虞旭棟 王國(guó)夫 曲藝 郭玲玲 祝成炎 張紅霞
摘要: 為研究緯紗中不同的賽麗絲可生物降解纖維含量和組織變化對(duì)織物吸濕速干及易去污功能的影響,本文以真絲為經(jīng)紗,賽麗絲紗和黏膠紗為緯紗,分別試織了投緯比例與織物組織不同的A、B系列的試樣。對(duì)14種試樣進(jìn)行吸濕速干和易去污功能測(cè)試,結(jié)果顯示:除吸水率與透濕率外,A系列試樣的吸濕速干性能隨著緯紗中賽麗絲可生物降解纖維的含量增大而逐漸提升。B系列織物吸濕速干性能整體隨著組織浮長(zhǎng)線變長(zhǎng)而變優(yōu)。緯紗中賽麗絲可生物降解纖維含量愈大,織物的易去污性能愈好。組織表面較平的織物易去污性能更佳。根據(jù)模糊綜合評(píng)價(jià)法可知,A系列中投緯比例為4︰1時(shí),試樣的吸濕速干與易去污綜合性能最優(yōu)。B系列中組織為八枚緞紋的試樣,其吸濕速干與易去污綜合性能最優(yōu)。
關(guān)鍵詞: 吸濕速干;易去污;賽麗絲;可生物降解纖維;織物組織;模糊綜合評(píng)價(jià)
中圖分類號(hào): TS155.6
文獻(xiàn)標(biāo)志碼: A
人體在運(yùn)動(dòng)后會(huì)大量出汗,為避免產(chǎn)生悶熱與黏附感,服裝采用吸濕速干的面料可以使汗液被快速吸收轉(zhuǎn)移,從而保持肌膚的干爽舒適[1]。同時(shí)人們?cè)谌粘I钪写┲姆b,尤其是部分合成纖維織物特別容易沾染污垢,又因其表面的親油性,造成織物難以洗凈,但部分易去污性能的織物可用一般的洗滌方法輕松去除污漬[2]。據(jù)悉,實(shí)現(xiàn)面料易去污功能大多是靠織物后整理,而面料的吸濕速干功能是依靠對(duì)纖維進(jìn)行物理化學(xué)方法的改性以改變其結(jié)構(gòu)性能、織物結(jié)構(gòu),或與其他纖維合理搭配及使用整理劑處理織物來(lái)實(shí)現(xiàn)[3],且較多產(chǎn)品功能單一。如采用有機(jī)氟整理劑對(duì)真絲織物進(jìn)行易去污處理,讓絲綢面料易清洗從而滿足消費(fèi)者需求[4]。美國(guó)杜邦的Coolmax纖維截面呈扁平十字形狀,賦予纖維及其面料吸濕速干性[5]。
當(dāng)今,中國(guó)已成為紡織品的生產(chǎn)與消費(fèi)大國(guó),人們生活便捷的同時(shí)許多難以降解的紡織品廢棄物處理不當(dāng)造成了環(huán)境惡化[6]??缮锝到饫w維織造的紡織品恰好可解決此問(wèn)題[7]。目前,可生物降解紡織纖維分為天然可降解纖維(棉、麻、絲等)、再生可降解纖維(莫代爾、黏膠、牛奶蛋白纖維等)和合成可降解纖維(PLA、PCL、PHA等)[8]。且可生物降解纖維交織物性能優(yōu)良,如牛奶蛋白與天絲交織物的透氣性、頂破強(qiáng)力與尺寸穩(wěn)定性能良好[9]。PLA/PHBV共混長(zhǎng)絲與黏膠長(zhǎng)絲交織物具有抑菌和手感光滑的特點(diǎn)[10]。基于上述原因,本文研究一款吸濕速干與易去污相結(jié)合的可生物降解型交織物。經(jīng)紗選取真絲,緯紗選取黏膠短纖紗和賽麗絲可生物降解纖維紡制的短纖紗。探究緯紗中賽麗絲可生物降解纖維含量和組織兩個(gè)因素對(duì)織物吸濕速干及易去污性能的影響。通過(guò)織造出緯紗中賽麗絲可生物降解纖維含量不同的織物及組織不同但緯紗材料相同的織物,然后對(duì)其進(jìn)行吸濕速干和易去污性能測(cè)試。最終運(yùn)用模糊綜合評(píng)判數(shù)學(xué)模型分析實(shí)驗(yàn)結(jié)果,選出最優(yōu)試樣規(guī)格,為研究環(huán)保型功能性紡織品提供理論基礎(chǔ)。
1 材料與試樣制備
1.1 材 料
本次實(shí)驗(yàn)選用的經(jīng)紗是由1根22.2 dtex和1根24.4 dtex的真絲以600捻/m制成(浙江嘉欣絲綢股份有限公司)。緯紗其中一種是線密度為118 dtex、捻度為91捻/10 cm的賽麗絲短纖紗(緊密賽絡(luò)紡)(佛山富邑紡織技術(shù)有限公司);另一種是線密度為118 dtex、捻度為105捻/10 cm的黏膠短纖紗(緊密賽絡(luò)紡)(濰坊市裕邦紡織有限公司)。本文所選用的賽麗絲短纖紗中的纖維是一款在聚合過(guò)程中加入第三單體改變化學(xué)結(jié)構(gòu)以實(shí)現(xiàn)可生物降解的聚酯纖維。
1.2 設(shè) 備
GeminiSEM500型場(chǎng)發(fā)射掃描電鏡(德國(guó)蔡司公司),F(xiàn)A2204C電子天平(青島聚創(chuàng)環(huán)保集團(tuán)有限公司),計(jì)時(shí)器、滴定管、燒杯、三級(jí)水、YG(B) 141D型數(shù)字式織物厚度儀、YG(B) 871型毛細(xì)管效應(yīng)測(cè)定儀(溫州市大榮紡織儀器有限公司),YG 601-Ⅰ/Ⅱ型電腦式織物透濕儀(寧波紡織儀器廠),無(wú)水氯化鈣、透濕杯、硅膠干燥器、吸液濾紙、滴管、玻璃棒、醬油、棉標(biāo)準(zhǔn)貼襯(市售)。
1.3 試樣制備
本次實(shí)驗(yàn)總共設(shè)計(jì)A、B兩個(gè)系列試樣。A系列是在試樣組織均為五枚緞紋的基礎(chǔ)上,緯紗中賽麗絲短纖紗和黏膠紗的投緯比例進(jìn)行變化。B系列是緯紗均為含量50%賽麗絲短纖紗和50%黏膠紗,但對(duì)織物的組織進(jìn)行改變。具體試樣編號(hào)和規(guī)格參數(shù)如表1所示。
2 測(cè)試方法
本文重在探究織物的吸濕速干性和易去污性能,所以先對(duì)A和B系列布樣進(jìn)行以上兩種測(cè)試,再對(duì)測(cè)試結(jié)果分析歸納。
2.1 吸濕速干性能與易去污性能測(cè)試
吸濕速干性能分為吸濕性和速干性,而吸濕性的指標(biāo)又分吸水率、滴水?dāng)U散時(shí)間及芯吸高度,速干性的指標(biāo)分為水分蒸發(fā)速率和透濕率[11]。測(cè)試前都將織物按照規(guī)定進(jìn)行24 h溫度與濕度的平衡。
2.1.1 吸濕性測(cè)試
吸水率采用GB/T 21655.1—2008《紡織品吸濕速干評(píng)定第1部分:?jiǎn)雾?xiàng)組合試驗(yàn)法》測(cè)試,每個(gè)樣品裁取5塊長(zhǎng)寬均為110 mm試樣,浸濕于三級(jí)水中,經(jīng)過(guò)5 min取出試樣,之后保持布面平整并豎直懸掛,使試樣中的水滴落,當(dāng)相鄰兩滴水落下的時(shí)間間隔不小于30 s時(shí)稱重,計(jì)算結(jié)果取平均值。
滴水?dāng)U散時(shí)間測(cè)試同樣依據(jù)吸水率使用的國(guó)家標(biāo)準(zhǔn),每個(gè)樣品裁取5塊長(zhǎng)寬均為110 mm的試樣,平攤于桌面,接著手持滴定管吸取少許三級(jí)水,使管口距試樣表面不大于10 mm,將0.2 mL水滴于試樣上。記下水在試樣表面完全擴(kuò)散的耗時(shí),最后取平均耗時(shí)。
芯吸高度測(cè)試根據(jù)FZ/T 01071—2008《紡織品毛細(xì)效應(yīng)試驗(yàn)方法》,沿著每個(gè)樣品的經(jīng)向和緯向兩個(gè)方向,各裁取3塊長(zhǎng)約250 mm、寬約30 mm的試樣,安裝在YG(B) 871型毛細(xì)管效應(yīng)測(cè)定儀上,使試樣下端處于標(biāo)尺零位下方(15±2) mm,30 min后量取經(jīng)緯向每塊試樣滲液最低值。計(jì)算各個(gè)方向的平均值,結(jié)果取經(jīng)緯向中較大者。
2.1.2 速干性測(cè)試
水分蒸發(fā)速率與吸水率測(cè)試的國(guó)家標(biāo)準(zhǔn)相同,立刻稱取完成滴水?dāng)U散測(cè)試的試樣質(zhì)量,之后將試樣保持表面平整并豎直懸掛于標(biāo)準(zhǔn)大氣中,每3 min稱重并記錄,當(dāng)相鄰兩次的質(zhì)量變化率不高于1%,終止實(shí)驗(yàn)。
透濕率按照GB/T 12704.1—2009《紡織品織物透濕性試驗(yàn)方法第1部分:吸濕法》進(jìn)行測(cè)試。每個(gè)樣品準(zhǔn)備三塊半徑為35 mm的試樣,將其與無(wú)水氯化鈣及透濕杯按要求裝成透濕用組合體,之后將組合體放進(jìn)按規(guī)定調(diào)整好溫濕度的YG 601-Ⅰ/Ⅱ型電腦式織物透濕儀內(nèi),1 h后取出組合體并蓋好杯蓋,干燥0.5 h后稱重,接著輕晃組合體,目的是避免杯中最上層干燥劑因長(zhǎng)期使用而效果減小。最后去掉組合體杯蓋,放入透濕儀中再重復(fù)之前的實(shí)驗(yàn)操作。
2.1.3 易去污性能測(cè)試
根據(jù)FZ/T 01118—2012《紡織品防污性能的檢測(cè)和評(píng)價(jià)易去污性》的擦拭法進(jìn)行測(cè)試。先將濾紙墊在平鋪的布樣下,然后用滴管將滿足GB/T 18186—2000《釀造醬油》的約0.5 mL高鹽稀態(tài)發(fā)酵醬油滴于布樣上,接著使用玻璃棒將滴液均勻涂在半徑為5 mm的圓內(nèi),之后讓布樣平攤干燥。用色卡評(píng)判沾污部分和未沾污部分的初始色差,而后用帶液率85%±3%的棉貼襯往一個(gè)方向擦拭布樣上的沾污部分,棉貼襯每擦拭一次都需換到干凈的部分接著擦拭,共30次。最后用色卡評(píng)判被擦拭部分與未沾污部分的色差。
2.2 賽麗絲纖維在自然土壤中的降解程度測(cè)試
因賽麗絲可生物降解纖維已通過(guò)國(guó)標(biāo)中可生物降解的堆肥實(shí)驗(yàn),但在土壤中降解效果未知,所以筆者將1 g賽麗絲短纖紗和1 g普通滌綸紗線埋入校園樹(shù)林的土壤中3個(gè)月,然后用GeminiSEM500型場(chǎng)發(fā)射掃描電鏡觀察賽麗絲可生物降解纖維和滌綸纖維的降解程度。
3 測(cè)試結(jié)果分析
3.1 吸濕速干性能分析
3.1.1 吸濕性分析
吸濕性是用來(lái)評(píng)判織物本身吸取水的能力,織物吸水越多,吸濕性越強(qiáng)[12]。吸水率是指試樣完全濕潤(rùn)后取出,當(dāng)其處于無(wú)滴水狀態(tài)時(shí)吸收的水分質(zhì)量,與試樣干重的比值。從表2、表3可發(fā)現(xiàn),A系列試樣的吸水率較B系列的吸水率總體變化不明顯,但試樣吸水率都超過(guò)標(biāo)準(zhǔn)100%,表明該功能性紗線的吸水性良好。這是由于賽麗絲可生物降解纖維含有的親水基團(tuán)使纖維自身吸濕能力提高。滴水?dāng)U散時(shí)間指水滴從觸碰試樣表面,到完全擴(kuò)散并滲入試樣的時(shí)間。A系列試樣的滴水?dāng)U散時(shí)間呈現(xiàn)出隨著緯紗中賽麗絲可生物降解纖維含量的增加而減少的現(xiàn)象。除A1和A2滴水?dāng)U散時(shí)間未能達(dá)到5 s以內(nèi),其余均達(dá)標(biāo)。因?yàn)橘慃惤z可生物降解纖維的親水基團(tuán)與孔隙結(jié)構(gòu),使試樣的吸濕性與導(dǎo)濕性變優(yōu)。芯吸高度是指垂直懸掛并一端浸濕在水中的試樣,水在一定時(shí)間內(nèi)通過(guò)毛細(xì)作用沿試樣上升的高度。按照織物吸濕速干的國(guó)家標(biāo)準(zhǔn),芯吸高度需不低于90 mm,芯吸高度越大,織物導(dǎo)濕性越好。由表2可知,A1~A9均符合標(biāo)準(zhǔn),并且當(dāng)緯紗中賽麗絲短纖紗含量最多時(shí),芯吸高度最大。這主要是因?yàn)橘慃惤z可生物降解纖維具有孔隙結(jié)構(gòu),使纖維的比表面積增大,毛細(xì)效應(yīng)得到提高,加快了對(duì)水的運(yùn)輸。
由表3可知,B系列中吸濕性能排列為B4>B5>B3>B2>B1,組織為八枚緞紋的織物,其吸水率、滴水?dāng)U散時(shí)間與芯吸高度結(jié)果最佳。結(jié)果表明,當(dāng)紗線材料、投緯比與經(jīng)緯密一定時(shí),完全組織愈大浮長(zhǎng)線愈長(zhǎng),織物吸濕性能愈好[13]。
3.1.2 速干性分析
速干性指的是織物排出水分的能力,水分排出越多,速干性越強(qiáng)[12]。蒸發(fā)速率是指做完滴水?dāng)U散實(shí)驗(yàn)后的試樣,在單位時(shí)間內(nèi)蒸發(fā)水分的質(zhì)量。如表4所示,A系列試樣的蒸發(fā)速率均不低于標(biāo)準(zhǔn)0.18 g/h,且蒸發(fā)速率整體上隨著緯紗賽麗絲可生物降解纖維含量的升高而增大,由于賽麗絲可生物降解纖維自身的孔隙增加了纖維的比表面積,水分蒸發(fā)面積變大,所以織物中添加賽麗絲短纖紗可使織物水分蒸發(fā)速率加快。透濕率是指在一定溫濕度條件下,規(guī)定時(shí)間中通過(guò)單位面積試樣的水蒸氣質(zhì)量。A系列中,透濕率的測(cè)試結(jié)果接近,說(shuō)明透濕性與賽麗絲短纖紗含量的關(guān)聯(lián)性小。
結(jié)合表1和表5可發(fā)現(xiàn),B系列中八枚緞紋蒸發(fā)速率較大,2/1斜紋較小。因2/1斜紋浮長(zhǎng)線短,紗線之間的縫隙小,即使織物厚度薄,蒸發(fā)速率也會(huì)受到影響。雖然蜂巢組織的織物表面不平,與空氣接觸面積相對(duì)較大,但其厚度偏大,所以蒸發(fā)速率也較小。B系列中,織物透濕量最好的是八枚緞紋,當(dāng)紗線材料、投緯比與經(jīng)緯密一定時(shí),完全組織偏大,浮長(zhǎng)線偏長(zhǎng),織物透濕率偏高。由于紗線之間的縫隙增加,水分更容易透過(guò)織物。
3.2 易去污分析
按易去污擦拭法對(duì)測(cè)試結(jié)果評(píng)價(jià),當(dāng)擦拭前的初始色差不高于3級(jí)時(shí),擦拭后色差級(jí)數(shù)在3~4級(jí)及以上,則該織物具有易去污性。由圖1可知,A系列擦拭后的色差級(jí)數(shù)隨著賽麗絲可生物降解纖維的增加而升高。因賽麗絲可生物降解纖維的親水基團(tuán)與孔隙結(jié)構(gòu)使其親水性優(yōu)異,所以當(dāng)試樣遇水時(shí),賽麗絲可生物降解纖維與水相互作用,纖維/水相的界面張力弱,油污/纖維相的界面張力強(qiáng),通過(guò)外界機(jī)械作用使污垢與試樣容易分離。由圖2可知,B系列中五種組織不同的織物,均達(dá)到易去污功能織物的要求。但是表面平整的試樣易去污性能更好,表面凹凸的蜂巢組織試樣的易去污性能較其他四種偏弱。因?yàn)榉涑步M織的織物表面不平易藏污,且用擦拭法擦拭時(shí),很難擦拭到織物所有沾污的部分。
3.3 賽麗絲纖維在自然土壤中的降解程度分析
由圖3(a)(b)可知,賽麗絲可生物降解纖維土埋后與土埋前相比,土埋后3個(gè)月的纖維表層已逐漸脫落。觀察圖3(c)(d),普通滌綸纖維土埋后與土埋前相比,變化不明顯。雖然賽麗絲可生物降解纖維在土壤中3個(gè)月未完全降解,但是與普通滌綸纖維相比,其有較顯著的降解趨勢(shì)。
4 綜合評(píng)判
因?yàn)橐Y選出每個(gè)系列中性能組合最佳的試樣,考慮到檢測(cè)了試樣的多項(xiàng)性能,所以本文采用模糊綜合評(píng)判的數(shù)據(jù)處理方式,對(duì)A、B系列試樣的測(cè)試結(jié)果進(jìn)行綜合分析。模糊綜合評(píng)判是以模糊數(shù)學(xué)為基礎(chǔ)的綜合評(píng)價(jià)方法,可以對(duì)受到多種因素影響的對(duì)象做出一個(gè)全面評(píng)價(jià)[14],優(yōu)點(diǎn)是能把評(píng)判從定性轉(zhuǎn)為定量處理。本文以B系列5塊試樣為例進(jìn)行分析。
4.1 確立評(píng)價(jià)對(duì)象的因素集與評(píng)價(jià)集
4.3 確定評(píng)價(jià)因素的權(quán)重集C
通過(guò)查閱有關(guān)模糊數(shù)學(xué)評(píng)價(jià)面料性能的參考文獻(xiàn),以及對(duì)從事紡織人員進(jìn)行有關(guān)吸濕速干和易去污性能重要程度的問(wèn)卷調(diào)查,并根據(jù)計(jì)算最終確定權(quán)重集C={吸水率權(quán)重系數(shù)、滴水?dāng)U散時(shí)間權(quán)重系數(shù)、芯吸高度權(quán)重系數(shù)、蒸發(fā)速率權(quán)重系數(shù)、透濕率權(quán)重系數(shù)、初始色差級(jí)數(shù)權(quán)重系數(shù)、擦拭后色差級(jí)數(shù)權(quán)重系數(shù)}={0.126,0.072,0.120,0.096,0.186,0.120,0.280}。
4.4 構(gòu)建模糊綜合評(píng)價(jià)模型
將模糊關(guān)系矩陣R與權(quán)重集C合成模糊綜合評(píng)價(jià)矩陣D,如下式所示。
D=C·R(4)
通過(guò)式(4)可得模糊綜合評(píng)價(jià)矩陣D=(0.280,0.469,0.610,0.880,0.409)。根據(jù)以上分析結(jié)果可知,試樣B4是B系列中性能組合最佳的。
同理可知,A系列中性能組合最好的是A8。
5 結(jié) 論
本文采用真絲、黏膠與賽麗絲可生物降解聚酯纖維開(kāi)發(fā)一款吸濕速干兼易去污的環(huán)保面料,在滿足消費(fèi)者對(duì)功能性織物需求的同時(shí)解決含普通滌綸織物降解性差的問(wèn)題。實(shí)驗(yàn)通過(guò)控制緯紗中功能性纖維的含量與織物組織變化,得出結(jié)論:
1) 當(dāng)緯紗中賽麗絲可生物降解纖維的含量變化,其他織物參數(shù)相同時(shí),隨著賽麗絲可生物降解纖維含量增加,試樣的滴水?dāng)U散時(shí)間減少,芯吸高度與蒸發(fā)速率在增大。吸水率和透濕率雖變化不明顯,但也全都達(dá)到織物吸濕速干的國(guó)家標(biāo)準(zhǔn)。根據(jù)模糊綜合評(píng)判可知,當(dāng)織物組織變化,其他織物參數(shù)一樣時(shí),八枚緞紋的吸濕速干性能最佳。
2) 織物的易去污性能隨緯紗中賽麗絲可生物降解纖維的含量升高而變佳,且組織表面平整的織物比組織表面凹凸的織物易去污效果好。
《絲綢》官網(wǎng)下載
中國(guó)知網(wǎng)下載
參考文獻(xiàn):
[1]王志輝, 魏取福. 抗紫外吸濕排汗戶外運(yùn)動(dòng)服裝面料的現(xiàn)狀及發(fā)展趨勢(shì)[J]. 染整技術(shù), 2021, 43(6): 1-4.
WANG Zhihui. WEI Qufu. Present situation and development trend of outdoor sports clothing fabric with anti-ultraviolet and moisture wicking functions[J]. Textile Dyeing and Finishing Journal, 2021, 43(6): 1-4.
[2]趙曉偉. 紡織品易去污性能的測(cè)試方法[J]. 印染, 2012, 38(10): 36-38.
ZHAO Xiaowei. Testing method for soil release properties of textiles[J]. China Dyeing & Finishing, 2012, 38(10): 36-38.
[3]鄒菲. 功能性面料吸濕速干性能的檢測(cè)方法與設(shè)計(jì)分析[J]. 紡織檢測(cè)與標(biāo)準(zhǔn), 2020, 6(3): 10-15.
ZOU Fei. Analysis on the testing methods and designs of hygroscopic and quick-drying properties of functional fabrics[J]. Textile Testing and Standard, 2020, 6(3): 10-15.
[4]錢士明, 吳嵐. 真絲綢易去污整理技術(shù)研究[J]. 絲綢, 2008(12): 36-38.
QIAN Shiming, WU Lan. Study on soil-release finish for silk[J]. Journal of Silk, 2008(12): 36-38.
[5]GORJI M, BAGHERZADEH R. Moisture management behaviors of high wicking fabrics composed of profiled fibres[J]. Indian Journal of Fiber & Textile Research, 2016, 41(3): 318-324.
[6]陳亞精, 陳琦棟, 鄭建華, 等. 紡織材料生物降解性能及標(biāo)準(zhǔn)研究進(jìn)展[J]. 化纖與紡織技術(shù), 2020, 49(1): 31-37.
CHEN Yajing, CHEN Qidong, ZHENG Jianhua, et al. Progress in research of biodegradability and standard of textile materials[J]. Chemical Fiber & Textile Technology, 2020, 49(1): 31-37.
[7]ZENGS H, DUAN P P, SHEN M X, el al. Preparation and degradation mechanisms of biodegradable polymer: A review[J]. IOP Conference Series: Materials Science and Engineering, 2016, 137(1): 012003.
[8]洪巖, 包惠穎, 吳波. 生物可降解材料在服裝行業(yè)的應(yīng)用現(xiàn)狀及發(fā)展趨勢(shì)[J]. 服裝學(xué)報(bào), 2022, 7(2): 95-100.
HONG Yan, BAO Huiying, WU Bo. Application status and development trend of biodegradable materials in clothing industry[J]. Journal of Clothing Research, 2022, 7(2): 95-100.
[9]王蝶, 林少見(jiàn), 沈蘭萍. 牛奶蛋白纖維交織物服用性能測(cè)試與分析[J]. 國(guó)際紡織導(dǎo)報(bào), 2010, 38(11): 50-52.
WANG Die, LIN Shaojian, SHEN Lanping. The test and analysis of wearability for the milk protein interwoven fabric[J]. Meliand China, 2010, 38(11): 50-52.
[10]王華清, 姚禹國(guó). PLA/PHBV/粘膠交織物的前處理工藝[J]. 印染, 2019, 45(24): 22-26.
WANG Huaqing, YAO Yuguo. Pretreatment of PLA/PHBV/viscose interwoven fabric[J]. China Dyeing & Finishing, 2019, 45(24): 22-26.
[11]劉昀庭, 張紅霞, 賀榮, 等. 導(dǎo)水型再生滌綸織物的制備及其性能[J]. 紡織學(xué)報(bào), 2016, 37(4): 96-100.
LIU Yunting, ZHANG Hongxia, HE Rong, et al. Preparation and performance of moisture wicking recycled polyester fabric[J]. Journal of Textile Research, 2016, 37(4): 96-100.
[12]蔣佳怡, 張紅霞, 祝成炎, 等. 吸濕快干抗菌真絲交織物的性能研究[J]. 絲綢, 2021, 58(6): 15-19.
JIANG Jiayi, ZHANG Hongxia, ZHU Chenyan, et al. Research on the properties of hygroscopic and quick-drying antibacterial silk intertextures[J]. Journal of Silk, 2021, 58(6): 15-19.
[13]陳麗華. 組織結(jié)構(gòu)對(duì)吸濕排汗織物性能的影響[J]. 棉紡織技術(shù), 2007(5): 5-8.
CHEN Lihua. Influence of stitch structure on properties of moisture absorption and sweat releasing fabric[J]. Cotton Textile Technology, 2007(5): 5-8.
[14]彭張林, 張強(qiáng), 楊善林. 綜合評(píng)價(jià)理論與方法研究綜述[J]. 中國(guó)管理科學(xué), 2015, 23(增1): 245-256.
PENG Zhanglin, ZHANG Qiang, YANG Shanlin. Overview of comprehensive evaluation theory and methodology[J]. Chinese Journal of Management Science, 2015, 23(S1): 245-256.
Abstract: With the progress of science and technology, functional fabrics have been gradually developed. There are moisture absorbing and quick drying fabrics that can speed up the transfer of sweat to the outside world and keep skin dry, fabrics with stains being easily removed, far infrared fabrics with medical care function, etc. However, single-function textiles can no longer meet consumer demand due to the improvement of peoples economic level. At the same time, many textile wastes that are difficult to degrade cause environmental pollution due to improper treatment. Therefore, multi-functional and environment-friendly textiles will become the development trend in the future. The purpose of this paper is to study a biodegradable mixed fabric with moisture absorption, quick drying and easy decontaminate properties, so as to meet the demand of consumers for multifunctional fabrics and reduce environmental pollution at the same time.
In the paper, we selected a biodegradable fiber named CELYS. It is a modified polyester fiber with hydrophilic groups and pore structure. So, CELYS biodegradable fiber has excellent moisture absorption and quick drying properties. At the same time, we also used two biodegradable materials, silk and viscose to weave the samples of series A and series B. Pure silk was used as the warp yarn, and CELYS biodegradable staple yarn and viscose staple yarn as weft yarn for all the samples in Series A. The CELYS biodegradable staple yarn and viscose staple yarn were woven in a ratio of “0︰1, 1︰4, 1︰3, 1︰2, 1︰1, 2︰1, 3︰1, 4︰1, 1︰0” for nine samples. Moreover, the fabric weaves of the nine samples were all five-heddle weft satin. Through series A, we mainly explored the influence of the content of CELYS biodegradable polyester fiber in the weft yarn on the moisture absorption, quick drying and easy decontamination properties of the sample. There were five samples in series B, and the warp and weft yarn materials were the same as those in series A. But the CELYS biodegradable staple yarn and viscose staple yarn were woven in 1︰1 ratio in the weft, and the fabric weaves of the five samples were 2/1 twill, four-heddle broken twill, five-heddle weft satin, eight-heddle weft satin and honeycomb weave. Through series B, we mainly explored the influence of different fabric weaves on the moisture absorption, quick drying and easy decontamination properties of the samples. We mainly tested the moisture absorption, quick drying and easy decontamination functions of the samples. Seven indexes including the water absorption rate, drip diffusion time, wicking height, water evaporation rate, water-vapour transmission rate, initial color difference grade and color difference grade after wiping were used to evaluate the strength of the samples moisture absorption, quick drying and easy decontantion properties. In addition, although the CELYS biodegradable polyester fiber has passed GB/T 19277.1—2011 Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composing Conditions—Methods by Analysis of Evolved Carbon Dioxide—Part 1: General Method, its degradation in natural soils is unknown. Therefore, we conducted a three-month natural soil landfill degradation experiment on CELYS staple yarn and common polyester yarn. The surface state of the fiber before and after landfilling was compared by electron microscope observation, and then the degradation status was determined.
According to the analysis of experimental data, in series A, except the water absorption rate and water-vapour transmission rate, the moisture absorption and quick drying properties of the sample become better with the increase of CELYS biodegradable fiber content in the weft. And the higher the content of CELYS biodegradable fiber in the weft, the stronger the easy decontamination performance of the samples. In series B, compared with the samples of other fabric weaves, the eight-heddle weft satin sample has the best moisture absorption and quick drying performance. In the aspect of easy decontamination performance, except the honeycomb weave samples with low easy decontaminate performance, other fabric weave samples exhibit similar easy decontamination performance. It is found by the fuzzy comprehensive evaluation method that the sample with a 4︰1 weft ratio of CELYS staple yarn to viscose staple yarn in series A has the best comprehensive performance of moisture absorption, quick drying and easy decontamination. In series B, the sample with eight-heddle weft satin has the best comprehensive performance of moisture absorption, quick drying and easy decontamination. In addition, the results of natural soil landfill experiment show that the CELYS biodegradable polyester fiber reveals a significant degradation trend compared to ordinary polyester fibers.
To sum up, we design and weave a series of samples with biodegradable fibers as the raw material, change the functional yarn content or weaves of the fabrics, test their moisture absorption, quick drying and easy decontamination performance, and adopt the comprehensive evaluation method of fuzzy mathematics to select the optimal specification parameters of the samples. The scheme can provide reference for the development of multi-functional environmental friendly fabrics.
Key words: moisture absorption and quick drying; easy decontamination; CELYS; biodegradable fiber; fabric weaves; fuzzy comprehensive evaluation