王梟鴻,邢明杰,顧憲紅,郝月
免疫沉淀聯合LC-MS/MS篩選豬肝星狀細胞中葡萄糖調節(jié)蛋白GRP94的互作蛋白
王梟鴻,邢明杰,顧憲紅,郝月
中國農業(yè)科學院北京畜牧獸醫(yī)研究所/畜禽營養(yǎng)與飼養(yǎng)全國重點實驗室,北京 100193
【背景】隨著規(guī)?;⒓s化生產程度的不斷提高,養(yǎng)殖過程中飼養(yǎng)空間受限、冷熱環(huán)境不適等因素常使豬處于應激狀態(tài)。內質網應激(endoplasmic reticulum stress, ERS)可能是最早期的應激反應,與細胞凋亡、代謝等方面有密切聯系。肝臟是機體的主要代謝器官,豬養(yǎng)殖過程中由于人工操作(如斷奶)、飼料霉變、溫度變化和吸入有害氣體等因素都會造成豬肝臟的ERS,不僅會造成肝臟損傷,還會引發(fā)肝臟的脂肪代謝紊亂和廣泛的炎癥反應,影響生產性能和繁殖性能。因此,深入探討緩解ERS的有效措施,有助于減少豬養(yǎng)殖過程中的隱性損失。【目的】利用免疫沉淀聯合質譜技術,從豬肝星狀細胞中篩選在ERS條件下與葡萄糖調節(jié)蛋白94(GRP94)相互作用的細胞蛋白,為進一步探討GRP94對豬肝星狀細胞生物學功能的保護作用機理奠定基礎?!痉椒ā渴紫葘RP94抗體固定在谷胱甘肽親和磁珠上,用親和磁珠與ERS條件下或正常條件下豬肝星狀細胞總蛋白進行孵育,與GRP94誘餌蛋白結合的蛋白復合物洗脫收集后,進行SDS-PAGE凝膠電泳驗證。將驗證成功的樣品洗脫液進行液相色譜串聯質譜(LC-MS/MS)檢測,鑒定出正常條件和ERS條件下GRP94的互作蛋白。運用生物信息學在線軟件對篩選的互作細胞蛋白進行 GO 富集、KEGG 信號通路注釋和蛋白互作網絡分析,并對其中的互作蛋白之一波形蛋白(vimentin)進行免疫共沉淀驗證?!窘Y果】篩選到正常條件下與GRP94存在互作關系的蛋白146個,ERS條件下與GRP94存在互作關系的蛋白76個,在兩種情況下都存在互作關系的蛋白44個。ERS條件下有互作關系的76個蛋白質主要參與凋亡過程負調控、肽段交聯、泛素依賴型ERAD(endoplasmic reticulum associated degradation)過程和過氧化氫分解代謝等過程。其中參與凋亡過程負調控的GRP94互作蛋白有albumin、catalase、filament A、heat shock protein family A member 5、keratin 18和prohibin 2,說明GRP94可能與這些蛋白共同發(fā)揮抗凋亡作用。除此之外組成中間絲纖維的vimentin蛋白參與多個GO富集的通路,可能與GRP94有重要的互作關系。進一步的免疫共沉淀試驗也證實,ERS條件下vimentin和GRP94之間確實存在互作關系。此外,某些ERS條件下特異性表達的GRP94互作蛋白(如peroxiredoxin、death inducer obliterator 1、catalase、glandular kallikrein、pyruvate kinase等)與抗凋亡有密切聯系?!窘Y論】ERS條件下,豬肝臟GRP94互作蛋白主要參與抗凋亡、對未折疊蛋白進行折疊和維護細胞內穩(wěn)態(tài)相關的信號通路。該結論為下一步開展GRP94參與肝臟ERS調控機制的研究打下基礎。
ERS;肝細胞;GRP94;互作蛋白;豬
【研究意義】畜禽生產中,規(guī)?;?、集約化程度越來越高,飼養(yǎng)空間受限[1]、冷熱環(huán)境不適[2]、飼料結構[3]、生產操作[4]等常常會導致畜禽產生應激,影響其健康狀態(tài)和生產性能,給養(yǎng)殖業(yè)造成巨大的隱性損失。廣泛存在的應激反應會導致細胞應激,影響細胞存活。當機體處于應激狀態(tài)時,細胞內質網出現大量的未折疊蛋白和錯誤折疊蛋白,引發(fā)細胞的內質網應激(endoplasmic reticulum stress, ERS)。有研究指出,ERS可能是細胞應激狀態(tài)下最早期的反應[5]。在ERS下未折疊蛋白反應(unfold protein response, UPR)由3種經典途徑激活,包括肌醇需要酶1、激活轉錄因子6、和蛋白激酶R樣內質網激酶,激活內質網伴侶蛋白等保護分子表達,減少內質網負荷和未折疊及錯誤折疊蛋白的數量,以保護細胞,對抗應激[6-7]。溫度變化[8]、斷奶應激[9]、營養(yǎng)物質缺乏或過剩[10]、飼料污染[11]和細菌感染[12]等都被證實會引發(fā)家畜的ERS反應。目前ERS在腸道上的研究相對較多,已經發(fā)現ERS會引發(fā)動物腸道的屏障和黏膜受損,造成腹瀉和細胞的凋亡,不僅影響營養(yǎng)物質的消化吸收,還與腸道炎癥關系密切[13]。而肝臟作為動物體內最大的代謝器官,含有豐富的內質網,與糖脂代謝聯系密切,因此,近年來對于肝臟ERS的研究也逐漸增多。生產過程(如仔豬的斷奶應激)會引發(fā)肝臟的ERS反應,導致肝臟重量顯著下降,肝臟中總膽固醇和總甘油三酯含量上升,進而引起肝臟的脂肪變性。飼料中過多微量物質的攝入也會導致豬肝臟的ERS,造成肝臟的炎癥反應、成脂基因的上調,甚至促進細胞凋亡[14]。養(yǎng)殖環(huán)境中常見的硫化氫氣體也被證明能誘發(fā)豬肝臟的ERS,伴隨著肝臟的脂代謝紊亂。營養(yǎng)上以高脂飲食誘導的脂肪肝豬模型中也發(fā)現,肝臟上出現ERS和膠原堆積[15]。筆者團隊前期利用衣霉素(Tunicamycin,TM)在仔豬上建立ERS模型,發(fā)現肝臟出現ERS的同時還伴隨脂肪變性、黃疸和炎癥等病理現象,仔豬表現為采食量明顯下降、肝損傷嚴重和脂代謝紊亂[16]。因此,明確ERS對豬肝臟的負面影響,為生產上制定切實有效的ERS調控策略提供理論依據?!厩叭搜芯窟M展】研究發(fā)現,在肝細胞上用在熱休克蛋白90(heat shock protein 90, HSP90)抑制劑抑制HSP90表達后,細胞增殖能力受到抑制,細胞凋亡上升。并且在TM誘導的ERS下,細胞凋亡上升程度更為顯著[17],說明HSP90在ERS下對細胞的存活十分重要。葡萄糖調節(jié)蛋白94(glucose regulated protein 94, GRP94)又稱HSP90B1(heat shock protein 90 B1),是HSP90家族的分子伴侶。作為已知的ERS標志蛋白之一,GRP94參與蛋白的折疊和加工,在應激狀態(tài)下維持內質網的穩(wěn)定[18],保護細胞[19-20]。GRP94可通過與多種蛋白互作,發(fā)揮其蛋白質量控制和應激響應的功能。如敲除小鼠肌肉中GRP94,發(fā)現小鼠出現輕微ERS的同時,肌肉中胰島樣生長因子1(IGF-1)的基因表達水平降低,骨骼肌重量明顯下降[21],表明肌肉是主要依靠GRP94來產生IGF-1?!颈狙芯壳腥朦c】蛋白質通常作為復合體的一部分發(fā)揮功能,復合體又是由幾個或幾種蛋白組成在一起,因此了解哪些蛋白質相互作用對于探究蛋白質生物功能是重要的一步[22]。液相色譜-質譜聯用(LC-MS)技術成為蛋白質相互作用研究的首選,廣泛應用于互作蛋白的篩選[23-25]。它使人們能夠在相對較短的時間內檢測出低豐度蛋白質,并從單個樣品中高通量鑒定數百種蛋白質。筆者所在團隊在前期利用衣霉素建立豬肝星狀細胞ERS模型[26]的基礎上,發(fā)現ERS下敲低豬肝星狀細胞中GRP94的表達會導致細胞凋亡和UPR通路蛋白磷酸化的改變。進一步的蛋白互作網絡預測表明,ERS下GRP94和IGF-1、PDIA3(protein disulfide-isomerase a3)等蛋白間存在互作[27]。但目前尚不清楚GRP94與其互作蛋白如何作用來實現其生物學功能,有必要開展相關試驗進一步探索GRP94在ERS發(fā)揮生物學功能的分子機理?!緮M解決的關鍵問題】基于GRP94可能在ERS條件下發(fā)揮對豬肝臟的保護作用,利用LC-MS質譜聯合免疫沉淀技術,從豬肝星狀細胞蛋白中篩選與GRP94相互作用的蛋白并進行功能分析,以期為深入研究GRP94參與肝臟ERS調控機制的研究提供理論依據。
試驗于2020年7—12月在中國農業(yè)科學院北京畜牧獸醫(yī)研究所畜禽營養(yǎng)與飼養(yǎng)全國重點實驗室完成。
IP蛋白抽提試劑(天德瑞 WB0024),BCA蛋白定量試劑盒(天德瑞 WB0028),2 mg·mL-1BSA標準品(天德瑞 WB0030),2×還原樣品緩沖液(天德瑞 WB0031),10×Tris-Glycine-SDS電泳緩沖液(天德瑞 WB0035),10×TBST pH8.0(天德瑞 WB0043),濕轉緩沖液(天德瑞 WB0039),NC膜,0.45 μm孔徑(Millipore HATF00010),麗春紅染色液(天德瑞 WB0042),BSA(Amresco 0332),PMSF(Amresco 0754),Acrylamide(Amresco 0341),Bis-Acrylamide(Amresco 0172),APS(Amresco 0486),Tween-20(Amresco 0777),TEMED(Amresco 0761),Ponceau S(Amresco 0860),Bromphenol Blue(Amresco 0449),DTT(Amresco 0281),NP-40(Amresco M158),Trizma base(Sigma T1503),Glycine(Sigma G8898),SDS(Sigma L4390),Sodium deoxycholate(Sigma D6750),蛋白酶抑制劑(Roche 11697498001),脫脂奶粉(伊利 Q/NYLB 0039S),ECL(Millipore WBKLS0500),甲醇(國藥10014118),璜基水楊酸(國藥10021516),TCA(國藥80132618),氯化鈉(國藥10019392),山羊抗大鼠IgG(H+L),HRP(天德瑞S007)。
Fresco低溫冷凍離心機(Thermo FRESCO21),MultiSkan3酶標儀(Thermo MULTISKAN MK3),Mini P-4電泳槽(Cavoy MP8001),濕轉電泳槽(Cavoy MP3035),電泳儀(Bio-Rad 1645052),水平脫色搖床(其林貝爾 TS-2),酸度計(Sartorius PB-10)。
細胞來自中國農業(yè)科學院北京畜牧獸醫(yī)研究所畜禽營養(yǎng)與飼養(yǎng)全國重點實驗室自備的永生化豬肝星狀細胞系(專利號:CN201910084613.0)。
用含10%胎牛血清、1%雙抗和1%生長因子的ICELL星狀細胞基礎培養(yǎng)基,于含5%CO2完全飽和濕度的37 ℃恒溫培養(yǎng)箱,培養(yǎng)永生化豬肝星狀細胞。預冷IP-RIPA蛋白抽提試劑,加入蛋白酶抑制劑。在蛋白抽提開始前加入0.1 mol·L-1PMSF母液,PMSF終濃度1 mmol·L-1。按細胞量加入一定比例的裂解液,用槍頭吹打充分懸起細胞,完成后在冰上孵育20 min,4℃離心,13 000 r/min,20 min。離心后取上清液,分裝保存,待測。收集加入5 μg·mL-1的TM處理24 h后的細胞抽提蛋白作為ERS組(參數參照中國農業(yè)科學院北京畜牧獸醫(yī)研究所畜禽營養(yǎng)與飼養(yǎng)全國重點實驗室前期研究[26]),收集未加入TM的細胞抽提蛋白作為對照組。
準備BCA工作液 A液﹕B液=50﹕1,稀釋好各個提取BSA標準品。樣品用PBS進行10倍稀釋后定量。
樣品﹕BCA工作液=1﹕8,混勻后37℃孵育30 min,酶標儀570 nm波長濾光片讀取OD值。
從1.3步驟中提取的兩組蛋白液中分別取兩份500 μL蛋白液,用BCA法測定溶液濃度。用PBS稀釋至1 μg·μL-1左右,每一組蛋白液一份加GRP94抗體5 μL,一份設置為陰性對照空白IgG,4 ℃旋轉混勻12 h,再各加入60 μL ProteinA/G懸液,4 ℃搖床孵育3 h。在4 ℃以2 500 r/min離心5 min,棄去上清液,收集磁珠沉淀;用預冷IP裂解液洗滌G-Agarose-抗體-蛋白復合物,3次,4 ℃離心,1 500×,3 min,收集沉淀。加入60 μL 2×還原loading,變性10 min,離心,收集上清液。
取WB樣本10 μg/孔,IP樣品和對照樣本8 μL/孔進行10% SDS-PAGE分析,用濕轉法將蛋白條帶轉印到0.45 μm孔徑NC膜上。將膜完全浸沒3% BSA- TBST中室溫封閉30 min;4 ℃過夜孵育GRP94抗體(1﹕50 000稀釋),TBST洗膜5次;再用HRP-羊抗鼠二抗(1﹕10 000稀釋)在 37 ℃孵育40 min,TBST洗膜6次,最后滴加顯影劑曝光并分析結果。
分別切取對照組和ERS組IP樣品短膠中與GRP94特異性結合的蛋白條帶,送北京博奧麥斯科技有限公司進行分析。酶解蛋白條帶后,利用液相-串聯質譜(LC-MS/ MS)進行串聯質譜測序。所得質譜數據經過MaxQuant(version 2.0.1.0)檢索。檢索參數為:豬蛋白數據庫,胰蛋白酶酶切,最多2個漏切位點,母離子的質量誤差為標準質量的2×10-5倍,碎片離子質量誤差0.02 Da,固定修飾為Carbamidomethyl(C),可變修飾為Oxidation(M),Acetyl(N-terminal)。多肽和蛋白假發(fā)現率(FDR)<1.0%,每個蛋白至少鑒定到1個特異性多肽。使用數據庫為:uniprot_SUS_49792_20220114.fasta。
取ERS條件下WB樣本10 μg/孔,IP樣品和對照樣本8 μL/孔,進行10% SDS-PAGE分析,用濕轉法將蛋白條帶轉印到0.45 μm孔徑NC膜上。將膜完全浸沒3% BSA-TBST中室溫封閉30 min;4 ℃過夜孵育vimentin抗體(1﹕2 000稀釋),TBST洗膜5次;再用HRP-羊抗鼠二抗(1﹕5 000稀釋)在 37 ℃孵育40 min,TBST洗膜6次;滴加顯影劑曝光,分析結果。
試驗采用免疫沉淀法獲得同GRP94具有相互作用的蛋白質。結果顯示,正常情況下和ERS條件下,input組和IP樣本組在大約94 kDa處都存在明顯的條帶,說明免疫沉淀GRP94成功(圖1)。切取對照組和ERS組IP樣品短膠中與GRP94特異性結合的條帶,進行質譜鑒定。去除空白對照組中出現的假陽性結合蛋白后,得到互作蛋白。結果發(fā)現,正常條件下與GRP94有互作的蛋白146個,ERS條件下與GRP94有互作的蛋白76個,兩種情況下都存在互作的蛋白44個(圖2)。而與GRP94在ERS條件下特異性結合的互作蛋白有32個,其中包括PRDX1(peroxiredoxin-1)、PRDX2(peroxiredoxin-2)、DIDO1(Death inducer obliterator 1)和CAT(catalase)等重要的功能蛋白。
WB驗證在正常和ERS條件下免疫沉淀GRP94的互作蛋白是否成功。Input:細胞裂解液;input+TM:經TM處理的細胞裂解液;IP:抽提細胞蛋白后,經定量和GRP94抗體孵化后制備的免疫沉淀樣本;IP+TM:抽提TM處理下的細胞蛋白后,經定量和GRP94抗體孵化后制備的免疫沉淀樣本;空白IgG:免疫沉淀樣本加入對照小鼠抗體;空白IgG+TM:經TM處理后制備的免疫沉淀樣本加入對照小鼠抗體
IP對應藍圈,說明在正常條件下有146個蛋白質與GRP94存在互作關系;TM_IP對應紅圈,說明在ERS下有76個蛋白質與GRP94存在互作關系;兩圈重疊的區(qū)域呈深紅色,說明有44個蛋白質在兩種條件下都與GRP94存在互作關系
對ERS條件下與GRP94有互作關系的76個蛋白進行GO分析,取差異顯著情況下分子功能、細胞組分和生物學過程富集程度TOP10的通路作圖(圖3)。生物學過程分析顯示,GRP94互作蛋白主要參與凋亡過程負調控、肽段交聯和泛素依賴型ERAD(endoplasmic reticulum associated degradation)過程等。細胞組分分析顯示,互作蛋白主要富集在細胞質、胞外的外泌體和中間絲纖維等組分中。分子功能分析顯示,互作蛋白主要參與結構分子激活、未折疊蛋白結合和支架蛋白結合等功能。KEGG分析發(fā)現,GRP94互作蛋白主要參與內質網內蛋白加工、沙門氏菌感染、抗體加工和呈遞、雌激素信號通路和脂質與動脈粥樣硬化等通路(圖4)。說明GRP94在ERS下通過加工內質網內蛋白、免疫系統(tǒng)激活、脂質調控和激素合成等途徑調控細胞穩(wěn)態(tài)。凋亡過程的負調控指預防或阻止細胞凋亡頻率的生物學過程,富集在此通路的蛋白除GRP94外,還有ALB(albumin)、CAT、FLNA(filamin A)、HSPA5(heat shock protein family A member 5)、KRT18(keratin 18)和PHB2(prohibitin 2)6個蛋白質,表明GRP94通過與這些蛋白的相互作用來發(fā)揮抗凋亡作用。
進一步對互作蛋白構建蛋白相互作用關系網絡(圖5),發(fā)現其中具有重要調控功能的蛋白分子包括PDIA3、ATP5A1(ATP synthase subunit 2)、ITGB1(intergrin β-1)、vimentin等,且vimentin在GO富集分析中參與了生物學過程、細胞組分和分子功能的多條通路。尤其在細胞組分分析中,細胞質、中間絲纖維和胞液都定位到了vimentin,說明GRP94可能在多個位置都與vimentin發(fā)生相互作用,共同發(fā)揮生物學功能。
將ERS條件下的IP樣品用免疫共沉淀進行GRP94和vimentin的互作關系驗證。共沉淀結果(圖6)顯示,IP樣品在大約54 kDa處出現目的條帶,說明GRP94在ERS條件下與vimentin存在互作關系。
在細胞上,應激最早期的反應就是內質網內出現大量未折疊和錯誤折疊的蛋白,即出現ERS,導致胞內穩(wěn)態(tài)的破壞,畜禽表現為生產性能、繁殖性能的下降和代謝紊亂。豬缺乏汗腺,皮下脂肪厚重,因而更易受到環(huán)境應激的影響,飼料霉變、溫度變化和病菌感染等都會引發(fā)豬肝臟產生內質網應激。當細胞發(fā)生ERS時,其會誘發(fā)未折疊蛋白反應,內質網膜上的GRP78、GRP94與PERK(protein kinase RNA-like ER kinase)、IRE1(inositol-requiring enzyme-1)和ATF6(activating transcription factor 6)解離,3種跨膜蛋白分別激活其下游通路來恢復細胞穩(wěn)態(tài)及機體功能。此外,除經典的UPR通路外,ERS條件下獨立于UPR通路的其他分子,如糖原合成激酶(glycogen synthetase kinase 3β)也有緩解ERS的作用[28]。肝臟作為機體主要代謝器官,存在大量內質網,適合作為ERS研究的試驗材料。在分子功能研究中,常以豬肝臟的原代細胞作為細胞來源,但原代細胞對體外培養(yǎng)條件要求苛刻,存在存活時間短、產量有限和傳代困難等問題,因此亟需建立永生化的豬肝細胞系。筆者所在實驗室克服了豬作為大動物無法進行灌流和養(yǎng)殖環(huán)境較差,難以分離出無菌肝臟組織的問題,利用SV40LT過表達慢病毒轉染正常的豬肝星狀細胞,獲得了與原代豬肝星狀細胞形態(tài)和特性無明顯差別的永生化豬肝星狀細胞系(專利號:CN201910084613.0)。GRP94是HSP90家族的分子伴侶,主要存在于內質網中,是ERS的重要反應因子。當細胞出現ERS時,誘發(fā)UPR反應,啟動ERS反應元件,從而使GRP94在應激條件下表達量顯著增強。作為UPR通路的上游分子,與細胞凋亡、脂代謝紊亂等ERS相關的表型存在明顯的相關。筆者前期研究也證明,ERS條件下GRP94對細胞具有保護作用,但其具體與哪些蛋白共同發(fā)揮作用尚不清楚。本研究利用免疫沉淀方法獲得GRP94的互作蛋白,隨后采用質譜分析鑒定出正常情況和ERS條件下與GRP94結合的蛋白。
圖中每一個圓點表示一個 KEGG 通路,圓點的大小代表富集到該通路的蛋白數目,圓點的顏色代表 P value,P value 越小表示蛋白在該通路中的富集顯著性越可靠??v軸表示 pathway 名稱,橫軸表示 -lg(P value)
對ERS條件下與GRP94相互作用的蛋白質進行數據庫搜索和生物信息學分析,GO富集顯示這些蛋白質主要參與凋亡過程負調控、肽段交聯、泛素依賴型ERAD和過氧化氫分解代謝等過程,說明GRP94在ERS下主要通過ERAD過程和抗氧化作用來發(fā)揮抗凋亡作用。參與凋亡過程負調控這一生物學過程的GRP94互作蛋白有ALB、CAT、FLNA、HSPA5、KRT18和PHB2 6個蛋白質。ALB是一種具有清除自由基活性的抗氧化劑,可以緩解細胞的氧化應激和由此引起的細胞凋亡[29]。不過也有研究發(fā)現,如果胞內存在過多的ALB也會引發(fā)細胞的ERS,進而導致凋亡[30]。這可能是長時間ERS導致細胞凋亡的機制之一。CAT可催化過氧化氫分解成氧和水的酶,存在于細胞的過氧化物酶體內,參與酶抗氧化防御機制。敲除CAT的小鼠在體內表現為氧化還原失衡,細胞代謝由于ERS反應被干擾,非酒精性脂肪肝疾病加重等特點[31-32]。細胞中FLNA通過與肌動蛋白交聯和調整細胞骨架與細胞膜的接觸,來維持細胞骨架[33]。當細胞內發(fā)生鈣離子失調引起ERS時,FLNA通過與UPR的重要傳感蛋白PERK互作來加強內質網和原生質膜的接觸,從而恢復胞內鈣穩(wěn)態(tài)[34]。HSPA5基因可以編碼內質網網腔內的結合免疫球蛋白,進而協助蛋白質的折疊和ERAD過程,并啟動UPR來緩解ERS。角蛋白是中間絲纖維的主要成分,對維持細胞結構起重要作用。如當血管平滑肌受到機械損傷后,伴隨著有絲分裂刺激,KRT18會大量表達[35]。KRT18可以作為細胞凋亡的早期標志物[36],這也說明GRP94可能通過調節(jié)細胞骨架來發(fā)揮抗凋亡作用。PHB2是高度保守的支架蛋白,最近發(fā)現它是線粒體自噬的一種重要內膜受體[37],即可以通過選擇性地去除受損或不需要的線粒體,參與線粒體的質量控制和維持胞內穩(wěn)態(tài)。當通過阻斷PHB2來抑制線粒體自噬時,細胞的生長和產能都會被顯著抑制[38],推測GRP94可通過影響線粒體的自噬來調控細胞凋亡。細胞組分分析發(fā)現,GRP94互作蛋白主要定位在細胞質、細胞外的外泌體和中間絲纖維上。vimentin,krt 18等都是中間絲纖維的重要組成成分,且vimentin還參與了蛋白質翻譯的正向調節(jié)這一生物學過程和多個分子功能的實現,可見GRP94與vimentin之間存在重要的互作關系。
將蛋白ID與string數據庫中的蛋白做比對,選擇互作 Confidence score 打分大于0.4的蛋白質,獲得蛋白相互作用信息。使用 STRING 工具集成了功能交互網絡模型,圖中節(jié)點代表蛋白,兩節(jié)點之間的連線代表兩節(jié)點代表的蛋白之間存在互作關系,連線的粗細反映互作的強弱
vimentin 蛋白是 III 型中間絲纖維蛋白家族中表達最廣泛的蛋白之一,具有高度保守的α螺旋“桿狀”結構域,由頭部、桿和尾結構域組成,能穩(wěn)定細胞結構[39]。vimentin作為中間絲纖維的成分,主要負責細胞骨架的完整性。有研究發(fā)現,應用硫酸鋅可以緩解由鄰苯二甲酸二丁酯引起的ERS和細胞凋亡,同時還可改善波形蛋白的降解,防止精母細胞從輸精管上皮脫落[40]。說明vimentin不僅在維持細胞功能結構方面有重要作用,而且受到ERS的調控。本試驗的免疫共沉淀結果也證實vimentin與GRP94存在互作關系。
免疫共沉淀驗證vimentin和GRP94的互作關系。Input:細胞裂解液;IP:抽提細胞蛋白后,經定量和GRP94抗體孵化后制備的免疫沉淀樣本;空白IgG:免疫沉淀樣本加入對照小鼠抗體
通過韋恩圖可知,僅在ERS條件下與GRP94存在互作關系的蛋白有32個,其中PRDX1、PRDX2、DIDO1、CAT、Glandular kallikrein和Pyruvate kinase等蛋白與機體緩解ERS的機制密切相關。PRDX1和2都是過氧化物酶,具有抗氧化功能,參與機體的氧化還原反應過程。先前的研究中將敲除PRDX2的小鼠放在低氧環(huán)境,發(fā)現小鼠體內細胞因子迅速大量增加,內皮血管出現炎癥反應,并引發(fā)了肝臟的ERS。而在體內融合重組PRDX2后,炎性血管病變和ERS反應減輕,說明該蛋白對低氧環(huán)境中的不良反應具有重要的阻斷作用[41]。PRDX1具有抗動脈粥樣硬化的特性,TDAG51(T-cell death-associated gene 51)可被ERS誘導,其表達上升時會促進細胞凋亡。在載脂蛋白E和TDAG51同時敲除的小鼠中發(fā)現,與單純敲除載脂蛋白E相比,氧化應激和ERS條件下的細胞保護作用增強,PRDX1表達出現上調,動脈粥樣硬化得到了緩解[42]。由于動脈粥樣硬化本身就可被ERS引起的細胞凋亡所誘導,因此PRDX1很可能與GRP94一起在ERS條件下調節(jié)內環(huán)境穩(wěn)態(tài)。glandular kallikrein在許多不利環(huán)境下(如乙醚麻醉、饑餓和口服鹽酸等)會出現釋放量的微弱增加,但在熱應激誘導的唾液中釋放顯著增加,說明該分子參與了機體對熱應激的調節(jié)[43]。熱應激可以引起ERS,因此該分子可能在ERS下發(fā)揮重要的調節(jié)作用。pyruvate kinase在合成丙酮酸過程中有催化作用,參與碳水化合物代謝,已被證明參與多種細胞凋亡過程。在敲除胰腺β細胞的pyruvate kinase后,由ERS誘導的細胞凋亡增加[44]。DIDO1對細胞的早期凋亡有調節(jié)作用[45],在敲除該基因后內皮細胞的增殖受到顯著抑制[46]。這些蛋白也都與抵抗應激反應關系密切,因此推測在機體處于ERS時,GRP94會特異性地與這些蛋白發(fā)生相互作用,以增強自身的防御能力,緩解ERS,防止細胞凋亡。
利用豬肝星狀細胞,通過免疫沉淀聯合LC-MS/ MS技術,共篩選到正常條件下與GRP94存在互作關系的蛋白146個,ERS條件下與GRP94存在互作關系的蛋白76個,兩種情況下都存在互作關系的蛋白44個。ERS下與GRP94存在互作的蛋白主要參與抗凋亡、對未折疊蛋白進行折疊和維護細胞內穩(wěn)態(tài)等相關信號通路。該結論為下一步開展GRP94參與肝臟ERS調控機制的研究打下基礎。
[1] 甘靖宇, 孫維婧, 盧嘉茵, 王子旭, 陳耀星, 董玉蘭. 限位欄對孕豬應激水平及神經內分泌HPA軸的影響. 中國獸醫(yī)雜志, 2021, 57(7): 1-6.
GAN J Y, SUN W J, LU J Y, WANG Z X, CHEN Y X, DONG Y L. Effect of restraint stress on stress level of pregnant sows and neuroendocrine HPA axis. Chinese Journal of Veterinary Medicine, 2021, 57(7): 1-6. (in Chinese)
[2] YONG Y H, LI J Y, GONG D L, YU T Y, WU L Y, HU C Y, LIU X X, YU Z C, MA X B, GOONERATNE R, EL-ATY A M A, CHEN J J, JU X H. ERK1/2 mitogen-activated protein kinase mediates downregulation of intestinal tight junction proteins in heat stress-induced IBD model in pig. Journal of Thermal Biology, 2021, 101: 103103.
[3] LIAO J Z, HU Z Y, LI Q W, LI H J, CHEN W J, HUO H H, HAN Q Y, ZHANG H, GUO J Y, HU L M, PAN J Q, LI Y, TANG Z X. Endoplasmicstress contributes to copper-induced pyroptosis via regulating the IRE1α-XBP1pathway in pig jejunal epithelial cells. Journal of Agricultural and Food Chemistry, 2022,70(4): 1293-1303.
[4] KAPOOR A, MATTHEWS S G. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female Guinea pig offspring: Effects of timing of prenatal stress and stage of reproductive cycle. Endocrinology, 2008, 149(12): 6406-6415.
[5] WU J, KAUFMAN R J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death & Differentiation, 2006, 13(3): 374-384.
[6] CORAZZARI M, GAGLIARDI M, FIMIA G M, PIACENTINI M. Endoplasmicstress, unfolded protein response, and cancer cell fate. Frontiers in Oncology, 2017, 7: 78.
[7] ZHU G Y, LEE A S. Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. Journal of Cellular Physiology, 2015, 230(7): 1413-1420.
[8] CUI Y, HAO Y, LI J, GAO Y, GU X. Proteomic changes of the porcine skeletal muscle in response to chronic heat stress. Journal of the Science of Food and Agriculture, 2018, 98(9): 3315-3323.
[9] HE Y, FAN X X, LIU N, SONG Q Q, KOU J, SHI Y H, LUO X, DAI Z L, YANG Y, WU Z L, WU G Y. L-glutamine represses the unfolded protein response in the small intestine of weanling piglets. The Journal of Nutrition, 2019, 149(11): 1904-1910.
[10] YOGALAKSHMI B, SATHIYA PRIYA C, ANURADHA C V. Grape seed proanthocyanidins and metformin combination attenuate hepatic endoplasmic reticulum stress in rats subjected to nutrition excess. Archives of Physiology and Biochemistry, 2019, 125(2): 174-183.
[11] LONG M, CHEN X L, WANG N, WANG M Y, PAN J W, TONG J J, LI P, YANG S H, HE J B. Proanthocyanidins protect epithelial cells from Zearalenone-induced apoptosis via inhibition of endoplasmicstress-induced apoptosis pathways in mouse small intestines. Molecules (Basel, Switzerland), 2018, 23(7): 1508.
[12] XU X G, ZHANG H L, ZHANG Q, HUANG Y, DONG J, LIANG Y B, LIU H J, TONG D W. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Veterinary Microbiology, 2013, 164(3/4): 212-221.
[13] 文偉, 陳鳳鳴, 黃興國, 李穎慧. 腸上皮細胞中內質網應激與動物腸道炎癥機制的研究進展. 動物營養(yǎng)學報, 2020, 32(2): 530-539.
WEN W, CHEN F M, HUANG X G, LI Y H. Research progress of endoplasmicstress and intestinal inflammation mechanism in intestinal epithelial cells. Chinese Journal of Animal Nutrition, 2020, 32(2): 530-539. (in Chinese)
[14] PU J N, TIAN G, LI B, CHEN D W, HE J, ZHENG P, MAO X B, YU J, HUANG Z Q, YU B. Trace mineral overload induced hepatic oxidative damage and apoptosis in pigs with long-term high-level dietary mineral exposure. Journal of Agricultural and Food Chemistry, 2016, 64(8): 1841-1849.
[15] LI S J, DING S T, MERSMANN H J, CHU C H, HSU C D, CHEN C Y. A nutritional nonalcoholic steatohepatitis minipig model. The Journal of Nutritional Biochemistry, 2016, 28: 51-60.
[16] WANG X H, XIN H R, XING M J, GU X H, HAO Y. Acute endoplasmicstress induces inflammation reaction, complement system activation, and lipid metabolism disorder of piglet livers: a proteomic approach. Frontiers in Physiology, 2022, 13: 857853.
[17] WANG X, WANG S X, LIU Y T, DING W C, ZHENG K, XIANG Y F, LIU K S, WANG D M, ZENG Y Y, XIA M, YANG D P, WANG Y F. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochemical and Biophysical Research Communications, 2014, 446(1): 160-166.
[18] LU T, WANG Y, XU K, ZHOU Z J, GONG J, ZHANG Y G, GONG H, DAI Q, YANG J, XIONG B, SONG Z, YANG G. Co-downregulation of GRP78 and GRP94 induces apoptosis and inhibits migration in prostate cancer cells. Open Life Sciences, 2019, 14: 384-391.
[19] MORITO D, NAGATA K. ER stress proteins in autoimmune and inflammatory diseases. Frontiers in Immunology, 2012, 3: 48.
[20] GARDNER B M, PINCUS D, GOTTHARDT K, GALLAGHER C M, WALTER P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor Perspectives in Biology, 2013, 5(3): a013169.
[21] BARTON E R, PARK S, JAMES J K, MAKAREWICH C A, PHILIPPOU A, ELETTO D, LEI H, BRISSON B, OSTROVSKY O, LI Z, ARGON Y. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB Journal, 2012, 26(9): 3691-3702.
[22] WENDRICH J R, BOEREN S, M?LLER B K, WEIJERS D, DE RYBEL B.identification of plant protein complexes using IP-MS/MS. Methods in Molecular Biology (Clifton, N J), 2017, 1497: 147-158.
[23] 王加峰, 劉浩, 王慧, 陳志強. 水稻NBS-LRR類抗稻瘟病蛋白Pik-h的互作蛋白篩選. 中國農業(yè)科學, 2016, 49(3): 482-490.
WANG J F, LIU H, WANG H, CHEN Z Q. Screening of putative proteins that are interacted with NBS-LRR protein Pik-h by the yeast two-hybrid system. Scientia Agricultura Sinica, 2016, 49(3): 482-490. (in Chinese)
[24] 竇萬福, 祁靜靜, 胡安華, 陳善春, 彭愛紅, 許蘭珍, 雷天剛, 姚利曉, 何永睿, 李強. GST pull-down聯合LC-MS/MS篩選柑橘抗?jié)儾∞D錄因子CsBZIP40的互作蛋白. 中國農業(yè)科學, 2019, 52(13): 2243-2255.
DOU W F, QI J J, HU A H, CHEN S C, PENG A H, XU L Z, LEI T G, YAO L X, HE Y R, LI Q. Screening of interacting proteins of anti-canker transcription factor CsBZIP40 inby GST pull-down combined with LC-MS/MS. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255. (in Chinese)
[25] 原貴波, 莫雙榕, 錢瑩, 臧棟楠, 楊帆, 蔣紅亮, 武媛, 丁海東. 應用GST pull-down技術篩選番茄SIVQ6互作蛋白. 中國農業(yè)科學, 2020, 53(15): 3146-3157.
YUAN G B, MO S R, QIAN Y, ZANG D N, YANG F, JIANG H L, WU Y, DING H D. Screening of interacting protein of tomato SIVQ6 by GST pull-down. Scientia Agricultura Sinica, 2020, 53(15): 3146-3157. (in Chinese)
[26] 辛海瑞, 張闖, 郝月, 顧憲紅. 豬肝星狀細胞內質網應激模型的建立及對泛素化的影響. 中國畜牧獸醫(yī), 2020, 47(2): 399-406.
XIN H R, ZHANG C, HAO Y, GU X H. Establishment of endoplasmicstress model of porcine hepatic stellate cell and its effect on ubiquitination. China Animal Husbandry & Veterinary Medicine, 2020, 47(2): 399-406. (in Chinese)
[27] 辛海瑞. 應激條件下GRP94調節(jié)豬肝臟細胞損傷的機理[D]. 北京: 中國農業(yè)科學院, 2019.
XIN H R. Regulatory mechanism of GRP94 on liver cell damage of pig under stress condition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[28] 邊晨晨. 內質網應激對草魚脂肪細胞脂質蓄積的影響及機制研究[D]. 楊凌: 西北農林科技大學, 2020.
BIAN C C. The effect of endoplasmicreticulum stress on lipogenesis andthe molecular mechanism in grasscarp(idellus)[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[29] DENG S X, LIU S P, JIN P, FENG S J, TIAN M, WEI P J, ZHU H D, TAN J Y, ZHAO F, GONG Y. Albumin reduces oxidative stress and neuronal apoptosis via the ERK/Nrf2/HO-1 pathway after intracerebral hemorrhage in rats. Oxidative Medicine and Cellular Longevity, 2021, 2021: 8891373.
[30] GON?ALVES G L, COSTA-PESSOA J M, THIEME K, LINS B B, OLIVEIRA-SOUZA M. Intracellular albumin overload elicits endoplasmic reticulum stress and PKC-delta/p38 MAPK pathway activation to induce podocyte apoptosis. Scientific Reports, 2018, 8(1): 18012.
[31] SHIN S K, CHO H W, SONG S E, BAE J H, IM S S, HWANG I, HA H, SONG D K. Ablation of catalase promotes non-alcoholic fatty liver via oxidative stress and mitochondrial dysfunction in diet-induced obese mice. Pflügers Archiv - European Journal of Physiology, 2019, 471(6): 829-843.
[32] HWANG I, UDDIN M J, PAK E S, KANG H, JIN E J, JO S, KANG D M, LEE H, HA H. The impaired redox balance in peroxisomes of catalase knockout mice accelerates nonalcoholic fatty liver disease through endoplasmic reticulum stress. Free Radical Biology and Medicine, 2020, 148: 22-32.
[33] POPOWICZ G M, SCHLEICHER M, NOEGEL A A, HOLAK T A. Filamins: Promiscuous organizers of the cytoskeleton. Trends in Biochemical Sciences, 2006, 31(7): 411-419.
[34] VAN VLIET A R, GIORDANO F, GERLO S, SEGURA I, VAN EYGEN S, MOLENBERGHS G, ROCHA S, HOUCINE A, DERUA R, VERFAILLIE T, VANGINDERTAEL J, DE KEERSMAECKER H, WAELKENS E, TAVERNIER J, HOFKENS J, ANNAERT W, CARMELIET P, SAMALI A, AGOSTINIS P. The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Molecular Cell, 2017, 65(5): 885-899.e6.
[35] MOON M C, YAU L, WRIGHT B, ZAHRADKA P. Injury-induced expression of cytokeratins 8 and 18 by vascular smooth muscle cells requires concurrent activation of cytoskeletal and growth factor receptors. Canadian Journal of Physiology and Pharmacology, 2008, 86(5): 223-231.
[36] MANNERY Y O, MCCLAIN C J, VOS M B. Keratin 18, apoptosis, and liver disease in children. Current Pediatric Reviews, 2011, 7(4): 310-315.
[37] WEI Y J, CHIANG W C, SUMPTER R Jr, MISHRA P, LEVINE B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell, 2017, 168(1/2): 224-238.e10.
[38] YAN C J, GONG L L, CHEN L, XU M, ABOU-HAMDAN H, TANG M L, DéSAUBRY L, SONG Z Y. PHB2(prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5- PINK1axis. Autophagy, 2020, 16(3): 419-434.
[39] SATELLI A, LI S L. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences, 2011, 68(18): 3033-3046.
[40] ZHANG X, WANG X G, LIU T X, MO M, AO L, LIU J Y, CAO J, CUI Z H. ZnSO4rescued vimentin from collapse in DBP-exposed Sertoli cells by attenuating ER stress and apoptosis. Toxicology in Vitro, 2018, 48: 195-204.
[41] FEDERTI E, MATTé A, GHIGO A, ANDOLFO I, JAMES C, SICILIANO A, LEBOEUF C, JANIN A, MANNA F, CHOI S Y, IOLASCON A, BENEDUCE E, MELISI D, KIM D W, LEVI S, DE FRANCESCHI L. Peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension. Free Radical Biology and Medicine, 2017, 112: 376-386.
[42] HOSSAIN G S, LYNN E G, MACLEAN K N, ZHOU J, DICKHOUT J G, LHOTáK S, TRIGATTI B, CAPONE J, RHO J, TANG D M, MCCULLOCH C A, AL-BONDOKJI I, MALLOY M J, PULLINGER C R, KANE J P, LI Y H, SHIFFMAN D, AUSTIN R C. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. Journal of the American Heart Association, 2013, 2(3): e000134.
[43] DAMAS J, BOURDON V. The release of glandular kallikrein from submaxillary glands of rats exposed to heat. Archives Internationales De Physiologie, De Biochimie et De Biophysique, 1994, 102(3): 183-188.
[44] HORIUCHI Y, NAKATSU D, KANO F, MURATA M. Pyruvate kinase M1 interacts with A-Raf and inhibits endoplasmic reticulum stress-induced apoptosis by activating MEK1/ERK pathway in mouse insulinoma cells. Cellular Signalling, 2017, 38: 212-222.
[45] GARCíA-DOMINGO D, RAMíREZ D, GONZáLEZ DE BUITRAGO G, MARTíNEZ-A C. Death inducer-obliterator 1 triggers apoptosis after nuclear translocation and caspase upregulation. Molecular and Cellular Biology, 2003, 23(9): 3216-3225.
[46] CAO H H, WANG L L, GENG C K, YANG M, MAO W W, YANG L L, MA Y, HE M, ZHOU Y Y, LIU L Q, HU X J, YU J X, SHEN X F, GU X Z, YIN L F, SHEN Z L. In leukemia, knock-down of the death inducer-obliterator gene would inhibit the proliferation of endothelial cells by inhibiting the expression ofand. PeerJ, 2022, 10: e12832.
Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS
WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue
Institute of Animal Science, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193
【Background】 Extensive stress reactions often occur in pigs due to poor breeding environment, thick subcutaneous fat and lack of sweat glands in pigs. Endoplasmic reticulum (ER) stress (ERS) may be the earliest stress response, which is closely related to apoptosis and metabolism. Liver is the main metabolic organ of the body. In the process of pig breeding, the artificial operations, such as weaning, feed mildew, and inhalation of harmful gases and temperature changes, will cause ERS in pig liver, which will not only cause liver damage, but also cause liver fat metabolism disorder and extensive inflammatory reaction, affecting animal production performance and reproductive performance. The regulation of ERS in production is helpful to reduce the recessive loss in the pig breeding process. 【Objective】Immunoprecipitation combined with mass spectrometry was used to screen the cellular proteins interacting with glucose-regulated protein 94 (GRP94) in porcine hepatic stellate cells (HSC) under ERS condition, which could lay a foundation for further study on the protective mechanism of GRP94 on biological function of HSC. 【Method】Protein complexes bound to GRP94 bait protein were eluted, collected, and verified by SDS-PAGE gel electrophoresis. The successfully verified sample eluent was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the interaction proteins of GRP94 under normal condition and ERS condition were identified. The detected proteins were analyzed by GO, KEGG and interaction network. Vimentin, one of the interacting proteins, was verified by co-immunoprecipitation. 【Result】In porcine hepatic stellate cells, 146 proteins were interacting with GRP94 under normal condition, 76 proteins under ERS condition, and 44 proteins under both conditions. The results showed that 76 proteins interacting with GRP94 under ERS were mainly involved in the negative regulation of apoptosis process, peptide cross-linking, ubiquitin-dependent ERAD (endoplasmic reticulum associated degradation) pathway and hydrogen peroxide catabolic process, among them, the specific proteins interacting with GRP94 in the negative regulation of apoptosis process were albumin, catalase, filament A, heat shock protein family A member 5, keratin 18, and prohibin 2, indicating that GRP94 might play an anti-apoptotic role with these proteins. Besides, the vimentin protein that made up the intermediate filament was involved in multiple GO enrichment terms, which might have an important interaction with GRP94, which was further confirmed by co-immunoprecipitation test, further demonstrating that there was indeed an interactive relationship between this two. Further analysis showed that some GRP94 interacting proteins (Such as peroxiredoxin, death inducer obliterator 1, catalase, glandular kallikrein, pyruvate kinase and so on) specifically expressed under ERS were closely related to anti-apoptosis. 【Conclusion】Under ERS, GRP94 interacting proteins were mainly involved in anti-apoptosis, folding of unfolded proteins and maintenance of intracellular homeostasis-related signal pathways. This conclusion laid a foundation for further study on the mechanism of GRP94 involved in liver ERS regulation.
endoplasmic reticulum stress; liver cells; GRP94; protein interactions; pig
10.3864/j.issn.0578-1752.2023.15.015
2022-05-10;
2022-07-14
國家自然科學基金(31872404)、中國農業(yè)科學院科技創(chuàng)新工程(ASTIP-IAS07)
王梟鴻,E-mail:caaswangxiaohong@163.com。通信作者郝月,E-mail:haoyueemail@163.com
(責任編輯 林鑒非)