孫婷婷 涂耀仁 羅鵬程 高佳欣 劉生輝 寇佳怡 顧心彤 段艷平
摘要:城市中各類含氮污染物的排放對環(huán)境產(chǎn)生了各種危害,明確氮污染的來源及循環(huán)規(guī)律可為環(huán)境治理提供一系列的專業(yè)依據(jù).文章闡述了氮污染的機理、產(chǎn)生的危害、城市水體氮污染現(xiàn)狀及污染類型,綜述了城市水體氮污染溯源研究的最新進展.地表水主要受總氮、硝態(tài)氮和銨態(tài)氮污染影響,大部分水體僅滿足Ⅳ~Ⅴ類水質(zhì)標準,人為活動是城市水體氮污染的主要貢獻者.此外,更進一步對水體氮污染來源示蹤技術(shù)(水化學分析法、同位素示蹤法、微生物源追蹤技術(shù)(MST )及同位素源解析模型等)和端元物質(zhì)中硝酸鹽氮氧同位素特征值進行匯總,為氮污染溯源和明確氮污染遷移規(guī)律提供了可靠的依據(jù).本綜述對城市水體的氮污染溯源及氮污染防治工作具有重要意義.
關(guān)鍵詞:城市水體;氮污染;同位素示蹤;硝酸鹽氮同位素;同位素分餾
中圖分類號:X-1?? 文獻標志碼:A?? 文章編號:1000-5137(2023)01-0146-09
Study on nitrogen pollution types and isotopic tracing of urban water bodies
SUN? Tingting1,TU? Yaoren1,2*,LUO? Pengcheng1,GAO? Jiaxin1, LIU? Shenghui1,KOU? Jiayi1,GU? Xintong1,DUAN? Yanping1,2
(1.School of Environmental and Geographical Sciences,Shanghai Normal University,Shanghai 200234,China;
2.Yangtze River Delta Urban Wetland Ecosystem National Field Observation andResearch Station,Shanghai Normal University,Shanghai 200234,China)
Abstract:The emission of various nitrogen-containing pollutants in cities causes various hazards in the environment . Clarifying the source and circulation law of nitrogen pollution can provide a series of supports for environmental governance . In this paper,not onlythe mechanism and harm of nitrogen pollution but also the status and types of nitrogen pollution in urban water environment were described. The latest progress in the research on the traceability of nitrogen pollution in urban water was reviewed . The surface waters were mainly affected by total nitrogen,nitrate nitrogen,and ammonia nitrogen pollutions. Most of the water environment only met the? class Ⅳ-Ⅴ water quality standards,and human activities were the main contributor to the nitrogen pollution in urban water environment. In addition,the source tracing technology of nitrogen pollution in water (hydrochemistry analysis,isotope tracing, microbial source tracing,isotope source analytical model,etc.) and the characteristic values of nitrate-nitrogen and oxygen isotopes in end-member substances were further summarized,which provided a reliable way to trace the source of nitrogen pollution and clarify? the migration law of nitrogen pollution. This review is of great significance for the traceability and prevention of nitrogen pollution in urban water environment.
Key words:urban water environment;nitrogen pollution;isotopic tracing;nitrate nitrogen isotope;isotopic fractionation
0 引言
根據(jù)《2021中國生態(tài)環(huán)境狀況公報》[1]顯示,我國地表水監(jiān)測斷面中Ⅰ~Ⅲ類水質(zhì)斷面占84.9%,整體來看水質(zhì)逐年向好;其中,河流、湖泊和水庫監(jiān)測斷面水質(zhì)以Ⅰ~Ⅲ類為主,但仍有10%~25%的水體僅達到Ⅳ類標準,湖泊和水庫Ⅴ~劣Ⅴ類監(jiān)測斷面數(shù)量高于河流,且均存在有機質(zhì)和營養(yǎng)鹽污染現(xiàn)象,部分水體處于中度富營養(yǎng)水平.城市生態(tài)系統(tǒng)代謝嚴重依賴外部物質(zhì)和能量,其所需的物質(zhì)和能量為其他自然生態(tài)系統(tǒng)的10~100倍,故其高氮輸入導致城市成為全球氮研究的熱點[2-3].水環(huán)境中氮的主要來源包括自然和人為來源,如大氣氮沉降、土壤有機氮的硝化作用、工業(yè)廢水和生活污水以及農(nóng)業(yè)化肥的使用等[4],其中工業(yè)廢水和生活污水對地表水中氮污染的影響尤為突出,而農(nóng)業(yè)中氮的過度利用、高強度施氮與漫灌甚至造成了地下水硝態(tài)氮的淋失,也極大地加劇了地下水污染[5].過多的硝酸鹽會對水生生態(tài)系統(tǒng)造成嚴重的影響,如水體富營養(yǎng)化、藻華以及缺氧現(xiàn)象等[6],從而對水生生物的生存造成威脅.地下水中硝酸鹽氮若被還原為亞硝態(tài)氮,可能會引起嬰兒高鐵血紅蛋白癥,也可能會引發(fā)胃癌、肝癌以及高血壓等疾病[7].因此,水體氮污染的治理刻不容緩,在控制水體硝酸鹽污染的前提下,需要準確識別其污染來源.目前,城市水體中含氮污染物的來源仍眾說紛紜,故對城市水體氮污染的來源進行準確鑒定,有助于為環(huán)保部門氮污染的治理提供科學依據(jù).
1 城市水體的氮污染類型
表1為我國城市各類水體中氮的污染類型[8-25],近年來我國城市水體仍普遍存在氮污染問題,當水體某種氮的含量超標或占總氮(TN )的比例較高時,認為 TN 是水體的主要氮污染類型,其中河流和湖泊均以 TN 和氨氮(NH4+-N )污染為主,水質(zhì)分別呈Ⅲ~劣 V 類和Ⅴ~劣 V 類水平;水庫以 TN 和硝態(tài)氮( NO3--N )污染為主,水質(zhì)呈Ⅳ~劣 V 類水平.雖城市管控日趨嚴格,但不可避免存在偷排、漏排及垃圾滲濾液滲漏等現(xiàn)象,使地表水系統(tǒng)中氮失去平衡.總體來說,水庫及河流的水質(zhì)略優(yōu)于湖泊,這與水庫的地理位置位于城市邊緣及政府對水庫、河流等水源地水質(zhì)的重視程度有關(guān).
2 水體氮污染來源的鑒別技術(shù)
氮污染來源的鑒別技術(shù)主要有水化學分析法、同位素示蹤法以及多種方法相結(jié)合的溯源方式[26].由于水體中硝酸鹽來源多樣且易發(fā)生生物地球化學效應,單純依靠水化學分析法不能識別水體硝酸鹽來源[27].同位素技術(shù)在硝酸鹽污染源識別研究方面已有40多年的歷史,初期研究者只能通過確定硝酸鹽氮同位素(δ15N-NO3-)值來識別硝酸鹽主要來源,但部分來源的δ15N-NO3-值范圍較廣,存在重疊部分,因此單一同位素往往很難準確地識別污染物來源.隨著研究的進步,硝酸鹽氧同位素(δ18O-NO3-)開始應用于水體硝酸鹽溯源研究,多種同位素示蹤法不僅彌補了單一同位素示蹤的缺陷,結(jié)合同位素模型可較為準確地辨別氮污染來源與各污染源的貢獻率.
2.1 不同來源615N-NO3-和618 O-NO3-值的范圍
20世紀70年代,自 KOHL 等[28]使用δ15N-NO3-研究了美國伊利諾伊州 Sangamon 河中肥料對 NO3-的貢獻后,即開啟了利用δ15N-NO3-來識別水體 NO3-來源的先河.不同污染來源中硝酸鹽的δ15N-NO3-和δ18O-NO3-值,如表2所示[29-43].各類氮肥δ15N-NO3-差別較小,硝態(tài)氮肥和銨態(tài)氮肥δ15N-NO3-值分別為-2‰~4‰和-4‰~2‰.大氣沉降受大氣中各類化學反應及人為來源影響,國外研究中大氣氮沉降δ15N-NO3-值為-13‰~13‰[36],國內(nèi)相較于國外δ15N-NO3-值范圍窄.人畜糞便和生活污水易受到氨揮發(fā)以及硝化作用的影響,δ15N 值較高,為4‰~25‰.土壤中礦化作用和硝化作用的相對速率、土壤深度、植被種類等因素都會影響土壤的δ15N-NO3-值[30],其典型值域范圍為0~9‰.
除δ15N-NO3-外,越來越多的學者將δ18O-NO3-用作識別水體中 NO3-來源的附加手段[44].例如, DURKA 等[45]發(fā)現(xiàn)由于大氣中的 NO3-與微生物產(chǎn)生的土壤中 NO3-的δ18O-NO3-特征值有顯著差異,故δ18O-NO3-能很好地分離這2個來源的污染物.WASSENAAR[46]也通過研究發(fā)現(xiàn)δ18O-NO3-能區(qū)分合成肥料與其他污染源.硝化作用產(chǎn)生的 NO3-的δ18O 值為2‰~14‰;大氣沉降δ18O-NO3-值域較廣,為18‰~75‰;硝態(tài)氮肥料則較銨態(tài)氮肥料δ18O-NO3-值偏重,分別為17‰~25‰和-5‰~15‰.
2.2 多元同位素示蹤法
δ15N-NO3-和δ18 O-NO3-示蹤技術(shù)在國內(nèi)外應用最為廣泛,GUO 等[47]用δ15N 和δ18 O 雙同位素探究瀾滄江流域硝酸鹽來源,結(jié)果表明瀾滄江下游 NO3-顯著增加,在城市流域達到最大值.瀾滄江流域δ15N-NO3-值為2.8‰~5.2‰,δ18 O-NO3-值為4‰~8.5‰,下游δ15N-NO3-值顯著上升,土壤有機氮礦化為硝酸鹽第一大污染源,緊接著是生活污水,下游人口不斷增加也許會導致污水量增加.FU 等[48]對張家口市宣化區(qū)主要供水區(qū)的地下水進行硝酸鹽氮溯源,NO3-,Cl-和 SO42-的空間特征都表現(xiàn)為沿河和遠岸點濃度低,中間點位濃度較高,初步判斷數(shù)值較高點位的硝酸鹽污染源來自人為因素.從δ15N-NO3-和δ18 O-NO3-值可以看出糞肥和生活污水可能是該區(qū)域硝酸鹽污染的主要來源,此結(jié)果與水化學分析結(jié)果有一致性.
在大多數(shù)硝酸鹽污染源中,硼( B )也存在顯著富集[49].其優(yōu)點為不易氧化還原且不易與含 N 化合物反應,硼同位素(δ11B )在區(qū)分動物排泄物方面作用明顯[50],鍶( Sr )同位素與 B,N 同位素相比,87Sr 和86Sr 同位素質(zhì)量比相對較低,不會通過人為和自然過程進行分餾[51],因此基本可以追蹤到污染源的混合.WIDORY 等[51]利用三同位素(δ15N,δ11B 和87Sr/86Sr )示蹤技術(shù)研究了法國布列塔尼2個流域的硝酸鹽氮污染來源.化學組分和同位素表明,反硝化和混合來源對地下水硝酸鹽氮污染有重要貢獻;B,N 和 Sr 同位素示蹤結(jié)果表明,該流域硝酸鹽氮污染來源主要來自豬糞和污水的點源排放.
DANNI 等[52]以水的氫氧同位素(δ2H,δ18 O )和硝酸鹽穩(wěn)定同位素δ15N,δ18 O 四同位素研究了摩洛哥 Massa 流域的礦化作用和硝酸鹽污染,水穩(wěn)定同位素表明地表水會因氣候干旱而蒸發(fā),地表水補給來自局部高海拔地區(qū),水-巖相互作用、海水入侵、人為干擾都是水體礦化程度的影響因素.NO3-濃度變化幅度較大,在一些家庭井水中濃度相對最高,δ15N-NO3-結(jié)果表明化肥和糞肥是硝酸鹽主要來源,且生活污水是潛在污染源.
2.3 同位素與微生物源追蹤(MST )結(jié)合示蹤法
同位素分析與 MST 相結(jié)合是一種新興且很有前途的污染源識別方法,特別是對于污染源中包含有機污染源的水體[53].CARREY 等[53]利用δ15N-NO3-,δ18 O-NO3-與δ11B 結(jié)合的方法對西班牙東北部加泰羅尼亞的地表水和地下水進行了硝酸鹽溯源,使用糞便指示菌(FIB )的多同位素分析和 MST 來改進硝酸鹽來源的鑒定.結(jié)果表明,同位素和 MST 的分析是互補的,大部分樣品的同位素數(shù)據(jù)與 MST 數(shù)據(jù)一致或部分一致(79%).根據(jù)同位素結(jié)果,主要的硝酸鹽來源是有機質(zhì)來源,包括廢水和糞便.此外,同位素和
MST 在有機質(zhì)貢獻率較大的地區(qū)顯示出更高的一致性.BRIAND 等[50]結(jié)合同位素(δ15N-NO3-,δ18O-NO3-和δ11B )和微生物標志物對法國西南部一個農(nóng)業(yè)地區(qū)的2條多氮源共存的河流進行氮污染源示蹤.δ11B 值和微生物標記分別顯示氮污染來源于人類活動產(chǎn)生的污水以及人類和動物的有機污染,δ15N-NO3-,δ18O-NO3-值表明氮污染通過大流量的地表淋濾和基流狀態(tài)下的地下排水輸入,且反硝化作用在土壤中就已經(jīng)發(fā)生.
2.4 同位素與貝葉斯混合模型( SIAR )結(jié)合示蹤法
在以穩(wěn)定同位素示蹤污染源的同時,PARNELL 等[54]基于 R 語言軟件首次開發(fā)了 SIAR,該模型基于 Dirichlet 分布,在貝葉斯框架下構(gòu)建了一個邏輯先驗分布.許多學者利用 SIAR 來定量分析各個污染源對環(huán)境的貢獻率,但是這種模型適用于硝酸鹽來源特征明顯的地區(qū)[50],計算式如下:
式中:Xij為樣品i的同位素值j;Pk 為源 k 的比例貢獻,需要用貝葉斯模型估算;Sjk為同位素j 的源值 k;Cjk為同位素j 在源 k 上的分餾因子;εjk為剩余誤差,表示樣品之間附加的未量化的變化量;qjk為Sjk的平均值;ωjk(2)為Sjk的標準差;λjk為Cjk的平均值;τjk(2)為Cjk的標準差;σj2為εjk的標準差.
MEGHDADI 等[55]探究了伊朗西北部Tarom流域中硝酸鹽來源貢獻率以及季節(jié)和空間的變化.通過地下水硝酸鹽中δ15N 和δ18O 值,以及 SIAR 分析,采用基于δ11B 和87Sr/86Sr 耦合應用的多同位素方法區(qū)分硝酸鹽的污水來源與肥料來源的空間季節(jié)性.結(jié)果表明,該流域在春末和秋初時,生活污水對地下水硝酸鹽貢獻率從17.0%增加至27.5%,肥料的平均貢獻率從28.3%減少至19.0%.特別是秋初時期,在居住用地占20%以上的,污水平均貢獻率最高(32.1%±2.8%);在晚春時期,肥料貢獻率最大(42.1%±3.2%).
STOCK 等[56]開發(fā)了新一代貝葉斯穩(wěn)定同位素混合模型,稱為MixSIAR,與之前的混合模型軟件相比,MixSIAR的主要優(yōu)勢是能夠合并協(xié)變量數(shù)據(jù),通過固定和隨機效應來解釋混合比例的可變性.LI 等[57]利用δ15N-NO3-、δ18O-NO3-、水化學成分(NO3-和 Cl-)和MixSIAR探究了中國西江河流的硝酸鹽來源.結(jié)果表明,硝酸鹽氮主要來自土壤有機氮、化肥和糞污廢棄物.δ15N-NO3-值與 NO3-/Cl-的物質(zhì)的量之比呈負相關(guān),說明反硝化作用使 NO3-損失.MixSIAR表明,在豐水期土壤有機氮和化肥對硝酸鹽氮貢獻最大(72%~73%);而在枯水期,約58%的硝酸鹽氮來自人為輸入(糞肥和生活污水).表3為上述水體氮污染來源鑒別技術(shù)的總結(jié).
3 結(jié)論與展望
1)城市生態(tài)系統(tǒng)組成復雜,大量的生活污水、工業(yè)廢水和垃圾填埋場滲濾液等污染源給城市水體造成了嚴重污染.大部分城市水體均只能滿足《地表水環(huán)境質(zhì)量標準》(GB 3838—2002)中的Ⅳ~Ⅴ類水質(zhì)標準,地表水主要受總氮、硝態(tài)氮和銨態(tài)氮污染影響.
2)氮污染源判別方法從傳統(tǒng)的水化學分析法到同位素示蹤法以及多種方法相結(jié)合的方式,使氮污染溯源實現(xiàn)從定性分析到定量分析.近年來同位素溯源技術(shù)發(fā)展迅速,多元同位素結(jié)合判別污染源的方法逐漸成為主流,彌補了單一同位素的局限性.SIAR 的應用為計算污染來源的貢獻率提供了強有力的支撐.
3)不同區(qū)域的環(huán)境背景值、氣候、人為干擾等因素會影響同位素特征值,研究者應豐富端元物質(zhì)種類且合力建立區(qū)域氮污染同位素數(shù)據(jù)庫,應用δ15N-NO3-和δ18O-NO3-定量研究 NO3-污染的區(qū)域性及季節(jié)性的動態(tài)變化,做到因地制宜、精準識別氮污染的來源及各污染來源的貢獻率,為政府污染防治的決策與環(huán)境管理提供強有力的技術(shù)支撐.
參考文獻:
[1] Ministry of Ecology and Environment of the Peoples Republic of China.2021 Bulletin on Chinas Ecological Environment[ R/OL ](2022-05-27)[2022-07-23]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/.
[2] DUH J D,SHANDAS V,CHANG H,et al. Rates of urbanisation and the resiliency of air and water quality [J]. Scienceof the Total Environment,2008,400(1/2/3):238-256.
[3] HU M M,WANG Y C,DU P C,et al. Tracing the sources of nitrate in the rivers and lakes of the southern areas of theTibetan Plateau using dual nitrate isotopes [J]. Science of the Total Environment,2019,658(1):132-140.
[4] JIN Z X,WANG J F,CHEN J G,et al. Identifying the sources of nitrate in a small watershed using δ15N-δ18O isotopes ofnitrate in the Kelan Reservoir,Guangxi,China [J]. Agriculture,Ecosystems and Environment,2020,297:106936.
[5] SU X S,WANG H,ZHANG Y L. Health risk assessment of nitrate contamination in groundwater:a case study of anagricultural area in northeast China [J]. Water Resources Management,2013,27(8):3025-3034.
[6] CAREY R O,MIGLIACCIO K W,BROWN M T. Nutrient discharges to Biscayne Bay,F(xiàn)lorida:trends,loads,and a pollutantindex [J]. Science of the Total Environment,2011,409(3):530-539.
[7] MACILWAIN C. US report raises fears over nitrate levels in water [J]. Nature,1995,377(6544):4.
[8] SUN R H,CHEN L D,CHEN W L,et al. Effect of land-use patterns on total nitrogen concentration in the upstreamregions of the Haihe River Basin,China [J]. Environmental Management,2013,51(1):45-58.
[9] YU H X,ZHOU L Y,HE P et al. Analysis on spatial variation characteristics of water quality in Hangzhou section ofQiantang River during different water periods [J]. Yellow River,2016,38(8):55-59.
[10] ZHAI X Y,ZHANG Y Y. Spatio-temporal variations of water quality indices and regional influences of land use types intheHuai River Basin [J]. Water Resources Protection,2022,38(5):181-189.
[11] ZHAO M M,WANG S M,CHEN Y P,et al. Pollution status of the Yellow River tributaries in middle and lower reaches [J].Science of the Total Environment,2020,722:137861.
[12] TONG J. Characteristics and variation rules of raw water quality for Jinze Reservoir and upstream water [J]. WaterPurification Technology,2020,39(1):58-68.
[13] YU Z L,CHEN W,ZHAO R,et al. Periphytic algae community structure and its relation to environment factors in themain stream of the Songhua River from 2014 to 2019[J]. Environmental Science,2021,42(2):819-830.
[14] BAI D R,ZHANG T,CHEN T,et al. Distribution characteristics of carbon,nitrogen,and phosphorus bearing pollutantsin the ancient town rivers of Suzhou [J]. Environmental Science,2021,42(3):1403-1415.
[15] HE F,LI W X,MA Q X,et al. Research and application of integrated technology of water quality target management intypical areas of Yangtze River economic belt [J]. Research of Environmental Sciences,2021,34(7):1523-1531.
[16] WANG Y,WANG H Y,AN L J,et al. Water quality evaluation and nitrogen pollution cause analysis of HuangbizhuangReservoir [J]. Water Resources and Power,2020,38(4):60-63.
[17] JIN Z F,ZHANG W L,ZHENG Q,et al. Contribution of nitrogen sources in water sources by combining nitrogen andoxygen isotopes and SIAR [J]. Environmental Science,2018,39(5):2039-2047.
[18] LIU K X,WANG D M,CHANG G L,et al. Study on the relationship between landscape pattern and surface waterquality at multiple spatial scales [J]. Acta Scientiae Circumstantiae,2022,42(2):23-31.
[19] LI D L,WEI H L. Analysis on water quality and eutrophication of Longtan Reservoir in Hechi City [J]. Guangxi WaterResources and Hydropower Engineering,2021(6):10-13,26.
[20] HE X L,HE Q. Research on water quality variation trend and correlation of West Lake scenic area [J]. Journal ofZhejiang University of Water Resources and Electric Power,2015,27(3):38-42.
[21] ZHOU Q,JIA H Y,LU L,et al. Changing trend of the pollutant influx and outflux in Dongting Lake and the waterquality [J]. Ecology and Environmental Monitoring of Three Gorges,2021,6(2):71-80.
[22] WEN C Y,LIU J T,HU F,et al. Water quality change characteristics and eutrophication assessment of Poyang Lake [J].China Rural Water and Hydropower,2020(11):83-88.
[23] ZHANG M,SHI X L,YANG Z,et al. The variation of water quality from 2012 to 2018 in Lake Chaohu and themitigating strategy on cyanobacterial blooms [J]. Journal of Lake Sciences,2020,32(1):11-20.
[24] ZHANG J X. Spatial distribution of water quality and identification of pollution sources in Taihu Lake Basin [J]. JiangsuScience and Technology Information,2021,38(10):48-54.
[25] FANG Z N,JIN K,WANG X J,et al. Analysis of water quality trend of main rivers and lakes in Yangtze River Deltaintegrated eco-green development demonstration area [J]. Express Water Resources and Hydropower Information,2021,42(4):68-74.
[26] SUN Y Q,WANG X D,XIAO K,et al. Advances in nitrogen pollution isotope tracers in freshwater environments [J].Ecology and Environmental Sciences,2020,29(8):1693-1702.
[27] DU X Q,F(xiàn)ANG M,YE X Y. Research progress on the sources of inorganic nitrogen pollution in groundwater andidentification methods [J]. Environmental Science,2018,39(11):5266-5275.
[28] KOHL D H,SHEARER G B,COMMONER B. Fertilizer nitrogen:contribution to nitrate in surface water in a corn beltwatershed [J]. Science,1971,174(4016):1331-1334.
[29] XUE D,BOTTE J,BAETS B D,et al. Present limitations and future prospects of stable isotope methods for nitratesource identification in surface and groundwater [J]. Water Research,2009,43(5):1159-1170.
[30] MAYER? B ,BOLLWERK? S? M ,MANSFELDT? T ,et? al. The? oxygen? isotope? composition? of nitrate? generated? bynitrification in acid forest floors [J]. Geochimica et Cosmochimica Acta:Journal of the Geochemical Society and the Meteoritical Society,2001,65(16):2743-2756.
[31] KENDALL C. Tracing Nitrogen Sources and Cycling in Catchments [ M ]. Amsterdam:Elsevier Science Press,1998:519-576.
[32] XING M ,LIU W? G ,HU J. Using nitrate isotope to trace the nitrogen pollution in Chanhe and Laohe River [J].Environmental Science,2010,31(10):2305-2310.
[33] SINGLETON M J,ESSER B K,MORAN J E,et al. Saturated zone denitrification:potential for natural attenuation ofnitrate contamination in shallow groundwater under dairy operations [J]. Environmental Science and Technology,2007,41(3):759-765.
[34] YANG Y Y,TOOR G S.δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff[J].Environmental Science and Technology,2016,50(6):2881-2889.
[35] LEE K S ,BONG Y S ,LEE D ,et al. Tracing the sources of nitrate in the Han River watershed in Korea,usingδ15N-NO3- and δ18O-NO3- values [J]. Science of the Total Environment,2008,395(2):117-124.
[36] JIANG Y J,WU Y X,YUAN D. Human impacts on Karst groundwater contamination deduced by coupled nitrogen withstrontium? isotopes? in? the? Nandong? underground? river? system? in? Yunan,China [J]. Environmental? Science? and Technology,2009,43(20):7676.
[37] JIA G,CHEN F. Monthly variations in nitrogen isotopes of ammonium and nitrate in wet deposition at Guangzhou ,southChina [J]. Atmospheric Environment,2010,44(19):2309-2315.
[38] YANG L P,HAN J P,XUE J L,et al. Nitrate source apportionment in a subtropical watershed using Bayesian model [J].Science of the Total Environment,2013,463/464(5):340-347.
[39] ZHANG Y,SHI P,LI F D,et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural areausing environmental isotopes and a Bayesian isotope mixing model [J]. Chemosphere,2018,208:493-501.
[40] WIDORY D,PETELET E,NEGREL P,et al. Tracking the sources of nitrate in groundwater using coupled nitrogen andboron isotopes:a synthesis [J]. Environmental Science and Technology,2005,39(2):539-548.
[41] HEATON T. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review [J]. Chemical Geology:Isotope Geoscience Section,1986,59:87-102.
[42] LIU S,KONG FX,CAI Y F,et al. Nitrogen stable isotope study on nitrate nitrogen pollution of four inflowing rivers ofLakeChaohu [J]. Journal of Lake Sciences,2012,24(6):952-956.
[43] YU? U ,HOSONO T ,ONODERA? S ,et? al. Sources? of nitrate? and? ammonium? contamination? in? groundwater underdeveloping Asian megacities [J]. Science of the Total Environment,2008,404(2/3):361-376.
[44] DEUTSCH B,MEWES M,LISKOW I,et al. Quantification of diffuse nitrate inputs into a small river system using stableisotopes of oxygen and nitrogen in nitrate [J]. Organic Geochemistry,2006,37(10):1333-1342.
[45] DURKA W,SCHULZE E D,GEBAUER G,et al. Effects of forest decline on uptake and leaching of deposited nitratedetermined from 15N and 18O measurements [J]. Nature,1994,372(6508):765-767.
[46] WASSENAAR L I. Evaluation of the origin and fate of nitrate in the abbotsford aquifer using the isotopes of 15N and18O inNO3-[J]. Applied Geochemistry,1995,10(4):391-405.
[47] GUO X J,TANG Y C,XU Y,et al. Using stable nitrogen and oxygen isotopes to identify nitrate sources in the LancangRiver,upper Mekong [J]. Journal of Environmental Management,2020,274:111197.
[48] FU X M,SUN Y Y,SU J,et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes [J].China Environmental Science,2019,39(9):3951-3958.
[49] LEENHOUTS J M,BASSETT R L,MADDOCK T. Utilization of intrinsic boron isotopes as co-migrating tracers foridentifying potential nitrate [J]. Ground Water,1998,36(2):240-250.
[50] BRIAND? C ,SEBILO? M ,LOUVAT P ,et al. Legacy of contaminant N? sources to the NO3- signature in rivers :acombined isotopic (δ15N-NO3-,δ18O-NO3-,δ11B ) and microbiological investigation [J]. Scientific Reports,2017,7(1):41703.
[51] WIDORY D,KLOPPMANN W,CHERY L,et al. Nitrate in groundwater:an isotopic multi-tracer approach [J]. Journalof Contaminant Hydrology,2004,72(1):165-188.
[52] DANNI S? O ,BOUCHAOU? L ,ELMODEN A ,et al. Assessment of water quality and nitrate? source in the? Massacatchment (Morocco ) using δ15N and δ18O tracers [J]. Applied Radiation and Isotopes,2019,154:108859.
[53] CARREY R,BALLESTE E,BLANCH A R,et al. Combining multi-isotopic and molecular source tracking methods toidentify nitrate pollution sources in surface and groundwater [J]. Water Research,2021,188:116537.
[54] PARNELL A C ,INGER R ,BEARHOP S ,et al. Source partitioning using stable isotopes :coping with too muchvariation [J]. PLoS One,2010,5(3):e9672.
[55] MEGHDADI A,JAVAR N. Quantification of spatial and seasonal variations in the proportional contribution of nitratesources using a multi-isotope approach and Bayesian isotope mixing model [J]. Environmental Pollution,2018,235:207-222.
[56] STOCK B C,JACKSON A L,WARD E J,et al. Analyzing mixing systems using a new generation of Bayesian tracermixing models [J]. PeerJ,2018,6(4):e5096.
[57] LI C,LI S L,YUE F J,et al. Identification of sources and transformations of nitrate in the Xijiang River using nitrateisotopes and Bayesian model [J]. Science of the Total Environment,2019,646:801-810.
(責任編輯:郁慧,馮珍珍)