国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

短期抗生素暴露對氧化偶氮甲烷誘導(dǎo)小鼠結(jié)直腸癌前病變相關(guān)指征變化的影響

2023-08-25 07:36:39林嘉玲何夏夢蒲芳芳蒙婷商正云胡雯曾獻春
中國抗生素雜志 2023年4期
關(guān)鍵詞:結(jié)直腸癌抗生素

林嘉玲?何夏夢?蒲芳芳?蒙婷?商正云?胡雯?曾獻春

摘要:目的 探討短期抗生素暴露對氧化偶氮甲烷(Azoxymethane,AOM)誘導(dǎo)小鼠結(jié)直腸癌前病變相關(guān)指征變化的影響。方法 40只3~4周齡SPF級雄性ICR小鼠隨機分為4組(10只/組):對照組(Control組)、AOM干預(yù)組(AOM組)、抗生素+AOM干預(yù)組(Antibiotics+Azoxymethane,AbxAOM組)以及抗生素組(Antibiotics,Abx組)。AbxAOM組和Abx組灌胃抗生素溶液(氨芐西林100 mg/kg+新霉素100 mg/kg+甲硝唑100 mg/kg+萬古霉素50 mg/kg+兩性霉素B 1 mg/kg),Control組和AOM組灌胃等體積純水,2次/天,連續(xù)14 d。灌胃結(jié)束后,AOM組和AbxAOM組腹腔注射AOM溶液(10 mg/kg·bw),Control組和Abx組腹腔注射相應(yīng)體積的無菌0.9% NaCl溶液,1次/周,連續(xù)4周。HE染色觀察小鼠結(jié)直腸組織病理學(xué)改變;RT-qPCR法檢測結(jié)直腸組織中VCAM-1、ICAM-1、Ki-67、IL-1β、IL-6、TNF-α、VEGF-A、TLR4、MyD88、NF-κB p65及COX-2的mRNA表達(dá)水平;免疫組化法觀察結(jié)直腸組織中Ki-67、NF-κB p65蛋白表達(dá)。結(jié)果 與Control組相比,AOM組小鼠結(jié)腸病理組織學(xué)評分顯著升高(P<0.01),IL-6、TLR4、NF-κB p65及COX-2的mRNA表達(dá)顯著升高(P<0.05)。與AOM組比較,AbxAOM組異常隱窩灶(Aberrant crypt foci, ACF)數(shù)量增多(P<0.05),ICAM-1、IL-1β、NF-κB p65的mRNA表達(dá)顯著升高(P<0.05)。結(jié)論 AOM處理可導(dǎo)致結(jié)腸病理損傷及ACF形成,可能與TLR4/MyD88/NF-κB信號通路的激活有關(guān)??股乇┞对诙唐趦?nèi)有加劇AOM所致結(jié)腸損傷和TLR4/MyD88/NF-κB信號通路進一步激活的趨勢,但此變化趨勢還需在長期實驗基礎(chǔ)上進一步探討。

關(guān)鍵詞:結(jié)直腸癌;抗生素;氧化偶氮甲烷

中圖分類號:R965文獻標(biāo)志碼:A

Effects of short-term antibiotic exposure on changes in indicators related to azomethane-induced colorectal precancerous lesions in mice

Lin Jia-ling1, He Xia-meng2, Pu Fang-fang2, Meng Ting2, Shang Zheng-yun3, Hu Wen2, and Zeng Xian-chun1

(1 School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500; 2 West China Hospital, Sichuan University, Chengdu? 610041; 3 West China School of Public Health, Sichuan University, Chengdu 610041)

Abstract? ? Objective To investigate the effect of short-term antibiotic exposure on the changes of azoxymethane (AOM)-induced colorectal precancerous lesions in mice. Methods Forty 3- to 4-week-old SPF-grade male ICR mice were randomly divided into four groups (10 mice/group): Control group (Control group), AOM intervention group (AOM group), antibiotic+AOM intervention group (Antibiotics+Azoxymethane, AbxAOM group), and antibiotic group (Antibiotics, Abx group). The AbxAOM group and the Abx group were administered with antibiotic solution (ampicillin 100 mg/kg+neomycin 100 mg/kg+metronidazole 100 mg/kg+vancomycin 50 mg/kg +amphotericin B 1 mg/kg), The control group and the AOM group was given an equal volume of pure water, twice a day, for 14 consecutive days. After gavage, the AOM group and the AbxAOM group were intraperitoneally injected with AOM solution (10 mg/kg.bw), and the control group and the Abx group were intraperitoneally injected with the corresponding volume of sterile 0.9% NaCl solution, once a week for 4 consecutive weeks. HE staining was used to observe the pathological changes of colorectal tissue in mice. The expression of VCAM-1, ICAM-1, Ki-67, IL-1β, IL-6, TNF-α, VEGF-A, TLR4, MyD88, NF-κB p65, and COX-2 mRNA and the expression of Ki-67 and NF-κB p65 protein in colorectal tissues were detected by RT-qPCR and immunohistochemistry, respectively. Results Compared with the control group, mice in the AOM group had significantly higher colonic pathological histological scores (P<0.01) and significantly higher mRNA expression of IL-6, TLR4, NF-κB p65, and COX-2 (P<0.05). Compared with the AOM group, the number of ACF was increased in the AbxAOM group (P<0.05), and the expression of mRNA for ICAM-1, IL-1β, and NF-κB p65 was significantly higher (P<0.05). Conclusion AOM treatment leads to colon pathological damage and ACF formation, which may be related to the activation of TLR4/MyD88/NF-κB signaling pathway. Antibiotic exposure tends to aggravate AOM-induced colon damage and further activate TLR4/MyD88/NF-κB signaling pathway in the short term. However, this trend needs to be further explored on the basis of long-term experiments.

Key words Colorectal cancer; Antibiotics; Azoxymethane

結(jié)直腸癌(colorectal cancer,CRC)是全球常見腫瘤之一。WHO報道每年CRC發(fā)病人數(shù)超過百萬,死亡人數(shù)超過50萬[1]。2020年,中國CRC新發(fā)病例56萬,在惡性腫瘤中發(fā)病率位居第二[2]。CRC的病因復(fù)雜多樣,主要包括遺傳背景因素和環(huán)境危險因素[3]。近年來,大量證據(jù)提示,抗生素暴露可以損傷腸黏膜、造成毒性影響和變態(tài)反應(yīng)、刺激腸道收縮和蠕動、改變腸道微生態(tài)平衡等,進而引起腸道病變,與結(jié)直腸癌的患病風(fēng)險存在關(guān)聯(lián)[4-9]。異常隱窩灶(aberrant crypt foci,ACF)是CRC癌前病變過程中最早期出現(xiàn)的病理結(jié)構(gòu),既往文獻認(rèn)為,在腸道腫瘤進展期,ACF數(shù)量隨組織學(xué)改變的嚴(yán)重性增加,并且ACF可作為CRC的獨立預(yù)測因素[10-13]。此外,一些重要的炎性因子(如白細(xì)胞介素-6(interleukin-6,IL-6)、腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)等)和炎癥通路(NF-κB信號通路)被認(rèn)為是促進腫瘤發(fā)生的關(guān)鍵因素,會加速大腸癌的發(fā)展,尤其是結(jié)腸炎相關(guān)CRC[14-17]。但不同種類、劑量或時間的抗生素暴露和受試對象自身差異等因素,可能導(dǎo)致不同的研究結(jié)論。因此,需要進一步探索抗生素暴露對結(jié)直腸癌前病變相關(guān)指征變化的影響。本研究目的旨在研究短期抗生素暴露對氧化偶氮甲烷(azoxymethane,AOM)誘導(dǎo)小鼠CRC癌前病變相關(guān)指征變化的影響,并探索其可能的作用機制是否與NF-κB信號通路的激活有關(guān)。

1 實驗對象與方法

1.1 實驗動物

ICR小鼠,SPF級,雄性,3~4周齡,40只,購自北京維通利華實驗動物技術(shù)有限公司,實驗動物生產(chǎn)許可證號:SCXK(京)2016-0006,并飼養(yǎng)于四川大學(xué)華西公共衛(wèi)生學(xué)院分析測試中心,動物中心許可證號:SYXK(川)2018-209。飼養(yǎng)溫度設(shè)定在23~25℃范圍,濕度設(shè)定在40%~70%范圍,晝夜明暗交替周期設(shè)定為12 h,飼以SPF級大小鼠維持飼料并自由飲水,飼料和飲水均經(jīng)無菌處理,正式試驗開始前適應(yīng)性飼養(yǎng)7 d。

1.2 主要試劑與液體的制備

AOM購自Sigma-Aldrich公司,用無菌0.9% NaCl溶液配制,使AOM溶液終濃度為1 mg/mL。

根據(jù)參考文獻[18-20]報道的抗生素聯(lián)用方案,確定本研究抗生素種類及劑量方案為:氨芐西林100 mg/kg? (Cas: 7177-48-2)、新霉素100 mg/kg(Cas: 1405-10-3)、甲硝唑100 mg/kg(Cas: 443-48-1)、萬古霉素50 mg/kg (Cas: 1404-93-9)和兩性霉素B 1 mg/kg(Cas: 1397-89-3)。以上抗生素均購自大連美侖生物技術(shù)有限公司。

1.3 實驗方法

1.3.1 動物分組與處理

本實驗選取40只雄性ICR小鼠作為實驗對象,在實驗初始階段,采用隨機數(shù)字表法將所有小鼠隨機等分為4組,每組10只,分別為:對照組(control組)、AOM干預(yù)組(AOM組)、抗生素+AOM干預(yù)組(antibiotics+azoxymethane,AbxAOM組)以及抗生素組(antibiotics,Abx組)。各組處理措施如下:AbxAOM組和Abx組灌胃含廣譜抗生素的純水溶液,control組、AOM組則灌胃相應(yīng)體積的純水,每天2次,連續(xù)14 d。灌胃結(jié)束后,AOM組和AbxAOM組腹腔注射AOM溶液(10 mg/kg·bw),control組和Abx組則腹腔注射相應(yīng)體積的無菌0.9% NaCl溶液,每周1次,連續(xù)4周。干預(yù)期間,每天監(jiān)測小鼠生長狀況及精神狀態(tài),每周測量并記錄1次小鼠體重變化,并于處死前1天再進行1次體重稱量及糞便采集。實驗第11周,處死所有小鼠,采集1 cm結(jié)腸組織于4%多聚甲醛中固定48 h后,以備后續(xù)病理及免疫組化檢測;剩余結(jié)腸組織則立即轉(zhuǎn)于-80℃保存,以備后續(xù)RT-qPCR檢測。

1.3.2 ACF的識別與計數(shù)

取多聚甲醛固定后的結(jié)腸組織約1 cm,在顯微鏡下(40~100)觀察并計數(shù)各病灶的ACF總數(shù)。ACF具有以下形態(tài)學(xué)特征:①隱窩較正常黏膜增大、增高;②隱窩周圍間隙增大、管腔不規(guī)則[21]。ACF發(fā)生率=發(fā)生ACF動物數(shù)/實驗動物數(shù)×100%。

1.3.3 結(jié)直腸組織蘇木精-伊紅染色(hematoxylin-eosin staining,HE染色)

將結(jié)直腸組織置于4%多聚甲醛(W/V)溶液中固定48 h后,石蠟包埋、切片,隨后行常規(guī)HE染色,封片后于光學(xué)顯微鏡下觀察,每張切片隨機選擇合格的3處視野,根據(jù)參考文獻[22]標(biāo)準(zhǔn)進行病理組織學(xué)評分。

1.3.4 結(jié)直腸組織RNA提取與RT-qPCR分析

嚴(yán)格按照試劑盒(動物組織總RNA提取試劑盒,成都福際生物科技有限公司)說明書步驟提取RNA。隨后,使用逆轉(zhuǎn)錄試劑盒(iscript cDNA Synthesis Kit,Bio-rad)從總RNA合成互補DNA。根據(jù)NCBI基因數(shù)據(jù)庫提供的基因序列,通過Primer 5軟件自行設(shè)計本研究所需目的基因和內(nèi)參的基因序列,退火溫度均設(shè)置為60℃,如表1所示。采用反轉(zhuǎn)錄-定量PCR(quantitative reverse transcription PCR,RT-qPCR)法檢測小鼠結(jié)直腸組織核因子-κB p65(nuclear factor-kappa B p65,NF-κB p65)、環(huán)氧合酶-2(cyclooxygenase-2,COX-2)、IL-6、Ki-67、Toll樣受體4(toll-like receptors 4,TLR4)、TNF-α、細(xì)胞間黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)、血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)、髓樣分化因子88(myeloid differentiation factor 88,MyD88)及血管內(nèi)皮生長因子A(vascular endothelial growth factor A,VEGF-A)的mRNA。RT-qPCR反應(yīng)嚴(yán)格遵照試劑盒(SsoFast EvaGreen? Supermix,Bio-rad)說明書所示步驟進行。

1.3.5 免疫組化實驗

每組隨機挑選3只小鼠,采用免疫組化印跡(immunohistochemistry staining,IHC)檢測結(jié)直腸組織中Ki-67、NF-κB p65蛋白含量。使用Image-Pro Plus 6.0分析軟件,統(tǒng)一以像素面積pixel作為標(biāo)準(zhǔn)單位,分別測量每張切片中5個視野陽性的累積光密度值(IOD)以及對應(yīng)的組織像素面積(Area),并計算出面密度=IOD/Area;分別測量每張照片中陽性細(xì)胞數(shù)以及對應(yīng)的總細(xì)胞數(shù),計算陽性率(%)=陽性細(xì)胞數(shù)/總細(xì)胞數(shù)×100%。

1.4 統(tǒng)計方法

數(shù)據(jù)統(tǒng)計分析均通過SPSS 26.0進行。不服從正態(tài)分布的資料,使用中位數(shù)和四分位數(shù)間距M(Q1~Q3)進行描述;定量資料條件若滿足正態(tài)性、方差齊,采取均數(shù)±標(biāo)準(zhǔn)差(x±s)的形式進行描述,多組獨立樣本則采用單因素方差分析(One-way ANOVA),兩組間比較采用LSD法。定性資料或不滿足參數(shù)檢驗運用規(guī)則的定量資料,則采用非參數(shù)檢驗,若差異具有統(tǒng)計學(xué)意義,將各組原始數(shù)據(jù)轉(zhuǎn)換為秩次后,對秩次使用LSD法進行兩兩比較。病理組織學(xué)評分分析用Kruskal-Wallis秩和檢驗。按檢驗水準(zhǔn)α=0.05,P<0.05或P<0.01則認(rèn)為差異有統(tǒng)計學(xué)意義。

2 結(jié)果

2.1 小鼠體重增長趨勢及生長情況

整個實驗過程中,AbxAOM組有3只小鼠意外死亡,分別發(fā)生在實驗第3、4周,AOM組有1只小鼠死亡,發(fā)生在實驗第3周,解剖未發(fā)現(xiàn)特殊病變或腫瘤。如圖1所示,在總體趨勢上,4組小鼠的體重均呈增加趨勢。組間比較差異無統(tǒng)計學(xué)意義。

2.2 小鼠結(jié)直腸組織病理組織學(xué)觀察、ACF及腫瘤發(fā)生情況

HE染色結(jié)果顯示:各組小鼠結(jié)直腸組織在肉眼及鏡下均未觀察到腫瘤形成,但有癌前病變ACF形成。AOM組中ACF發(fā)生率為11.11%,AbxAOM組中ACF發(fā)生率為28.57%,Abx組及Control組中無ACF形成。AOM組與AbxAOM組之間ACF發(fā)生率差異無統(tǒng)計學(xué)意義。此外,AbxAOM組的小鼠結(jié)直腸組織中ACF數(shù)量顯著高于AOM組(P<0.01),如表2所示。

圖2所示,AOM組可見異常隱窩,腸黏膜腺體輕度異型性(可見腺腔增大),輕度不典型增生,可見腸黏膜不同程度炎細(xì)胞浸潤,與Control組相比,AOM組病理評分極顯著升高(P<0.01);AbxAOM組結(jié)直腸組織病理學(xué)改變與AOM組類似,兩者病理組織學(xué)評分不具有統(tǒng)計學(xué)差異。Control組和Abx組小鼠腸道病理損傷明顯減輕,結(jié)直腸組織少見或未見腸黏膜輕度炎細(xì)胞浸潤,上皮無明顯缺損,無隱窩萎縮,無ACF、腫瘤等改變。

2.3 AOM和抗生素干預(yù)對CRC小鼠結(jié)直腸組織相關(guān)基因mRNA表達(dá)的影響

小鼠結(jié)直腸組織相關(guān)炎癥因子基因的mRNA表達(dá)量如圖3A所示,與Control組相比,AOM組的IL-6 mRNA(P<0.05)表達(dá)顯著升高;IL-1β mRNA、TNF-α mRNA、VEGF-A mRNA呈升高趨勢??股馗深A(yù)后,與AOM組相比,AbxAOM組IL-1β mRNA(P<0.01)表達(dá)水平顯著增加;IL-6 mRNA、TNF-α mRNA、VEGF-A mRNA表達(dá)呈升高趨勢。

小鼠結(jié)直腸組織NF-κB信號通路基因mRNA表達(dá)量如圖3B所示,與Control組相比,AOM組的TLR4 mRNA(P<0.05)、NF-κB p65mRNA(P<0.05)、COX-2 mRNA(P<0.01)表達(dá)均顯著升高;MyD88 mRNA表達(dá)呈升高趨勢??股馗深A(yù)后,與AOM組相比,AbxAOM組的NF-κB p65 mRNA(P<0.05)表達(dá)水平顯著增加;TLR4 mRNA、MyD88 mRNA表達(dá)呈升高趨勢。

小鼠結(jié)直腸組織黏附分子基因的mRNA表達(dá)量如圖3C所示,與Control組相比,AOM組的VCAM-1 mRNA、ICAM-1 mRNA呈升高趨勢??股馗深A(yù)后,與AOM組相比,AbxAOM組的ICAM-1 mRNA(P<0.01)表達(dá)水平顯著增加;VCAM-1 mRNA表達(dá)呈升高趨勢。

小鼠結(jié)直腸組織增殖相關(guān)抗原基因的mRNA表達(dá)量如圖3D所示,與Control組相比,AOM組的Ki-67 mRNA呈升高趨勢??股馗深A(yù)后,與AOM組相比,AbxAOM組的ki-67 mRNA表達(dá)呈升高趨勢。

2.4 AOM和抗生素干預(yù)對CRC小鼠NF-κB p65、Ki-67信號通路基因蛋白表達(dá)的影響

如圖4所示,與Control組相比,AOM組NF-κB p65蛋白表達(dá)呈上升趨勢;與AOM組相比,AbxAOM組NF-κB p65蛋白表達(dá)呈進一步增高趨勢,但差異均無統(tǒng)計學(xué)意義。Ki-67蛋白表達(dá)各組間差異無統(tǒng)計學(xué)意義。

3 討論

本實驗研究終點時未觀察到各組小鼠體重的組間差異,這或許受實驗時間所限。而腸道損傷是CRC進展過程中的重要環(huán)節(jié),本研究結(jié)果顯示出AOM所致的結(jié)腸黏膜損傷,與Control組相比,AOM組病理評分顯著升高,可見ACF形成、腸黏膜腺體異型性(部分可見腸腔增大),以及輕度不典型增生,而ACF被認(rèn)為是CRC發(fā)生發(fā)展過程中在光鏡下可觀察到的最早期、最小的腸黏膜上皮的癌前病變,與腺瘤、腺癌的發(fā)生密切相關(guān)[23]。有研究顯示,ACF的發(fā)生率以及數(shù)量在正常組、腺瘤組、CRC組呈逐步上升趨勢,CRC組ACF發(fā)生率高達(dá)95%[24]。本實驗研究結(jié)果顯示,AOM組、AbxAOM組均有ACF出現(xiàn),與AOM組比,不論是ACF發(fā)生率還是均數(shù),AbxAOM組均呈增長趨勢,提示短期抗生素暴露可能加速AOM誘導(dǎo)CRC癌前病變的發(fā)生發(fā)展。

先前研究揭示了微生物群在結(jié)直腸癌Toll樣受體(Toll-liked receptors,TLRs)依賴性識別中的作用[25]。一旦腸道屏障被微生物破壞,TLRs將識別這些微生物并誘導(dǎo)某些細(xì)胞因子的表達(dá),最終激活免疫應(yīng)答[26]。例如,革蘭陰性細(xì)菌脂多糖作用于TLR4使其活化后,在細(xì)胞質(zhì)膜表面誘導(dǎo)MyD88的形成,并導(dǎo)致腸黏膜中NF-κB的激活,并誘導(dǎo)許多促炎因子(如細(xì)胞因子和黏附分子)的表達(dá),從而放大炎癥級聯(lián)反應(yīng)[27-28]。NF-κB的持續(xù)激活可以促進VEGF的轉(zhuǎn)錄表達(dá),促進惡性腫瘤血管生成[29]。Wang等[30-31]發(fā)現(xiàn),在大腸癌患者中,高水平的TLR4和MyD88與肝轉(zhuǎn)移風(fēng)險增加和生存率降低相關(guān)。作為TLR4蛋白的下游因子,NF-κB是一種重要的調(diào)節(jié)因子,與炎癥和癌癥在多個水平上相關(guān)[32-33]。NF-κB p65在CRC組織中的過度表達(dá)與腫瘤分期增加和總生存率低相關(guān)[34-36]。COX-2是NF-κB的靶基因,COX-2在CRC中過表達(dá),與CRC的發(fā)生有直接相關(guān)[37-40]。有研究顯示全身炎性細(xì)胞因子與TLR4通路關(guān)鍵蛋白(即TLR4、MyD88、NF-κB p65)表達(dá)呈正相關(guān)[41]。類似地,本研究發(fā)現(xiàn)TLR4/MyD88/NF-κB信號通路的激活,TNF-α、IL-6、IL-1β、VEGF-A、ICAM-1、VCAM-1在AOM處理后也有升高趨勢??股靥幚砗笸酚羞M一步激活促炎因子和黏附分子有進一步升高的趨勢,提示短期抗生素暴露可能會加速AOM誘導(dǎo)CRC。

綜上所述,AOM引起結(jié)腸損傷,并導(dǎo)致ACF等癌前病變的產(chǎn)生,其部分機制可能為引起TLR4/MyD88/NF-κB信號通路的激活,并導(dǎo)致下游COX-2、炎癥因子、黏附分子以及增殖相關(guān)基因表達(dá)升高。而在短期內(nèi)抗生素暴露有加劇AOM所致結(jié)腸損傷和進一步激活TLR4/MyD88/NF-κB信號通路的可能。然而,腫瘤形成是長期、慢性、多因素影響的過程,本研究不足之處為樣本量較小、抗生素暴露時間較短,研究抗生素暴露對CRC發(fā)生發(fā)展的影響還需設(shè)計更長干預(yù)時間、更全面的實驗予以論證。

參 考 文 獻

Siegel R L, Miller K D, Goding Sauer A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.

Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

Gao R, Gao Z, Huang L, et al. Gut microbiota and colorectal cancer[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(5): 757-769.

Wang T T, Cai G C, Y P, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. ISME J, 2012, 6(2): 320-329.

Lu S S M, Mohammed Z, H?ggstr?m C, et al. Antibiotics use and subsequent risk of colorectal cancer: A Swedish nationwide population-based study[J]. J Natl Cancer Inst, 2022, 114(1): 38-46.

Zhang W, Zhu B, Xu J, et al. Bacteroides fragilis protects against antibiotic-associated diarrhea in rats by modulating intestinal defenses[J]. Front Immunol, 2018, 9: 1040.

Xue M, Ji X, Liang H, et al. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer[J]. Food Funct, 2018, 9(2): 1214-1223.

陳思敏, 毛杰, 陳志茹, 等. 益生菌聯(lián)合水溶性膳食纖維對老年抗生素相關(guān)性腹瀉的防治效果[J]. 天津醫(yī)藥, 2018, 46(3): 284-287.

Gianluca I, Herbert T, Antonio G. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut, 2016, 65(11): 1906-1915.

Cheng L, Lai M D. Aberrant crypt foci as microscopic precursors of colorectal cancer[J]. World J Gastroenterol, 2003, 9(12): 2642.

Rudolph R E, Dominitz J A, Lampe J W, et al. Risk factors for colorectal cancer in relation to number and size of aberrant crypt foci in humans[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(3): 605-608.

Hurlstone D P, Karajeh M, Sanders D S, et al. Rectal aberrant crypt foci identified using high-magnification-chromoscopic colonoscopy: Biomarkers for flat and depressed neoplasia[J]. Am J Gastroenterol, 2005, 100(6): 1283-1289.

Sakai E, Takahashi H, Kato S, et al. Investigation of the prevalence and number of aberrant crypt foci associated with human colorectal neoplasmACF and colorectal carcinogenesis[J]. Cancer Epidemiol Biomarkers Prev, 2011, 20(9): 1918-1924.

Merga Y J, O'Hara A, Burkitt M D, et al. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1081-G1090.

Landskron G, De la Fuente M, Thuwajit P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014: 149185.

Huang L C, Merchea A. Dysplasia and cancer in inflammatory bowel disease[J]. Surg Clin, 2017, 97(3): 627-639.

Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer[J]. J Exp Med, 2015, 212(13): 2235-2251.

Ijssennagger N, Belzer C, Hooiveld G J, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon[J]. Proc Natl Acad Sci U S A, 2015, 112(32): 10038-10043.

Wong S H, Zhao L, Zhang X, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice[J]. Gastroenterology, 2017, 153(6): 1621-1633. e6.

Reikvam D H, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression[J]. PLoS One, 2011, 6(3): e17996.

Xiao H, Hao X, Simi B, et al. Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats[J]. Carcinogenesis, 2008, 29(1): 113-119.

Meira L B, Bugni J M, Green S L, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice[J]. J Clin Invest, 2008, 118(7): 2516-2525.

Corpet D E, Tache S. Most Effective colon cancer chemopreventive agents in rats: A systematic review of aberrant crypt foci and tumor data, ranked by potency[J]. Nutr Cancer, 2002, 43(1): 1-21.

Bouzourene H, Chaubert P, Seelentag W, et al. Aberrant crypt foci in patients with neoplastic and nonneoplastic colonic disease[J]. Hum Pathol, 1999, 30(1): 66-71.

O'neill L A J, Golenbock D, Bowie A G. The history of Toll-like receptors-redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6): 453-460.

Zou S, Fang L, Lee M H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer[J]. Gastroenterol Rep (Oxf), 2018, 6(1): 1-12.

Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors[J]. Trends Mol Med, 2007, 13(11): 460-469.

Li Q, Withoff S, Verma I M. Inflammation-associated cancer: NF-κB is the lynchpin[J]. Trends Immunol, 2005, 26(6): 318-325.

于錦超,于敏,莫煒.NF-κB信號通路在腫瘤發(fā)生和炎癥反應(yīng)中的作用[J]. 藥物生物技術(shù),2016, 23(1): 82-85.

Wang A C, Su Q B,Wu F X, et al. Role of TLR4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells[J]. Eur J Clin Invest, 2009, 39(2): 157-164.

Wang E L, Qian Z R, Nakasono M, et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer[J]. Br J Cancer, 2010, 102(5): 908-915.

Koji T, Michael K. NF-κB, inflammation, immunity and cancer: Coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-324.

Didonato J A, Mercurio F, Karin M. NF‐κB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400.

Masayuki K, Takashi M, Nobuhiko S, et al. Increased nuclear factor-κB activation in human colorectal carcinoma and its correlation with tumor progression[J]. Anticancer Res, 2004, 24(2B): 675-682.

Moorchung N, Kunwar S, Ahmed K. An evaluation of nuclear factor kappa B expression in colorectal carcinoma: An analysis of 50 cases[J]. J Cancer Res Ther, 2014, 10(3): 631.

Berardi R, Maccaroni E, Mandolesi A, et al. Nuclear factor-κB predicts outcome in locally advanced rectal cancer patients receiving neoadjuvant radio-chemotherapy[J]. Dig Liver Dis, 2012, 44(7): 617-622.

Schmedtje Jr J F, Ji Y S, Liu W L, et al. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells[J]. J Biol Chem, 1997, 272(1): 601-608.

Eberhart C E, Coffey R J, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas[J]. WB Saunders, 1994, 107(4): 1183-1188.

Stern J, Miller G, Li X, et al. Virome and bacteriome: Two sides of the same coin[J]. Curr Opin Virol, 2019, 37: 37-43.

Jeong J W, Park C, Cha H J, et al. Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4[J]. BMB Rep, 2018, 51(10): 532.

Ji C L, Deng Y S, Yang A C, et al. Rhubarb enema improved colon mucosal barrier injury in 5/6 nephrectomy rats may associate with gut microbiota modification[J]. Front Pharmacol, 2020, 11(29): 1092.

猜你喜歡
結(jié)直腸癌抗生素
抗生素聯(lián)合,搭配使用有講究
中老年保健(2022年5期)2022-08-24 02:35:28
抗生素的故事
病原體與抗生素的發(fā)現(xiàn)
枳術(shù)丸湯劑結(jié)合針刺療法對結(jié)直腸癌術(shù)后胃腸功能的影響
腹腔鏡下結(jié)直腸癌根治術(shù)吻合口漏危險因素分析
氬氦刀冷凍消融聯(lián)合FOLFIRI方案治療結(jié)直腸癌術(shù)后肝轉(zhuǎn)移的臨床觀察
結(jié)直腸癌術(shù)后復(fù)發(fā)再手術(shù)治療近期效果及隨訪結(jié)果分析
對比腹腔鏡與開腹手術(shù)治療結(jié)直腸癌的臨床療效與安全性
快速康復(fù)外科對結(jié)直腸癌患者圍術(shù)期護理的指導(dǎo)意義分析
貓抓病一例及抗生素治療
荆州市| 青河县| 阳信县| 井冈山市| 塔河县| 疏勒县| 靖安县| 基隆市| 株洲县| 游戏| 江门市| 长武县| 吕梁市| 鹿邑县| 凌云县| 芮城县| 巴彦淖尔市| 郸城县| 普兰店市| 龙井市| 静安区| 罗源县| 同江市| 富川| 广安市| 四会市| 忻州市| 资兴市| 兴隆县| 蒙山县| 博野县| 西乡县| 象山县| 德阳市| 广水市| 凤山市| 东阿县| 焦作市| 大竹县| 富源县| 普兰县|