劉艷艷 丁穎 鄭佳秋 宛柏杰 曹婷 劉興華
摘要:植物在生長發(fā)育的過程中進化出大量細(xì)胞表面和胞內(nèi)免疫受體以感知病原體侵染相關(guān)的各種信號。細(xì)胞表面模式受體PRR可以感知病原物模式分子以激活基礎(chǔ)免疫,引起活性氧(ROS)快速產(chǎn)生、Ca2+內(nèi)流和絲裂原活化蛋白激酶(MAPK)級聯(lián)反應(yīng)的啟動等,從而限制其致病性。病原物為了克服植物的這種免疫反應(yīng),通過分泌效應(yīng)蛋白干擾PRR蛋白的功能及其免疫相關(guān)過程,促進病菌致病性。為了應(yīng)對效應(yīng)蛋白的致病效應(yīng)并阻止病害發(fā)生,植物進一步進化出胞內(nèi)核苷酸結(jié)合富亮氨酸重復(fù)序列受體(NLRs),以感知病原體效應(yīng)物并啟動強烈的特異性免疫反應(yīng)。長期以來,病原相關(guān)分子模式激發(fā)的免疫反應(yīng)(pattern-triggered immunity,PTI )和效應(yīng)蛋白激發(fā)的免疫反應(yīng)(effector-triggered immunity,ETI)在識別機制及早期信號轉(zhuǎn)導(dǎo)上存在較大差異,被認(rèn)為是相對獨立的2類系統(tǒng)。但是隨著植物免疫學(xué)研究的廣泛和深入,PTI和ETI從相對獨立變得交叉模糊,而研究PTI和ETI如何相互作用以抵抗病原體也成為植物免疫學(xué)亟需解決的重要科學(xué)問題之一。本文以PRRs和NLRs介導(dǎo)的免疫反應(yīng)為重點,綜述了PRRs與NLRs信號通路、免疫調(diào)控及二者的互作。
關(guān)鍵詞:植物免疫;PRRs;NLRs;分子機制;相互作用
中圖分類號:S184 文獻(xiàn)標(biāo)志碼:A
文章編號:1002-1302(2023)08-0043-08
基金項目:江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金[編號:CX(21)3031];江蘇省農(nóng)業(yè)重大新品種創(chuàng)制項目(編號:PZCZ201715)。
作者簡介:劉艷艷(1990—),女,山東日照人,碩士,助理研究員,研究方向為作物栽培與抗逆生理。E-mail:1052233980@qq.com。
通信作者:劉興華,博士,副研究員,主要從事植物發(fā)育與環(huán)境適應(yīng)性研究。E-mail:1123153147@qq.com。
植物病害是影響作物產(chǎn)量的重要因素之一。植物在生長發(fā)育的過程中不斷受到病毒、細(xì)菌、真菌、卵菌、食草動物和寄生植物等的挑戰(zhàn),為了對抗病原菌的入侵,植物進化出了一套非常復(fù)雜的免疫系統(tǒng),深入了解植物的免疫機制是現(xiàn)代農(nóng)業(yè)中作物遺傳改良工作的重要理論基礎(chǔ)[1]。高等植物細(xì)胞表面和胞內(nèi)有大量免疫受體以感知病原體侵染相關(guān)的各種信號??共』蚝湍J阶R別受體的發(fā)現(xiàn),為理解植物免疫的分子識別機制和生物學(xué)重要性奠定了堅實基礎(chǔ)。細(xì)胞表面的免疫受體包括類受體蛋白(receptor-like proteins,RLPs)及受體類激酶(receptor-like kinases,RLKs),通常被稱為模式識別受體(pattern-recognition receptors,PRRs),可感知病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)、損傷相關(guān)分子模式(damage-associated molecular patterns,DAMPs)、微生物相關(guān)分子模式(microbe-associated molecular patterns,MAMPs)及食草動物相關(guān)分子模式(herbivore-associated molecular patterns,HAMP),并可激活分子模式觸發(fā)的基礎(chǔ)免疫(pattern-triggered immunity,PTI),包括活性氧(reactive oxygen species,ROS)的快速產(chǎn)生、Ca2+內(nèi)流和絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)級聯(lián)反應(yīng)的啟動等,從而限制病原物的致病性[2]。成功侵染宿主的病原體可以通過分泌效應(yīng)蛋白(effector)干擾宿主PRR蛋白的功能及其免疫相關(guān)過程,來逃避或抑制PTI,導(dǎo)致發(fā)生效應(yīng)蛋白激活的感病性(effector-triggered susceptibility,ETS)。為了應(yīng)對效應(yīng)蛋白的致病效應(yīng)并阻止病害發(fā)生,植物進一步進化出胞內(nèi)核苷酸結(jié)合富亮氨酸重復(fù)序列受體(nucleotide-binding domain leucine-rich repeat containing receptors,NLRs),以感知病原體效應(yīng)蛋白并啟動強烈的特異性免疫反應(yīng)(effector-triggered immunity,ETI)。隨后病原體也可能會通過進化、改變或失去效應(yīng)蛋白來抑制或逃避ETI。植物免疫理論的主要框架形成于2006年,即英國學(xué)者Jonathan Jones和美國學(xué)者Jeffery Dangl于2006年提出了“Zig-Zag”模型,該模型總結(jié)了病原相關(guān)分子模式處罰的免疫反應(yīng)(PTI)、效應(yīng)子觸發(fā)的敏感性(ETS)和效應(yīng)子觸發(fā)的免疫(ETI)之間的關(guān)系[3-4]。近年來,有關(guān)植物免疫的研究取得了一系列重大進展,除了免疫受體外,目前還發(fā)現(xiàn)了免疫信號網(wǎng)絡(luò)的許多組成元件[5-10]。本文以PRRs和NLRs介導(dǎo)的免疫反應(yīng)為重點,綜述了它們介導(dǎo)的免疫信號通路,以及PRRs與NLRs信號通路之間的互作關(guān)系。
1 PRRs信號通路及其免疫調(diào)控
基礎(chǔ)抗性是植物的先天性免疫反應(yīng),可以保護植物免受大多數(shù)病原的侵襲,在非寄主免疫中發(fā)揮主要作用。根據(jù)“zig-zag-zig”模型,植物細(xì)胞質(zhì)膜上的PRRs通過感知和識別PAMPs引發(fā)PTI,從而構(gòu)成植物抗病的第一道防線。
1.1 PRRs蛋白質(zhì)類型
絕大多數(shù)PRRs位于植物細(xì)胞膜上,由宿主編碼,其胞外結(jié)構(gòu)域可以感知MAMPs/DAMPs,調(diào)節(jié)先天免疫。它們高度敏感,能夠感知來自病原菌的PAMPs或植物自身的DAMPs,當(dāng)配體被識別后就會刺激信號級聯(lián)放大,導(dǎo)致一系列特有的防御反應(yīng)。植物的PRR蛋白包含類受體蛋白和類受體激酶,其中RLKs由胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞質(zhì)激酶結(jié)構(gòu)域組成,RLPs缺乏細(xì)胞質(zhì)激酶結(jié)構(gòu)域,其胞內(nèi)區(qū)域很短,不含有明顯的信號結(jié)構(gòu)域,二者都需要共受體(co-receptor)來傳遞免疫信號。RLPs和RLKs都通過一系列細(xì)胞外結(jié)構(gòu)域與配體結(jié)合并將信號傳遞到細(xì)胞內(nèi),其中包括富含亮氨酸重復(fù)序列(LRR)、凝集素、馬來凝集素(malectin)、賴氨酸基序(LysM)和表皮生長因子(EGF)樣結(jié)構(gòu)域[11]。RLKs存在于瘧原蟲(Plasmodium)、植物和動物中,但不存在于真菌中[12-13]。根據(jù)激酶的結(jié)構(gòu)域,擬南芥(Arabidopsis thaliana)RLKs可以分為44個亞家族[12]。LRR-RLKs代表RLKs最大的亞家族,是植物中最具特征的RLKs。對33種植物的系統(tǒng)發(fā)育研究得出,每種被子植物中LRR-RLKs的平均數(shù)量約為250個[14]。LRR-RLKs進一步被分為20個亞組,其中第Ⅻ亞組的基因參與了病原體識別,如FLS2、EFR和Xa21[14]。LRR-RLPs代表植物中RLPs最大的亞家族,該基因家族的大小在植物物種中也存在高度差異[15]。
1.2 PRR信號通路及其免疫調(diào)控
PRRs屬于細(xì)胞表面受體,能夠識別來自細(xì)菌、真菌、卵菌、寄生植物和食草動物的PAMPs、MAMPs、HAMPs。一些PRRs還可以識別植物自身的分子,如DAMPs和其他植物內(nèi)源性肽(植物細(xì)胞因子)[16]。大多數(shù)PRRs與共受體共同作用激活下游免疫反應(yīng),這些共受體在陸地植物中高度保守,對PRRs介導(dǎo)的免疫反應(yīng)至關(guān)重要。一些PRR不參與直接的配體識別,而是作為PRR共受體和免疫信號的負(fù)調(diào)節(jié)器發(fā)揮作用。與配體結(jié)合后,PRRs與其共受體之間形成二聚體復(fù)合物,如細(xì)菌鞭毛蛋白肽FLS2、EFR和PEPRs,與共受體AtBAK1和AtBKK1一起發(fā)揮作用[13,17]。LRR-RLPs與共受體SOBIR1和BAK1一起發(fā)揮作用,LysM-RLK-LYKs和LysM-RLP-LYMs與共受體CERK1一起發(fā)揮作用[18-21]。這些共受體在陸地植物中高度保守,對PRR介導(dǎo)的免疫至關(guān)重要。
在植物中,PRRs主要是類受體激酶(RLKs),其構(gòu)成植物最大和最多樣的蛋白超家族,在植物發(fā)育、自我不親和、感受病原和響應(yīng)多種環(huán)境脅迫中發(fā)揮重要作用。植物PRRs的胞外區(qū)域識別不同的配體[11],配體的結(jié)合導(dǎo)致PRRs與其共受體(如BAK1和CERK1)之間形成異二聚體受體復(fù)合物[18,22-23]。在擬南芥(Arabidopsis)中,細(xì)菌鞭毛蛋白N-末端的22個氨基酸的多肽flg22被LRR-RLK FLS2(flagellin sensitive 2)識別[24-25]。Flg22充當(dāng)“分子膠水”,與FLS2和BAK1的細(xì)胞外LRR結(jié)構(gòu)域相互作用并結(jié)合在一起[23,26]。FLS2和BAK1的富含亮氨酸重復(fù)序列(leucine-richrepeats,LRR)結(jié)構(gòu)域之間形成的異二聚體復(fù)合物,使得它們的細(xì)胞質(zhì)激酶結(jié)構(gòu)域非常緊密,從而導(dǎo)致一系列自磷酸化、反式磷酸化過程[26-28]。
在PRRs識別PAMPs分子后,植物在短時間內(nèi)可作出快速的防御應(yīng)答,包括MAPKs級聯(lián)反應(yīng)的激活、ROS水平的升高,同時啟動水楊酸(salicylic acid,SA)和茉莉酸(jasmonic acid,JA)信號傳導(dǎo)途徑、胼胝質(zhì)沉積、氣孔關(guān)閉和基因沉默等。在擬南芥中,CPK4/5/6/11與BIK1一起發(fā)生磷酸化并激活RbohD,從而產(chǎn)生活性氧[29-31]。細(xì)胞質(zhì)受體類激酶(RLCKs)對多個離子通道的磷酸化也會導(dǎo)致氣孔關(guān)閉,以響應(yīng)PAMPs[32-33]。同時,MAPKKK3、MAPKKK5使MAPKKs-MKK4、MKK5磷酸化,然后磷酸化擬南芥中的MPK3、MPK6,并賦予擬南芥對細(xì)菌、真菌的抗性。PTI誘導(dǎo)的轉(zhuǎn)錄重組會導(dǎo)致抗菌化合物和防御相關(guān)激素的生物合成,如乙烯(ET)、水楊酸[34-37]。過氧化氫(一種活性氧)可以促進蛋白質(zhì)和酚醛交聯(lián),從而導(dǎo)致胼胝質(zhì)沉積,并限制真菌、卵菌感染[38-39]。
2 NLRs信號通路及其介導(dǎo)的免疫調(diào)控
根據(jù)“zig-zag-zig”模型,適應(yīng)性病原通過分泌效應(yīng)蛋白到宿主體內(nèi)抑制或作用于PTI,導(dǎo)致效應(yīng)蛋白引發(fā)感病性。比較典型的是病原細(xì)菌通過Ⅲ型分泌系統(tǒng)直接將效應(yīng)蛋白釋放到植物細(xì)胞中,抑制PTI。在協(xié)同進化過程中,植物進化出R基因,其編碼的R蛋白能夠直接或間接特異性識別病原編碼的無毒蛋白,從而引發(fā)ETI。R蛋白屬于胞內(nèi)受體,許多R基因編碼NLRs,它們作為免疫受體起作用。擬南芥中大約存在200個編碼與核苷酸結(jié)合位點及其他植物抗性蛋白結(jié)構(gòu)域相似的基因,其中約有150個為NB-LRR蛋白[40-41]。
2.1 NLR蛋白結(jié)構(gòu)
植物和動物NLRs都包含1個位于中間的核苷酸結(jié)合(nucleotide-binding,NB)域和1個位于C端的LRR區(qū)域。其中,NB結(jié)構(gòu)域為受體寡聚化后形成的更高級復(fù)合物(如高等植物中的抗病小體和哺乳動物中的炎癥小體)傳遞信號所必需的;高度可變的LRR區(qū)域通常參與自我抑制、蛋白質(zhì)-蛋白質(zhì)相互作用和效應(yīng)子識別[42]。典型的植物NLRs根據(jù)N末端的不同,分為TIR型和CC型2種主要類型。TIR型NLR(TIR-type NLRs,TNL)的特征是其N末端具有Toll/白介素1受體(Toll/inter-leukin-1 receptor,TIR)結(jié)構(gòu)域,而CC型NLR(CC-type NLRs,CNL)的N末端含有1個卷曲螺旋(coiled-coil,CC)結(jié)構(gòu)域[42-43],NLR受體可直接或間接感知分泌的毒性效應(yīng)蛋白。NLRs廣泛分布于細(xì)胞質(zhì)、細(xì)胞核、質(zhì)膜(plasma membrane,PM)、液泡膜和內(nèi)質(zhì)網(wǎng)等亞細(xì)胞結(jié)構(gòu)中[44],如大麥(Hordeum vulgare)CNLMLA10和擬南芥TNLRPS4位于細(xì)胞核、細(xì)胞質(zhì)中,并且這2個亞細(xì)胞定位均為抗性激活所必需的[45-46]。
2.2 NLRs信號通路與免疫調(diào)控
NLRs介導(dǎo)的免疫是通過細(xì)胞內(nèi)NLR檢測病原物效應(yīng)蛋白而觸發(fā)的。在擬南芥中,CNLs、TNLs充當(dāng)傳感器NLR來識別效應(yīng)蛋白,而RNLs(RPW8-type NLRs)充當(dāng)傳遞免疫信號的NLRs助手[47]。雖然擬南芥中的大多數(shù)傳感器NLRs需要NLRs助手來介導(dǎo)免疫,但是一些CNLs可以單獨介導(dǎo)免疫應(yīng)答,如ZAR1和RPM1[48]。近期的研究發(fā)現(xiàn),CNL型抗病小體ZAR1包含ZAR1、受體樣胞質(zhì)激酶(RLCKs) RKS1及假激酶PBL2,具有陽離子通道活性[49]。來自野油菜黃單胞菌(Xanthomonas campestris pv. campestris)分泌的效應(yīng)蛋白AvrAC通過其尿苷酰轉(zhuǎn)移酶功能將PBL2轉(zhuǎn)化為PBL2UMP,ZAR1與RKS1形成復(fù)合物并結(jié)合PBL2UMP形成有活性的PBLUMP-ZAR1-RKS1復(fù)合體,導(dǎo)致ZAR1/RKS1/PBL2UMP形成定位于質(zhì)膜的五聚抗病小體,從而完成對AvrAC的特異性識別。ZAR1中的N端α-螺旋構(gòu)成的漏斗狀結(jié)構(gòu),帶有負(fù)電的羧酸環(huán),允許陽離子進入胞液。ZAR1與RKS1、PBL2和AvrAC在植物原生質(zhì)體中的共同表達(dá),導(dǎo)致細(xì)胞質(zhì)鈣內(nèi)流、ROS積累及葉綠體和液泡的擾動[49]。在ZAR1激活過程中,ROS的大量積累可能是由多種下游信號成分(如NADPH氧化酶)的激活引起的,因為CPKs是由胞漿鈣內(nèi)流激活的[16]。防御相關(guān)轉(zhuǎn)錄因子也可能被胞漿鈣內(nèi)流激活[28,50]。葉綠體和液泡的擾動很快就會導(dǎo)致質(zhì)膜喪失完整性、細(xì)胞破裂[49]。目前尚不清楚上述過程是如何被免疫信號成分調(diào)控以及它們與轉(zhuǎn)錄重組間的關(guān)系。
CNL和TNL激活后,最終產(chǎn)生相似的轉(zhuǎn)錄表達(dá),引發(fā)局部、系統(tǒng)抗性[51-54]。CNL類NLRs可以作為質(zhì)膜上的陽離子通道介導(dǎo)Ca2+內(nèi)流,證明多個Ca2+滲透通道可傳導(dǎo)Ca2+內(nèi)流,并激活具有激酶活性的膜定位受體,從而觸發(fā)免疫反應(yīng)。TNL類NLRs通過NADase活性將NAD+裂解成多種產(chǎn)物,包括煙酰胺腺嘌呤單核苷酸等[55],這些產(chǎn)物及其衍生物可作為下游激活EDS1依賴性防御信號。大量試驗證實,EDS1、PAD4和SAG101是TNL介導(dǎo)的免疫反應(yīng)所必需的。一些分子伴侶可以調(diào)控NLRs蛋白的折疊和更新,如RAR1、SGT1和HSP90作為蛋白伴侶共同調(diào)節(jié)NLRs的折疊、定位和轉(zhuǎn)換[56-59]。此外,NLR蛋白的轉(zhuǎn)換受到SGTI互作蛋白SRFR1、MUSE和E3連接酶SNIPER1、SNIPER2的調(diào)控[60-63]。ZAR1介導(dǎo)的抗性需要ZAR1抗病小體定位在質(zhì)膜上[49,64]。此外,抑制NPR1-1(SUPPRESSOR OF NPR1-1,SNC1)介導(dǎo)的免疫需要擬南芥輸入蛋白α核轉(zhuǎn)運受體蛋白IMP-α3/MOS6[65]。
3 PRR與NLRs相互作用
隨著研究的不斷擴展和深入,人們逐漸發(fā)現(xiàn)PTI和ETI這2類看似截然不同的免疫反應(yīng)具有許多相似的下游免疫信號傳遞途徑,如病程相關(guān)蛋白的誘導(dǎo)表達(dá)、水楊酸的合成等,并且近期的相關(guān)研究發(fā)現(xiàn),PTI與ETI免疫反應(yīng)具有相互加強的作用。ETI免疫反應(yīng)可以通過促進PTI免疫信號傳遞途徑中關(guān)鍵蛋白的表達(dá)來提高PTI的免疫反應(yīng)。
3.1 NLRs保護PRR信號通路
目前植物已經(jīng)進化出多個NLRs,通過保護PRR信號成分或誘餌來檢測病原物效應(yīng)子。因此,許多PRRs和PRR信號功能喪失的突變體,如擬南芥突變體bak1-4 bkk1-1、bik1、cngc2/4、rbohd/f、mekk1、mkk1/2、mpk4和camta3,表現(xiàn)出了自身免疫表型[17,66-72]。在這些突變體中觀察到的自身免疫是由多個NLRs的激活引起的。TNL CONSTITUTIVE SHADE-AVOIDANCE 1(CSA1)保護BAK1-相互作用受體3(BAK1-INTERACTING RECEPTOR 3,BIR3)和BAK1[73]。此外,bak1-3 bkk-1自身免疫和HopB1觸發(fā)的免疫依賴于ADR1s[74]。近期的研究結(jié)果表明,RLCKs還與感知油菜素內(nèi)脂和信號肽的受體激酶(RKs)聯(lián)系起來以協(xié)調(diào)生長、花柱導(dǎo)向、胚胎和氣孔模式、花器官脫落和非生物脅迫反應(yīng)。RLCKs的活性和穩(wěn)定性不僅受到RKs的動態(tài)調(diào)控,還受到其他RLCK相關(guān)蛋白的動態(tài)調(diào)控。CNL ZAR1可以與RLCK RK1監(jiān)測器PBL2及CNL RPS5監(jiān)測器PBS1一起,逆轉(zhuǎn)(reverse)病原物效應(yīng)蛋白激發(fā)的ETS[75-77]。CNL SUMM2通過MAPK4的底物——蛋白鈣調(diào)蛋白結(jié)合受體樣細(xì)胞質(zhì)激酶3(CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3,CRCK3)保護并感知MEKK1-MKK1/2-MPK4激酶級聯(lián)的破壞[67,78]。SUMM2還檢測丁香假單胞菌效應(yīng)子HopAI1,其能抑制MPK4激酶的活性[50]。TNL RPS6也有助于HopAI1觸發(fā)的免疫[79]。bik1、cgnc2/4和rbohd/f中的自身免疫是否依賴于NLRs尚不清楚。保護PRR信號通路的其他NLRs仍有待確定。
3.2 PRRs和NLRs之間信號組分的相互依賴性
PRR共受體、RLCKs、NADPH氧化酶、鈣通道、CPKs和MAPKs被認(rèn)為是典型的PRR信號成分,而EP蛋白和NLRs助手被認(rèn)為是典型的NLR信號成分。然而,最近的研究結(jié)果表明,PRR介導(dǎo)的抗性依賴于典型的NLR信號成分,反之亦然[5-8]。Ngou等通過可誘導(dǎo)性ETI免疫系統(tǒng),分析了擬南芥中PTI和ETI等2種不同免疫系統(tǒng)之間的相互作用,該研究發(fā)現(xiàn),植物細(xì)胞表面受體對病原體的識別會激活多種蛋白激酶和NADPH氧化酶,同時還發(fā)現(xiàn),細(xì)胞內(nèi)受體主要通過幾種機制增加蛋白的豐度來促進這些蛋白的激活。此外,依賴于細(xì)胞內(nèi)受體的超敏反應(yīng)通過細(xì)胞表面受體的激活而得到大大增強[5]。因此,植物中細(xì)胞表面和細(xì)胞內(nèi)受體激活的免疫途徑相互增強,從而增強了對病原體的防御能力[5]。Yuan等利用擬南芥的PRR和PRR共受體突變體感染病原體模型,發(fā)現(xiàn)NADPH氧化酶RBOHD的磷酸化促進了ROS的產(chǎn)生,是連接PRR和NLR介導(dǎo)的免疫系統(tǒng)的早期關(guān)鍵信號事件,受體樣細(xì)胞質(zhì)激酶BIK1的磷酸化是ETI系統(tǒng)中RBOHD完全激活、基因表達(dá)和細(xì)菌抗性所必需的[6]。此外,NLR信號迅速增加了PTI信號因子的轉(zhuǎn)錄和蛋白質(zhì)表達(dá)。該研究結(jié)果揭示了PTI和ETI免疫系統(tǒng)之間的協(xié)同互作模式,同時ETI、PTI免疫系統(tǒng)存在諸多相似的下游免疫反應(yīng),自然界中通過增強PTI通路來達(dá)到加強ETI響應(yīng),為植物抗病性的增強提供了理論依據(jù)[6]。NLR可以參與植物免疫的下游關(guān)鍵信號傳導(dǎo),其中EDS1(ENHANCED DISEASE SUSCEPTIBILITY 1)、PAD4(PHYTOALEXIN DEFICIENT 4 )和SAG101(SENESCENCE ASSOCIATED GENE 101)組成的信號網(wǎng)絡(luò)涉及大多數(shù)NLRs及所有TNLs,如flg22和nlp20誘導(dǎo)的抗性部分依賴于NLRs信號的關(guān)鍵組分EDS1、PAD4、SAG101、ADR1s和NRG1s[7-8]。Pruitt等提出,EP蛋白和NLRs助手通過RLP共受體(SOBIR1)、EP蛋白和NLRs助手之間的相互作用被RLPs激活,盡管EP蛋白在RLP防御信號中是起主要作用還是起次要作用仍有待確定[8]。然而,有研究結(jié)果顯示,PRRs的激活導(dǎo)致多個NLRs和其他含TIR結(jié)構(gòu)域的蛋白質(zhì)表達(dá)量增加,從而促進下游信號的傳導(dǎo)[7]。這2個假設(shè)并不相互排斥,PRR介導(dǎo)的免疫涉及NLR信號成分的確切機制仍有待確定。
NLR介導(dǎo)的免疫也依賴于PRR和多種PRR信號成分。在擬南芥中,RPS2、RPS5和RRS1/RPS4介導(dǎo)的抗性依賴于BAK1和BKK1[5-6]。相較于PTI,ETI與PTI同時激活能誘導(dǎo)持續(xù)時間更久的BIK1,RBOHD及MPK3的磷酸化,然而ETI自身激活并不能激活RBOHD和MAPK的磷酸化。ETI與PTI同時激活使得PTI信號通路中多種蛋白表達(dá)量增多(BIK1、RBOHD、MPK3、BAK1等),但是其他重要元件(如MPK4、 MPK6、FLS2等)并沒有表現(xiàn)出蛋白量的變化。與此同時,ETIAvrRps4的轉(zhuǎn)錄組數(shù)據(jù)說明ETI自身激活可以誘導(dǎo)很多PTI元件的表達(dá)量顯著提高,從而造成ETI的激活增強了PTI信號通路[5]。在野生型植物中,RPS2基因的激活會導(dǎo)致PTI系統(tǒng)中關(guān)鍵蛋白質(zhì)(包括BIK1和RBOHD)的積累并增強PTI系統(tǒng)相關(guān)基因(如WRKY29和AZIs)的轉(zhuǎn)錄。ROBHD的完全激活(通過磷酸化作用)需要PRR/共受體以產(chǎn)生強烈的ROS并激活ETI免疫系統(tǒng)。在缺乏PRR/共受體的情況下,NLR受體的激活仍會誘導(dǎo)PTI系統(tǒng)某些組分的表達(dá),但這些組分大多都處于非活性狀態(tài)(如BIK1和RBOHD),并導(dǎo)致ROS產(chǎn)生不足和ETI系統(tǒng)無法激活[6]。RPS2介導(dǎo)的耐藥性也依賴于BIK1和RbohD[6,71]。RPM1和RPS2介導(dǎo)的抗性及過敏反應(yīng)(HR)均依賴于CPK1/2/5/6[28]。MPK3、MPK6的激活也是由多個NLRs介導(dǎo)的HR和抗性所必需的,包括RPM1、RPS2、RPS5和RRS1/RPS4[80]。ETI阻止病原體感染的關(guān)鍵機制之一是加強并恢復(fù)PTI的周轉(zhuǎn)和病原體效應(yīng)子的作用[5-6]。因此,NLR介導(dǎo)的抗性需要PRRs和PRR信號成分。
3.3 PRR和NLR介導(dǎo)的免疫相互增強
使用雌二醇誘導(dǎo)的識別效應(yīng)器激活TNLs RRS1/RPS4和RPP4不會觸發(fā)HR。PAMPs/MAMPs的存在恢復(fù)了這些TNLs誘導(dǎo)的HR[5,81]。同樣的,由CNLs RPM1、RPS2和RPS5誘導(dǎo)的HR也因PRRs的激活而得到增強[5]。此外,RPS2誘導(dǎo)的HR和抗性在PRR突變體中減弱[6,82]。PRR增強NLR誘導(dǎo)的免疫有幾種可能的機制。首先,PRRs的激活可誘導(dǎo)NLRs和NLR信號成分的表達(dá)[83-86]。6種不同PRRs的激活導(dǎo)致編碼擬南芥中大多數(shù)TNLs、CNLs、EP蛋白和NLRs助手的基因上調(diào)表達(dá)[37]。因此,這些蛋白質(zhì)豐度的增加可能會在效應(yīng)蛋白識別時“增強”NLR的激活。其次,PRRs的激活可能通過翻錄后修飾(PTMs)引發(fā)NLR介導(dǎo)的免疫。根據(jù)PAMP感知,SGT1被MAPKs磷酸化,這對NLRs的穩(wěn)定性很重要[87]。此外,在PAMP識別時,NLR轉(zhuǎn)錄組的無義介導(dǎo)衰變受到抑制[86]。因此,PTI激活的轉(zhuǎn)錄和轉(zhuǎn)錄后修飾都會影響NLRs的穩(wěn)定性。但是關(guān)于PTI是否以及如何激發(fā)(primes)NLR信號成分仍有待研究。
NLRs的激活增強了PAMP誘導(dǎo)的細(xì)胞反應(yīng),如活性氧產(chǎn)生、胼胝質(zhì)沉積和防御相關(guān)基因表達(dá)[59]。ETI也會增強多種PRR信號成分的激活,如BIK1、RbohD和MPK3[5-6]。ETI誘導(dǎo)SOBIR1、BAK1、BIK1、RbohD和MPK3的轉(zhuǎn)錄和蛋白質(zhì)積累[5]。在ETI期間,BIK1、MPK3和RbohD的轉(zhuǎn)錄水平僅短暫上調(diào)。然而,這些基因的蛋白質(zhì)水平在很長一段時間內(nèi)保持上調(diào)表達(dá)[5],意味著PTMs或其他轉(zhuǎn)錄后機制也可能影響ETI期間PRR信號成分的穩(wěn)定性。PRR信號成分的蛋白質(zhì)(如BAK1、BIK1和RbohD豐度)受到多個過程的嚴(yán)格調(diào)控,ETI如何調(diào)節(jié)或影響這些過程尚不清楚。此外,NLRs誘導(dǎo)的鈣內(nèi)流可能通過鈣依賴蛋白激酶(CPKs)有助于PTI的增強[47,88-89]??傊?,PTI和ETI通過多種機制相互增強,以誘導(dǎo)對病原體的強大免疫。
4 展望
過去幾十年內(nèi),植物與病原菌相互作用的研究取得了驚人進展,PTI、ETI在植物先天免疫中的作用機制被逐步揭示。但是,對植物抗性的研究仍然是有限的,植物和病原菌之間還存在許多驚人的互作,說明還存在許多未知的特異機制。對PRRs、NLRs信號通路的研究發(fā)現(xiàn),PRRs、NLRs利用一些重疊但獨特的信號組分來激活下游生理反應(yīng)。2種信號通路都受到嚴(yán)格調(diào)控以防止自身免疫。最近的研究結(jié)果表明,NLR介導(dǎo)的抗病性依賴PRR,反之,NLR激活增強PRR介導(dǎo)的免疫反應(yīng),表明植物免疫反應(yīng)的全面激活需要PRRs、NLRs信號的協(xié)同作用。因此可見,PTI和ETI并非獨立的免疫途徑。未來研究應(yīng)聚焦于細(xì)胞表面受體與胞內(nèi)免疫受體之間介導(dǎo)的免疫反應(yīng)的一般機制,例如:鑒定新的免疫受體;了解免疫受體觸發(fā)的信號通路和生理反應(yīng);了解免疫是如何被外部生物和/或非生物因素內(nèi)在調(diào)節(jié)和操縱的;PTI和ETI的免疫協(xié)作是否廣泛存在于植物與病原菌的互作中;了解不同的免疫系統(tǒng)在感染期間是如何協(xié)同發(fā)揮作用的[89-90]。對PTI和ETI免疫協(xié)作潛在機制的研究將有助于全面了解植物的免疫系統(tǒng),為作物抗病育種工作奠定理論基礎(chǔ)。
參考文獻(xiàn):
[1]錢 韋,方榮祥,何祖華. 植物免疫與作物抗病分子育種的重大理論基礎(chǔ)——進展與設(shè)想[J]. 中國基礎(chǔ)科學(xué),2016,18(2):38-45.
[2]覃 磊,彭志紅,夏石頭. 植物NLR免疫受體的識別、免疫激活與信號調(diào)控[J]. 植物學(xué)報,2022,57(1):12-23.
[3]Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[4]張 杰,劉 俊,秦 君. 植物先天免疫研究現(xiàn)狀與前景展望[J]. 中國科學(xué)院院刊,2017,32(8):856-862.
[5]Ngou B P M,Ahn H K,Ding P,et al. Mutual potentiation of plant immunity by cell-surface and intracellular receptors[J]. Nature,2021,592(7852):110-115.
[6]Yuan M H,Jiang Z Y,Bi G Z,et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature,2021,592(7852):105-109.
[7]Tian H,Wu Z,Chen S,et al. Activation of TIR signalling boosts pattern-triggered immunity[J]. Nature,2021,598(7881):500-503.
[8]Pruitt R N,Locci F,Wanke F,et al. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity[J]. Nature,2021,598(7881):495-499.
[9]Chang M,Chen H,Liu F Q,et al. PTI and ETI:convergent pathways with diverse elicitors[J]. Trends in Plant Science,2022,27(2):113-115.
[10]Wang Y,Pruitt R N,Nürnberger T,et al. Evasion of plant immunity by microbial pathogens[J]. Nature Review Microbiology,2022,20(8):449-464.
[11]Boutrot F,Zipfel C. Function,discovery,and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance[J]. Annual Review of Phytopathology,2017,55:257-286.
[12]Shiu S H,Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis[J]. Plant Physiology,2003,132(2):530-543.
[13]Chinchilla D,Zipfel C,Robatzek S,et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature,2007,448:497-500.
[14]Dufayard J F,Bettembourg M,F(xiàn)ischer I,et al. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in Angiosperms[J]. Frontiers in Plant Science,2017,8:381.
[15]Ngou B P M,Heal R,Wyler M,et al. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes[J]. Nature Plants,2022,8:1146-1152.
[16]Hou S G,Liu D R,He P. Phytocytokines function as immunological modulators of plant immunity[J]. Stress Biology,2021,1(1):8.
[17]Roux M,Schwessinger B,Albrecht C,et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. Plant Cell,2011,23(6):2440-2455.
[18]Miya A,Albert P,Shinya T,et al. CERK1,a LysM receptor kinase,is essential for chitin elicitor signaling in Arabidopsis[J]. PNAS,2007,104(49):19613-19618.
[19]Willmann R,Lajunen H M,Erbs G,et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection[J]. PNAS,2011,108(49):19824-19829.
[20]Liebrand T W H,van den Berg G C M,Zhang Z,et al. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection[J]. PNAS,2013,110(24):10010-10015.
[21]Cao Y R,Liang Y,Tanaka K,et al. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1[J]. eLife,2014,3:e03766.
[22]Ma X Y,Xu G Y,He P,et al. SERKing coreceptors for receptors[J]. Trends in Plant Science,2016,21(12):1017-1033.
[23]Hohmann U,Lau K,Hothorn M. The structural basis of ligand perception and signal activation by receptor kinases[J]. Annual Review of Plant Biology,2017,68:109-137.
[24]Felix G,Duran J D,Volko S,et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Journal,1999,18(3):265-276.
[25]Chinchilla D,Bauer Z,Regenass M,et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. The Plant Cell,2005,18(2):465-476.
[26]Sun Y D,Li L,Macho A P,et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science,2013,342(6158):624-628.
[27]Schwessinger B,Roux M,Kadota Y,et al. Phosphorylation-dependent differential regulation of plant growth,cell death,and innate immunity by the regulatory receptor-like kinase BAK1[J]. PLoS Genetics,2011,7(4):e1002046.
[28]Cao Y R,Aceti D J,Sabat G,et al. Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity[J]. PLoS Pathogens,2013,9(4):e1003313.
[29]Kadota Y,Sklenar J,Derbyshire P,et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell,2014,54(1):43-55.
[30]Kadota Y,Shirasu K,Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity[J]. Plant and Cell Physiology,2015,56(8):1472-1480.
[31]Li L,Li M,Yu L P,et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity[J]. Cell Host & Microbe,2014,15(3):329-338.
[32]Liu Y,Maierhofer T,Rybak K,et al. Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure[J]. eLife,2019,8:e44474.
[33]Thor K,Jiang S,Michard E,et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity[J]. Nature,2020,585(7826):569-573.
[34]Macho A P,Schwessinger B,Ntoukakis V,et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation[J]. Science,2014,343(6178):1509-1512.
[35]Bigeard J,Colcombet J,Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI)[J]. Molecular Plant,2015,8(4):521-539.
[36]Guan R X,Su J B,Meng X Z,et al. Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae[J]. Plant Physiology,2015,169(1):299-312.
[37]Bjornson M,Pimprikar P,Nürnberger T,et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nature Plants,2021,7(5):579-586.
[38]Luna E,Pastor V,Robert J,et al. Callose deposition:a multifaceted plant defense response[J]. Molecular Plant-Microbe Interaction,2011,24(2):183-193.
[39]Voigt C A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae[J]. Frontiers in Plant Science,2014,5:168.
[40]Kim S H,Kwon S I,Saha D,et al. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1[J]. Plant Physiology,2009,150(4):1723-1732.
[41]Saha D,Rana R S,Sureja A K,et al. Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato Leaf Curl New Delhi Virus resistant genotype of Luffa cylindrica Roem[J]. Physiological and Molecular Plant Pathology,2013,81:107-117.
[42]Saur I M L,Panstruga R,Schulze-Lefert P. NOD-like receptor-mediated plant immunity:from structure to cell death[J]. Nature Reviews Immunology,2021,21:305-318.
[43]Tamborski J,Krasileva K V. Evolution of plant NLRs:from natural history to precise modifications[J]. Annual Review Plant Biology,2020,71:355-378.
[44]Chiang Y H,Coaker G. Effector triggered immunity:NLR immune perception and downstream defense responses[J]. The Arabidopsis Book,2015,13:e0183.
[45]Shen Q H,Saijo Y,Mauch S,et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses[J]. Science,2007,315(5815):1098-1103.
[46]Bai S W,Liu J,Chang C,et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance[J]. PLoS Pathogens,2012,8:e1002752.
[47]Feehan J M,Castel B,Bentham A R,et al. Plant NLRs get by with a little help from their friends[J]. Current Opinion in Plant Biology,2020,56:99-108.
[48]Adachi H,Derevnina L,Kamoun S. NLR singletons,pairs,and networks:evolution,assembly,and regulation of the intracellular immunoreceptor circuitry of plants[J]. Current Opinion in Plant Biology,2019,50:121-131.
[49]Bi G Z,Su M,Li N,et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling[J]. Cell,2021,184(13):3528-3541.e12.
[50]Boudsocq M,Willmann M R,McCormack M,et al. Differential innate immune signaling via Ca2+sensor protein kinases[J]. Nature,2010,464(7287):418-422.
[51]Bartsch M,Gobbato E,Bednarek P,et al. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY 1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NU-DT7[J]. Plant Cell,2006,18(4):1038-1051.
[52]Mine A,Seyfferth C,Kracher B,et al. The defense phytohormone signaling network enables rapid,high-amplitude transcriptional reprogramming during effector-triggered immunity[J]. Plant Cell,2018,30(6):1199-1219.
[53]Saile S C,Jacob P,Castel B,et al. Two unequally redundant ‘helper immune receptor families mediate Arabidopsis thaliana intracellular ‘sensor immune receptor functions[J]. PLoS Biology,2020,18(9):e3000783.
[54]Zhou J M,Zhang Y L. Plant immunity:danger perception and signaling[J]. Cell,2020,181(5):978-989.
[55]Wan L,Essuman K,Anderson R G,et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death[J]. Science,2019,365(6455):799-803.
[56]Azevedo C,Sadanandom A,Kitagawa K,et al. The RAR1 interactor SGT1,an essential component of R gene-triggered disease resistance[J]. Science,2002,295(5562):2073-2076.
[57]Peart J R,Lu R,Sadanandom A,et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants[J]. PNAS,2002,99(16):10865-10869.
[58]Takahashi A,Casais C,Ichimura K,et al. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis[J]. PNAS,2003,100(20):11777-11782.
[59]Shirasu K. The HSP90-SGT1chaperone complex for NLR immune sensors[J]. Annual Review of Plant Biology,2009,60:139-164.
[60]Li Y Z,Li S X,Bi D L,et al. SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity[J]. PLoS Pathogens,2010,6(9):e1001111.
[61]Huang S,Chen X J,Zhong X H,et al. Plant TRAF proteins regulate NLR immune receptor turnover[J]. Cell Host Microbe,2016,19(2):204-215.
[62]Dong O X,Ao K,Xu F,et al. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases[J]. Nature Plants,2018,4:699-710.
[63]Wu Z S,Tong M M,Tian L,et al. Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors[J]. The EMBO Journal,2020,39(15):e104915.
[64]Wang J Z,Hu M J,Wang J,et al. Reconstitution and structure of a plant NLR resistosome conferring immunity[J]. Science,2019,364(6435):eaav5870.
[65]Lüdke D,Roth C,Kamrad S A,et al. Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1[J]. The Plant Journal,2021,105(4):994-1009.
[66]Torres M A,Dangl J L,Jones J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. PNAS,2001,99(1):517-522.
[67]Zhang Z B,Wu Y L,Gao M H,et al. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2[J]. Cell Host and Microbe,2012,11(3):253-263.
[68]Chen T,Bi K,He Z C,et al. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae[J]. Frontiers in Physiology,2016,7:402.
[69]Liu J,Chen S F,Chen L J,et al. BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis[J]. Journal of Integrative Plant Biology,2017,59(4):234-239.
[70]Lolle S,Greeff C,Petersen K,et al. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles[J]. Cell Host & Microbe,2017,21(4):518-529.
[71]Kadota Y,Liebrand T W H,Goto Y,et al. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector-and PAMP-triggered immunity in plants[J]. New Phytologist,2019,221(4):2160-2175.
[72]Tian W,Hou C,Ren Z,et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity[J]. Nature,2019,572(7767):131-135.
[73]Schulze S,Yu L P,Ehinger A,et al. The TIR-NBS-LRR protein CSA1 is required for autoimmune cell death in Arabidopsis pattern recognition co-receptor bak1 and bir3 mutants[J/OL]. bioRxiv,2021,DOI:10.1101/2021.04.11.438637.
[74]Wu Y J,Gao Y,Zhan Y Y,et al. Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death[J]. PNAS,2020,117(43):27044-27053.
[75]Shao F,Golstein C,Ade J,et al. Cleavage of Arabidopsis PBS1 by a bacterial type Ⅲ effector[J]. Science,2003,301(5637):1230-1233.
[76]Zhang J,Li W,Xiang T T,et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host & Microbe,2010,7(4):290-301.
[77]Wang G X,Roux B,F(xiàn)eng F,et al. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants[J]. Cell Host & Microbe,2015,18(3):285-295.
[78]Zhang Z B,Liu Y N,Huang H,et al. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3[J]. EMBO Reports,2017,18(2):292-302.
[79]Takagi M,Hamano K,Takagi H,et al. Disruption of the MAMP-induced MEKK1-MKK1/MKK2-MPK4 pathway activates the TNL immune receptor SMN1/RPS6[J]. Plant and Cell Physiology,2018,60(4):778-787.
[80]Su J B,Yang L Y,Zhu Q K,et al. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity[J]. PLoS Biology,2018,16(5):e2004122.
[81]Ngou B P M,Ahn H K,Ding P T,et al. Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity[J]. Journal of Experimental Botany,2020,71(6):2186-2197.
[82]Ma Y,Walker R K,Zhao Y C,et al. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+elevation and downstream immune signaling in plants[J]. PNAS,2012,109(48):19852-19857.
[83]Navarro L,Zipfel C,Rowland O,et al. The transcriptional innate immune response to flg22.interplay and overlap with avr gene-dependent defense responses and bacterial pathogenesis[J]. Plant Physiology,2004,135(2):1113-1128.
[84]Bonardi V,Tang S J,Stallmann A,et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors[J]. PNAS,2011,108(39):16463-16468.
[85]Brendolise C,Martinez-Sanchez M,Morel A,et al. NRG1-mediated recognition of HopQ1 reveals a link between PAMP-and Effector-triggered Immunity[J]. bioRxiv,2018,DOI:10.1101/293050.
[86]Jung H W,Panigrahi G K,Jung G Y,et al. Pathogen-associated molecular pattern-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during the early defense response[J]. The Plant Cell,2020,32(4):1081-1101.
[87]Yu G,Xian L,Xue H,et al. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity[J]. PLoS Pathogens,2020,16(9):e1008933.
[88]Jacob P,Kim N H,Wu F H,et al. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels[J]. Science,2021,373(6553):420-425.
[89]Ngou B P M,Ding P T,Jones J D G. Channeling plant immunity[J]. Cell,2021,184(13):3358-3360.
[90]Ngou B P M,Ding P T,Jones J D G. Thirty years of resistance:zig-zag through the plant immune system[J/OL]. The Plant Cell,2022[2022-06-05]. https://doi.org/10.1093/plcell/koac041.