胞鐵死亡,而miR-10a-5p過表達(dá)會(huì)抑制IL-6R的表達(dá),這在未來可能是一種潛在的治療方式[24]。
介導(dǎo)髓核細(xì)胞衰老 在健康的IVD中,維持IVD細(xì)胞的正?;盍Ρ3諭VD的生理特性至關(guān)重要。然而,隨著衰老和退行性變的發(fā)展,IVD細(xì)胞逐漸衰老或提前衰老。有報(bào)道稱,與健康對照組相比,大鼠退行性變的IVD組織中的TNF-α?xí)ㄟ^磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/絲氨酸蘇氨酸激酶(phospho-serine/threonine protein kinase,Akt)信號(hào)通路促進(jìn)大鼠NP細(xì)胞過早衰老[63]。而PI3K/Akt信號(hào)通路是NF-κB通路的主要上游通路之一,可促進(jìn)NF-κB磷酸化,誘導(dǎo)NP細(xì)胞分泌IL-6等炎性細(xì)胞因子[64]。由此可以推斷,IL-6與IVD細(xì)胞的衰老有很大的聯(lián)系。衰老細(xì)胞的積累不僅會(huì)降低IVD的自我更新能力,還會(huì)產(chǎn)生更多的炎性細(xì)胞因子和基質(zhì)降解酶,使IVD微環(huán)境持續(xù)惡化。因此,細(xì)胞衰老也是發(fā)生IDD的重要因素之一。
細(xì)胞衰老分為3種類型:復(fù)制性衰老、癌基因誘導(dǎo)的衰老和應(yīng)激性衰老[65]。已有許多研究證實(shí)IL-6可以通過STAT3信號(hào)傳導(dǎo)通路誘導(dǎo)人成纖維細(xì)胞和肝星狀細(xì)胞衰老,但直到近些年才有文章報(bào)道IL-6可能與IVD細(xì)胞衰老有關(guān)[66]。該文章表明,由TNF-α處理的衰老NP細(xì)胞旁分泌IL-6,IL-6通過信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription3,STAT3)信號(hào)傳導(dǎo)通路促進(jìn)鄰近健康NP細(xì)胞衰老。全反式維甲酸,一種IL-6抑制劑,可以減少IL-6的分泌,并降低衰老細(xì)胞對健康NP細(xì)胞的旁分泌作用。降低磷酸化STAT3的表達(dá)與抑制IL-6分泌并不能完全恢復(fù)NP細(xì)胞中COL IIa1基因的表達(dá),但重要的是,抑制它們的表達(dá)似乎可以使衰老的細(xì)胞發(fā)生凋亡和死亡,避免衰老細(xì)胞的積累。同時(shí)有研究發(fā)現(xiàn),IL-6受體在CEP細(xì)胞中的表達(dá)隨細(xì)胞的衰老而顯著增加,IL-6誘導(dǎo)的STAT3信號(hào)傳導(dǎo)隨之增加,從而促進(jìn)健康NP細(xì)胞衰老,構(gòu)成惡性循環(huán)。這種惡性循環(huán)可能是由于與年齡相關(guān)的保護(hù)性轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)信號(hào)傳導(dǎo)丟失,從而導(dǎo)致TGF-β對IL-6R的抑制作用消失而造成的[67]。
靶向IL-6治療IDD的潛力
抑制IL-6相關(guān)信號(hào)通路 鑒于IL-6是IDD的關(guān)鍵因素,使用IL-6抑制劑可能是一種治療IDD的有效方法。托珠單抗是一種IL-6R抗體。在一項(xiàng)前瞻性多中心試驗(yàn)中發(fā)現(xiàn),IVD內(nèi)注射托珠單抗治療IVD源性疼痛短期效果良好,可短期鎮(zhèn)痛,患者耐受性好,且不易誘發(fā)急性炎癥反應(yīng)[68]。但該種療法對IDD患者的長期影響仍需進(jìn)一步證實(shí)。有研究表明,達(dá)沙替尼和槲皮素藥物組合可以防止小鼠IDD隨年齡增長而進(jìn)展,并減少被稱為衰老相關(guān)分泌表型的分解代謝因子的產(chǎn)生,如IL-6和MMP13[69]。研究證實(shí)姜黃醇可以通過抑制PI3K/Akt/NF-κB信號(hào)通路來抑制NP組織中IL-1β、IL-6和TNF-α的產(chǎn)生[70]。高遷移率族蛋白B1(high mobility group protein 1,HMGB1)以靜息狀態(tài)存在于大多數(shù)細(xì)胞的細(xì)胞核里,當(dāng)細(xì)胞受到刺激,衰老或死亡時(shí)會(huì)以激活形態(tài)從細(xì)胞中釋放。HMGB1可以被脂多糖激活釋放,與toll樣受體4結(jié)合,激活Myd88/NF-κB信號(hào)通路,誘導(dǎo)IL-6的表達(dá)[71]。M1型巨噬細(xì)胞不但自身可以分泌IL-6,還可以通過旁分泌、自分泌和內(nèi)分泌的方式影響NP細(xì)胞和AF細(xì)胞,上調(diào)IL-6的表達(dá)。但目前有研究表示,木蘭花堿可以抑制HMGB1/MyD88/NF-κB信號(hào)通路并滅活NLRP3炎癥小體,減少M(fèi)1型巨噬細(xì)胞所介導(dǎo)的NP細(xì)胞損傷,并大幅度減少IL-6的表達(dá)[72]。JAK/STAT3信號(hào)傳導(dǎo)通路是IL-6最經(jīng)典的下游信號(hào)通路之一。IL-6激活JAK/STAT3信號(hào)通路后會(huì)上調(diào)COX-2和MMP-13的表達(dá)。更為重要的是JAK/STAT3信號(hào)通路可與某些誘導(dǎo)IL-6表達(dá)的下游信號(hào)通路相串聯(lián),通過正反饋回路頻繁且顯著地促進(jìn)IL-6自分泌。目前有研究發(fā)現(xiàn),白藜蘆醇可以抑制JAK/STAT3信號(hào)傳導(dǎo)通路的激活,從而抑制IL-6所誘導(dǎo)的COX-2和MMP-13的表達(dá),并破壞上述的正反饋回路,顯著地抑制IL-6的表達(dá)[42]。同時(shí),有研究也發(fā)現(xiàn)山莨菪堿可以通過調(diào)節(jié)JAK/STAT3通路來抑制IL-6在IVD中誘導(dǎo)細(xì)胞衰老和凋亡、上調(diào)β-半乳糖苷酶和端粒酶活性以及促進(jìn)ECM分解的作用[73]。脈沖電磁場可以通過調(diào)節(jié)p38-MAPK和NF-κB信號(hào)通路來抑制牛IVD細(xì)胞中IL-6的表達(dá)[74],未來也許是治療IDD的一種潛在治療措施。
基因治療 最近一項(xiàng)循證醫(yī)學(xué)研究發(fā)現(xiàn)IL-6基因中rs1800795和rs1800797的G等位基因與IDD顯著相關(guān)。與正常IVD相比,退變IVD中IL-6蛋白和mRNA表達(dá)水平顯著增加。由此他們得出結(jié)論,IL-6基因多態(tài)性(rs1800795和rs1800797)與IDD易感性顯著相關(guān)。IL-6的高表達(dá)可能是導(dǎo)致IDD的重要危險(xiǎn)因素[31]。因此,針對IL-6基因的基因療法十分重要并具有十分廣闊的前景。MicroRNAs(miRNAs)是一類內(nèi)源性表達(dá)的小片段非編碼RNA,可通過靶向mRNA進(jìn)行翻譯抑制和/或切割來調(diào)節(jié)基因表達(dá),是目前基因治療的熱門領(lǐng)域。前文已提到IL-6可以通過IL-6/miR-10a-5p/IL-6R軸促進(jìn)氧化應(yīng)激并誘導(dǎo)CEP細(xì)胞鐵死亡,其中miR-10a-5p起著關(guān)鍵性的作用。miR-10a-5p的過表達(dá)會(huì)抑制IL-6R的上調(diào),從而阻斷IL-6/miR-10a-5p/IL-6R軸。因此miR-10a-5p似乎對IL-6誘導(dǎo)的氧化應(yīng)激以及細(xì)胞死亡具有保護(hù)作用[24]。miR-27a和miR-148a可以通過調(diào)節(jié)p38/MAPK信號(hào)通路抑制IVD細(xì)胞釋放IL-6[74-75]。IL-6/STAT3信號(hào)通路可以通過miR-146a的表達(dá)介導(dǎo)調(diào)節(jié)IDD。用miR-146a抑制劑處理IVD組織會(huì)抑制ECM的分解并促進(jìn)部分炎性細(xì)胞因子和基質(zhì)酶的合成[41]。
小? 結(jié)
IDD是引起腰腿痛的主要疾病之一,嚴(yán)重影響患者的生活質(zhì)量。IL-6作為IDD中的主要促炎介質(zhì)之一,在退行性變的IVD組織和細(xì)胞中高表達(dá),通過促進(jìn)炎癥反應(yīng)、基質(zhì)降解、氧化應(yīng)激和細(xì)胞衰老等途徑加速IVD退變的發(fā)展。盡管抑制IL-6及其相關(guān)信號(hào)通路已經(jīng)在促進(jìn)ECM修復(fù)和緩解IVD退變方面顯示出了有效性和相當(dāng)大的治療潛力,但仍面臨著各種挑戰(zhàn)。炎癥反應(yīng)的調(diào)節(jié)在IVD穩(wěn)態(tài)中發(fā)揮著重要作用。因此,以IL-6為中心的IDD治療方法應(yīng)著眼于恢復(fù)IVD內(nèi)炎癥的穩(wěn)態(tài),而不是完全抑制IL-6相關(guān)的炎癥,從而使內(nèi)源性修復(fù)機(jī)制發(fā)揮作用。同時(shí),IDD是一個(gè)復(fù)雜的病理過程,調(diào)控機(jī)制也是一個(gè)復(fù)雜的網(wǎng)狀調(diào)控。而IL-6也只是IDD炎癥中的一部分。因此,IL-6抑制劑聯(lián)合其他抗IDD藥物治療IDD可能比單一藥物更有效。研究已經(jīng)證明,抑制IL-6胞內(nèi)信號(hào)通路會(huì)緩解IDD患者的腰痛癥狀,但因?yàn)镮VD是個(gè)無血管結(jié)構(gòu),藥物的遞送是個(gè)亟待解決的難題。目前已有各類納米支架和水凝膠解決藥物遞送問題,但距離實(shí)際應(yīng)用仍有不小的距離。因此,以后研究的重點(diǎn)將是進(jìn)一步研究各類細(xì)胞因子的信號(hào)通路及相互之間的聯(lián)系,力求恢復(fù)椎間盤的穩(wěn)態(tài),并進(jìn)一步研究藥物遞送方法,在減少IVD損傷的前提下力求持久、穩(wěn)定的輸送藥物至IVD內(nèi)部。
參 考 文 獻(xiàn)
[1]Hartvigsen J,Hancock MJ,Kongsted A,et al.What low back pain is and why we need to pay attention[J].Lancet,2018,391(10137):2356-2367.DOI:10.1016/S0140-6736(18)30480-X.
[2]Cieza A,Causey K,Kamenov K,et al.Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019:a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet,2021,396(10267):2006-2017.DOI:10.1016/S0140-6736(20)32340-0.
[3]Borenstein D.Mechanical low back pain:a rheumatologists view[J].Nat Rev Rheumatol,2013,9(11):643-653.DOI:10.1038/nrrheum.2013.133.
[4]GBD 2016 DALYs and HALE Collaborators.Global,regional,and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories,1990-2016:a systematic analysis for the Global Burden of Disease Study 2016[J].Lancet,2017,390(10100):1260-1344.DOI:10.1016/S0140-6736(17)32130-X.
[5]Cheung KM,Karppinen J,Chan D,et al.Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J].Spine (Phila Pa 1976),2009,34(9):934-940.DOI:10.1097/BRS.0b013e3181a01b3f.
[6]Vlaeyen JWS,Maher CG,Wiech K,et al.Low back pain[J].Nat Rev Dis Primers,2018,4(1):52.DOI:10.1038/s41572-018-0052-1.
[7]Lawson LY,Harfe BD.Developmental mechanisms of intervertebral disc and vertebral column formation[J].Wiley Interdiscip Rev Dev Biol,2017,6(6):10.1002/wdev.283.DOI:10.1002/wdev.283.
[8]Wise CA,Sepich D,Ushiki A,et al.The cartilage matrisome in adolescent idiopathic scoliosis[J].Bone Res,2020,8:13.DOI:10.1038/s41413-020-0089-0.
[9]Peredo AP,Gullbrand SE,Mauck RL,et al.A challenging playing field:identifying the endogenous impediments to annulus fibrosusrepair[J].JOR Spine,2021,4(1):e1133.DOI:10.1002/jsp2.1133.
[10]Sun Z,Liu B,Luo ZJ.The immune privilege of the intervertebral disc:implications for intervertebral disc degeneration treatment[J].Int J Med Sci,2020,17(5):685-692.DOI:10.7150/ijms.42238.
[11]Molinos M,Almeida CR,Caldeira J,et al.Inflammation in intervertebral disc degeneration and regeneration[J].J R Soc Interface,2015,12(104):20141191.DOI:10.1098/rsif.2014.1191.
[12]Yamamoto Y,Kokubo Y,Nakajima H,et al.Distribution and polarization of hematogenous macrophages associated with the progression of intervertebral disc degeneration[J].Spine (Phila Pa 1976),2022,47(4):E149-E158.DOI:10.1097/BRS.0000000000004222.
[13]Jing W,Liu W.HOXC13-AS induced extracellular matrix loss via targeting miR-497-5p/ADAMTS5 in intervertebral disc[J].Front Mol Biosci,2021,8:643997.DOI:10.3389/fmolb.2021.643997.
[14]Murata Y,Rydevik B,Nannmark U,et al.Local application of interleukin-6 to the dorsal root ganglion induces tumor necrosis factor-α in the dorsal root ganglion and results in apoptosis of the dorsal root ganglion cells[J].Spine (Phila Pa 1976),2011,36(12):926-932.DOI:10.1097/BRS.0b013e3181e7f4a9.
[15]Ura K,Yamada K,Tsujimoto T,et al.Ultra-purified alginate gel implantation decreases inflammatory cytokine levels,prevents intervertebral disc degeneration,and reduces acute pain after discectomy[J].Sci Rep,2021,11(1):638.DOI:10.1038/s41598-020-79958-9.
[16]Noponen-Hietala N,Virtanen I,Karttunen R,et al.Genetic variations in IL-6 associate with intervertebral disc disease characterized by sciatica[J].Pain,2005,114(1-2):186-194.DOI:10.1016/j.pain.2004.12.015.
[17]Du S,Sun Y,Zhao B.Interleukin-6 serum levels are elevated in individuals with degenerative cervical myelopathy and are correlated with symptom severity[J].Med Sci Monit,2018,24:7405-7413.DOI:10.12659/MSM.912868.
[18]Weissenbach J,Chernajovsky Y,Zeevi M,et al.Two interferon mRNAs in human fibroblasts:in vitro translation and Escherichia coli cloning studies[J].Proc Natl Acad Sci USA,1980,77(12):7152-7156.DOI:10.1073/pnas.77.12.7152.
[19]Gauldie J,Richards C,Harnish D,et al.Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells[J].Proc Natl Acad Sci USA,1987,84(20):7251-7255.DOI:10.1073/pnas.84.20.7251.
[20]Fey GH,Hattori M,Hocke G,et al.Gene regulation by interleukin 6[J].Biochimie,1991,73(1):47-50.DOI:10.1016/0300-9084(91)90073-a.
[21]Nagae Y,Muller-Eberhard U.Identification of an interleukin-6 responsive element and characterization of the proximal promoter region of the rat hemopexin gene[J].Biochem Biophys Res Commun,1992,185(1):420-429.DOI:10.1016/s0006-291x(05)81002-2.
[22]Gross V,Andus T,Castell J,et al.O-and N-glycosylation lead to different molecular mass forms of human monocyte interleukin-6[J].FEBS Lett,1989,247(2):323-326.DOI:10.1016/0014-5793(89)81361-4.
[23]Hwang MH,Son HG,Kim J,et al.In vitro model of distinct catabolic and inflammatory response patterns of endothelial cells to intervertebral disc cell degeneration[J].Sci Rep,2020,10(1):20596.DOI:10.1038/s41598-020-77785-6.
[24]Bin S,Xin L,Lin Z,et al.Targeting miR-10a-5p/IL-6R axis for reducing IL-6-induced cartilage cell ferroptosis[J].Exp Mol Pathol,2021,118:104570.DOI:10.1016/j.yexmp.2020.104570.
[25]Kawakubo A,Uchida K,Miyagi M,et al.Investigation of resident and recruited macrophages following disc injury in mice[J].J Orthop Res,2020,38(8):1703-1709.DOI:10.1002/jor.24590.
[26]Sun Z,Zhao H,Liu B,et al.AF cell derived exosomes regulate endothelial cell migration and inflammation:implications for vascularization in intervertebral disc degeneration[J].Life Sci,2021,265:118778.DOI:10.1016/j.lfs.2020.118778.
[27]Aripaka SS,Bech-Azeddine R,Jrgensen LM,et al.Low back pain scores correlate with the cytokine mRNA level in lumbar disc biopsies:a study of inflammatory markers in patients undergoing lumbar spinal fusion[J].Eur Spine J,2021,30(10):2967-2974.DOI:10.1007/s00586-021-06868-3.
[28]Stover JD,Lawrence B,Bowles RD.Degenerative IVD conditioned media and acidic pH sensitize sensory neurons to cyclic tensile strain[J].J Orthop Res,2021,39(6):1192-1203.DOI:10.1002/jor.24682.
[29]Vincent K,Dona CPG,Albert TJ,et al.Age-related molecular changes in the lumbar dorsal root ganglia of mice:signs of sensitization,and inflammatory response[J].JOR Spine,2020,3(4):e1124.DOI:10.1002/jsp2.1124.
[30]Koerner JD,Markova DZ,Schroeder GD,et al.Correlation of early outcomes and intradiscal interleukin-6 expression in lumbar fusion patients[J].Neurospine,2020,17(1):36-41.DOI:10.14245/ns.2040054.027.
[31]Guan Y,Wang S,Wang J,et al.Gene polymorphisms and expression levels of interleukin-6 and interleukin-10 in lumbar disc disease:a meta-analysis and immunohistochemical study[J].J Orthop Surg Res,2020,15(1):54.DOI:10.1186/s13018-020-01588-8.
[32]Rodrigues LMR,Oliveira LZ,Silva MBRD,et al.Inflammatory biomarkers in sera of patients with intervertebral disc degeneration[J].Einstein (Sao Paulo),2019,17(4):eAO4637.DOI:10.31744/einstein_journal/2019AO4637.
[33]Krupkova O,Sadowska A,Kameda T,et al.p38 MAPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral disc[J].Front Immunol,2018,9:1706.DOI:10.3389/fimmu.2018.01706.
[34]Fujii T,F(xiàn)ujita N,Suzuki S,et al.The unfolded protein response mediated by PERK is casually related to the pathogenesis of intervertebral disc degeneration[J].J Orthop Res,2018,36(5):1334-1345.DOI:10.1002/jor.23787.
[35]Ni L,Zheng Y,Gong T,et al.Proinflammatory macrophages promote degenerative phenotypes in rat nucleus pulpous cells partly through ERK and JNK signaling[J].J Cell Physiol,2019,234(5):5362-5371.DOI:10.1002/jcp.27507.
[36]Schmidt-Arras D,Rose-John S.Endosomes as signaling platforms for IL-6 family cytokine receptors[J].Front Cell Dev Biol,2021,9:688314.DOI:10.3389/fcell.2021.688314.
[37]Jones SA,Jenkins BJ.Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer[J].Nat Rev Immunol,2018,18(12):773-789.DOI:10.1038/s41577-018-0066-7.
[38]Rose-John S.Interleukin-6 family cytokines[J].Cold Spring Harb Perspect Biol,2018,10(2):a028415.DOI:10.1101/cshperspect.a028415.
[39]Lin H,Zhang W,Zhou T,et al.Mechanism of microRNA-21 regulating IL-6 inflammatory response and cell autophagy in intervertebral disc degeneration[J].Exp Ther Med,2017,14(2):1441-1444.DOI:10.3892/etm.2017.4637.
[40]Suzuki S,F(xiàn)ujita N,F(xiàn)ujii T,et al.Potential involvement of the IL-6/JAK/STAT3 pathway in the pathogenesis of intervertebral disc degeneration[J].Spine (Phila Pa 1976),2017,42(14):E817-E824.DOI:10.1097/BRS.0000000000001982.
[41]Zhou T,Lin H,Cheng Z,et al.Mechanism of microRNA-146a-mediated IL-6/STAT3 signaling in lumbar intervertebral disc degeneration[J].Exp Ther Med,2017,14(2):1131-1135.DOI:10.3892/etm.2017.4611.
[42]Wu C,Ge J,Yang M,et al.Resveratrol protects human nucleus pulposus cells from degeneration by blocking IL-6/JAK/STAT3 pathway[J].Eur J Med Res,2021,26(1):81.DOI:10.1186/s40001-021-00555-1.
[43]Kothari P,Pestana R,Mesraoua R,et al.IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages[J].J Immunol,2014,192(1):349-357.DOI:10.4049/jimmunol.1301906.
[44]Studer RK,Vo N,Sowa G,et al.Human nucleus pulposus cells react to IL-6:independent actions and amplification of response to IL-1 and TNF-α[J].Spine (Phila Pa 1976),2011,36(8):593-599.DOI:10.1097/BRS.0b013e3181da38d5.
[45]Neidlinger-Wilke C,Ekkerlein A,Goncalves RM,et al.Mesenchymal stem cell secretome decreases the inflammatory response in annulus fibrosus organ cultures[J].Eur Cell Mater,2021,42:1-19.DOI:10.22203/eCM.v042a01.
[46]Jing W,Liu W.HOXC13-AS Induced Extracellular matrix lossviatargeting miR-497-5p/ADAMTS5 in intervertebral disc[J].Front Mol Biosci,2021,8:643997.DOI:10.3389/fmolb.2021.643997.
[47]Shen L,Xiao Y,Wu Q,et al.TLR4/NF-κB axis signaling pathway-dependent up-regulation of miR-625-5p contributes to human intervertebral disc degeneration by targeting COL1A1[J].Am J Transl Res,2019,11(3):1374-1388.
[48]Ji ML,Lu J,Shi PL,et al.Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration[J].J Bone Miner Res,2016,31(4):900-909.DOI:10.1002/jbmr.2753.
[49]Chen J,Mei Z,Huang B,et al.IL-6/YAP1/β-catenin signaling is involved in intervertebral disc degeneration[J].J Cell Physiol,2019,234(5):5964-5971.DOI:10.1002/jcp.27065.
[50]葉偉,馬若凡,丁悅,等.IL-6對體外培養(yǎng)的兔軟骨終板細(xì)胞生物學(xué)行為的影響[J].南方醫(yī)科大學(xué)學(xué)報(bào),2007,27(8):1187-1189.
[51]Hamamoto H,Miyamoto H,DOIta M,et al.Capability of nondegenerated and degenerated discs in producing inflammatory agents with or without macrophage interaction[J].Spine (Phila Pa 1976),2012,37(3):161-167.DOI:10.1097/BRS.0b013e31821a874b.
[52]Park JJ,Moon HJ,Park JH,et al.Induction of proinflammatory cytokine production in intervertebral disc cells by macrophage-like THP-1 cells requires mitogen-activated protein kinase activity[J].J Neurosurg Spine,2016,24(1):167-175.DOI:10.3171/2015.3.SPINE14729.
[53]Schistad EI,Espeland A,Pedersen LM,et al.Association between baseline IL-6 and 1-year recovery in lumbar radicular pain[J].Eur J Pain,2014,18(10):1394-1401.DOI:10.1002/j.1532-2149.2014.502.x.
[54]楊劍,康建平,馮大雄,等.IL-1和IL-6的表達(dá)增強(qiáng)且與盤源性下腰痛改良日本骨科學(xué)會(huì)(mJOA)評分負(fù)相關(guān)[J].細(xì)胞與分子免疫學(xué)雜志,2016,32(1):88-91.
[55]Hiyama A,Suyama K,Sakai D,et al.Correlational analysis of chemokine and inflammatory cytokine expression in the intervertebral disc and blood in patients with lumbar disc disease[J].J Orthop Res,2022,40(5):1213-1222.DOI:10.1002/jor.25136.
[56]Aripaka SS,Bech-Azeddine R,Jrgensen LM,et al.Low back pain scores correlate with the cytokine mRNA level in lumbar disc biopsies:a study of inflammatory markers in patients undergoing lumbar spinal fusion[J].Eur Spine J,2021,30(10):2967-2974.DOI:10.1007/s00586-021-06868-3.
[57]Sainoh T,Orita S,Miyagi M,et al.Interleukin-6 and interleukin-6 receptor expression,localization,and involvement in pain-sensing neuron activation in a mouse intervertebral disc injury model[J].J Orthop Res,2015,33(10):1508-1514.DOI:10.1002/jor.22925.
[58]Murata Y,Rydevik B,Nannmark U,et al.Local application of interleukin-6 to the dorsal root ganglion induces tumor necrosis factor-α in the dorsal root ganglion and results in apoptosis of the dorsal root ganglion cells[J].Spine (Phila Pa 1976),2011,36(12):926-932.DOI:10.1097/BRS.0b013e3181e7f4a9.
[59]Sainoh T,Orita S,Miyagi M,et al.Interleukin-6 and interleukin-6 receptor expression,localization,and involvement in pain-sensing neuron activation in a mouse intervertebral disc injury model[J].J Orthop Res,2015,33(10):1508-1514.DOI:10.1002/jor.22925.
[60]Stover JD,F(xiàn)arhang N,Lawrence B,et al.Multiplex epigenome editing of dorsal root ganglion neuron receptors abolishes redundant interleukin 6,tumor necrosis factor alpha,and interleukin 1β signaling by the degenerative intervertebral disc[J].Hum Gene Ther,2019,30(9):1147-1160.DOI:10.1089/hum.2019.032.
[61]Dbrowski M,Zioa-Frankowska A,Adamek J,et al.Impact of the oxidative and enzymatic metals in degenerated intervertebral disc disease[J].Ann Agric Environ Med,2021,28(3):491-501.DOI:10.26444/aaem/126178.
[62]Wang B,Ke W,Wang K,et al.Mechanosensitive ion channel piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc degeneration[J].Oxid Med Cell Longev,2021,2021:8884922.DOI:10.1155/2021/8884922.
[63]Li P,Gan Y,Xu Y,et al.The inflammatory cytokine TNF-α promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway[J].Sci Rep,2017,7:42938.DOI:10.1038/srep42938.
[64]He S,F(xiàn)u Y,Yan B,et al.Curcumol alleviates the inflammation of nucleus pulposus cells via the PI3K/Akt/NF-κB signaling pathway and delays intervertebral disk degeneration[J].World Neurosurg,2021,155:e402-e411.DOI:10.1016/j.wneu.2021.08.079.
[65]Kojima H,Inoue T,Kunimoto H,et al.IL-6-STAT3 signaling and premature senescence[J].JAKSTAT,2013,2(4):e25763.DOI:10.4161/jkst.25763.
[66]Ashraf S,Santerre P,Kandel R.Induced senescence of healthy nucleus pulposus cells is mediated by paracrine signaling from TNF-α-activated cells[J].FASEB J,2021,35(9):e21795.DOI:10.1096/fj.202002201R.
[67]Wiegertjes R,Thielen NGM,van Caam APM,et al.Increased IL-6 receptor expression and signaling in ageing cartilage can be explained by loss of TGF-β-mediated IL-6 receptor suppression[J].Osteoarthritis Cartilage,2021,29(5):773-782.DOI:10.1016/j.joca.2021.01.008.
[68]Sainoh T,Orita S,Miyagi M,et al.Single intradiscal injection of the interleukin-6 receptor antibody tocilizumab provides short-term relief of discogenic low back pain;prospective comparative cohort study[J].J Orthop Sci,2016,21(1):2-6.DOI:10.1016/j.jos.2015.10.005.
[69]Novais EJ,Tran VA,Johnston SN,et al.Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice[J].Nat Commun,2021,12(1):5213.DOI:10.1038/s41467-021-25453-2.
[70]He S,F(xiàn)u Y,Yan B,et al.Curcumol alleviates the inflammation of nucleus pulposus cells via the PI3K/Akt/NF-κB signaling pathway and delays intervertebral disk degeneration[J].World Neurosurg,2021,155:e402-e411.DOI:10.1016/j.wneu.2021.08.079.
[71]Shah BS,Burt KG,Jacobsen T,et al.High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway[J].J Orthop Res,2019,37(1):220-231.DOI:10.1002/jor.24154.
[72]Zhao F,Guo Z,Hou F,et al.Magnoflorine alleviates "M1" polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-κB pathway and NLRP3 inflammasome[J].Front Pharmacol,2021,12:701087.DOI:10.3389/fphar.2021.701087.
[73]Tang N,Dong Y,Chen C,et al.Anisodamine maintains the stability of intervertebral disc tissue by inhibiting the senescence of nucleus pulposus cells and degradation of extracellular matrix via interleukin-6/janus kinases/signal transducer and activator of transcription 3 pathway[J].Front Pharmacol,2020,11:519172.DOI:10.3389/fphar.2020.519172.
[74]Tang X,Coughlin D,Ballatori A,et al.Pulsed electromagnetic fields reduce interleukin-6 expression in intervertebral disc cells via nuclear factor-κB and mitogen-activated protein kinase p38 pathways[J].Spine (Phila Pa 1976),2019,44(22):E1290-E1297.DOI:10.1097/BRS.0000000000003136.
[75]Li G,Tang X,Chen H,et al.miR-148a inhibits pro-inflammatory cytokines released by intervertebral disc cells by regulating the p38/MAPK pathway[J].Exp Ther Med,2018,16(3):2665-2669.DOI:10.3892/etm.2018.6516.
(收稿日期:2021-11-22)
中國醫(yī)學(xué)科學(xué)院學(xué)報(bào)2023年1期