占慧芬 李曉兵 尼瑪?shù)┰觥堈肌∵_(dá)瓦 王艷 劉振彪 劉媛媛 何晨?!∈?/p>
摘要:噪聲會(huì)對(duì)魚類行為和生理造成各種負(fù)面影響,研究噪聲的影響在魚類資源保護(hù)中具有重要意義??偨Y(jié)了噪聲對(duì)魚類聽力、信息掩蔽、生理和行為等方面影響的研究現(xiàn)狀,指出了目前的研究在實(shí)驗(yàn)聲場場景、聲波粒子運(yùn)動(dòng)、實(shí)驗(yàn)設(shè)置形式和試驗(yàn)周期監(jiān)測等方面存在的不足,并針對(duì)當(dāng)前的研究缺陷,提出了模擬真實(shí)聲場場景、探測聲波粒子運(yùn)動(dòng)對(duì)魚類的影響、開展多樣化形式的噪聲暴露實(shí)驗(yàn)并進(jìn)行周期性監(jiān)測等建議,為噪聲對(duì)魚類影響的進(jìn)一步研究提供思路。
關(guān)鍵詞:噪聲;魚類行為;魚類聽力;信息掩蔽;魚類生理;聲波粒子運(yùn)動(dòng)
中圖分類號(hào):X835? ? ? ? 文獻(xiàn)標(biāo)志碼:A? ? ? ? 文章編號(hào):1674-3075(2023)06-0142-06
近年來,隨著航運(yùn)、港口、海上風(fēng)電場建設(shè)和運(yùn)營需求的增加,人為活動(dòng)產(chǎn)生的噪聲也在增加。時(shí)間短、高頻率的噪聲會(huì)導(dǎo)致魚類耗氧量、皮質(zhì)醇、葡萄糖、乳酸等生理指標(biāo)短時(shí)間內(nèi)發(fā)生變化,從而改變魚類游泳速度、深度以及運(yùn)動(dòng)方向,影響魚類集群(Herbert-Read et al,2017);低頻率人為水下噪聲影響魚類的聽覺敏感度,強(qiáng)烈噪聲刺激下魚類的聽覺閾值會(huì)發(fā)生暫時(shí)或永久性偏移(Popper & Fay, 2011);另外,噪聲可能威脅到魚類重要的行為功能,如物種識(shí)別、生殖交配、覓食和進(jìn)食、種群信息交流等(Voellmy et al,2014; Nedelec et al,2016; Radford et al,2016; Shannon et al,2016; Spiga et al,2017)。
目前,水下噪聲對(duì)魚類的影響已經(jīng)成為一個(gè)嚴(yán)重的生態(tài)問題。隨著噪聲水平逐步上升,在噪聲對(duì)魚類多樣性和水下生態(tài)系統(tǒng)造成不可逆的損害之前,有必要對(duì)噪聲采取合理的管控措施。因此,開展噪聲對(duì)魚類的影響研究已迫在眉睫。本文總結(jié)概括了噪聲對(duì)魚類行為和生理影響等方面的相關(guān)研究進(jìn)展,指出了存在的不足,并提出了相關(guān)改進(jìn)建議,以期為噪聲管理和水生態(tài)保護(hù)提供參考。
1? ?魚類的聲學(xué)互作
魚類的聽覺系統(tǒng)包括內(nèi)耳、氣鰾等周邊附屬結(jié)構(gòu)和聽覺中樞。魚鰾可以輔助內(nèi)耳感知16~300 Hz頻率的振動(dòng),內(nèi)耳石可以感知聲音振動(dòng)的方向;此外,魚體表的側(cè)線可感受到水波振動(dòng),同時(shí)接收低頻和超低頻振動(dòng),以感受50~150 Hz的低頻振動(dòng)為主(Popper et al,2003);多數(shù)魚能聽到50~1 000 Hz的聲頻,極少數(shù)魚可以聽到100 kHz以上的聲音(申鈞,1983;邢彬彬等,2018)。
與嗅覺和視覺感官相比,聽覺信號(hào)的優(yōu)勢(shì)在于可以向各個(gè)方向長距離傳播(Rogers & Cox,1988)。因此,聲音是魚類確定方向和尋找合適棲息地的重要信號(hào)之一(Tolimieri et al,2000;Montgomery et al,2006;Simpson et al,2008;Radford et al,2011)。聲音在成年魚的聚集產(chǎn)卵、求偶互動(dòng)、領(lǐng)土保護(hù)和維持魚群的凝聚力方面也有重要作用(Mann et al,1998;Popper et al,2003)。例如,黑線鱈(Melanogrammus aeglefinus)在產(chǎn)卵聚集或求偶互動(dòng)中,通過呼叫發(fā)出聲音并且同步釋放配子以進(jìn)行配偶選擇(Amorim et al,2015);腋孔蟾魚(Halobatrachus didactylus)交配成功與否取決于求偶期間雄性的聲音;繁殖季節(jié)的魚類會(huì)聚集在一起,雄性蟾魚會(huì)主動(dòng)發(fā)聲以吸引雌性(Alves et al,2016)。
聲音在魚類領(lǐng)地防御中起到一定作用,面對(duì)同種或異種的侵略,魚類通過發(fā)出聲音保護(hù)自身。研究發(fā)現(xiàn),毒棘豹蟾魚(Opsanus tau)在繁殖時(shí)期會(huì)發(fā)出破壞性的咕嚕聲干擾來自其他雄性發(fā)出的信號(hào),以宣示領(lǐng)地主權(quán)并警告其他雄性,達(dá)到保護(hù)自身作用(Mensinger,2014);紅腹食人魚(Pygocentrus nattereri)在捕食的過程中會(huì)對(duì)同類發(fā)出警告聲,以此來宣示自身對(duì)食物或者領(lǐng)地的主權(quán)(Millot et al,2011)。
部分魚類還會(huì)利用聲音作為聯(lián)系信號(hào)來維持魚群的凝聚力。例如,新西蘭大眼鯛(Espempheris adspersa)發(fā)出相同的叫聲時(shí)就會(huì)聚集在一起,且暴露于較高聲級(jí)的環(huán)境礁聲時(shí),其群體凝聚力會(huì)顯著增加(Van Oosterom et al,2016)。
2? ?噪聲對(duì)魚類行為的影響
目前,噪聲對(duì)魚類行為的影響已經(jīng)從游泳速度、空間位置、攝食、產(chǎn)卵等方面開展了相關(guān)研究。
噪聲刺激會(huì)使魚類的游泳速度顯著性增加,魚群會(huì)短暫向各個(gè)方向擴(kuò)散,其結(jié)構(gòu)和運(yùn)動(dòng)方向發(fā)生改變。大西洋鯡(Clupea harengus)在虎鯨(Orcinus orca)進(jìn)食聲音刺激下會(huì)加快游泳速度(Doks?ter et al,2009);純黑樸麗魚(Haplochromis piceatus)在95 dB(100~1 000 Hz)的人工噪聲下會(huì)向下移動(dòng),并在魚缸底部停留更長時(shí)間(Sabet et al,2016);此外,與環(huán)境聲音播放不同,經(jīng)歷打樁噪聲播放的實(shí)驗(yàn)魚,其凝聚力降低、方向感變差,個(gè)體之間相互協(xié)調(diào)運(yùn)動(dòng)的能力顯著降低(Herbert-Read et al,2017)。
魚類在噪聲刺激下,覓食總量也會(huì)發(fā)生改變。McLaughlin & Kunc(2015)發(fā)現(xiàn)噪聲使黑斑盤雀鯛(Dischistodus melanotus)的躲藏時(shí)間增加,導(dǎo)致覓食個(gè)體數(shù)量減少,從而降低采食量;Magnhagen等(2017)發(fā)現(xiàn)在噪聲刺激下,鱸(Lateolabrax japonicus)和斜齒鳊(Rutilus rutilus)覓食努力嘗試次數(shù)減少。
噪聲還會(huì)降低魚類產(chǎn)卵的成功率。Blom等(2019)研究表明,持續(xù)的噪聲會(huì)導(dǎo)致魚類產(chǎn)卵延遲,從而降低其產(chǎn)卵的可能性;De Jong等(2018)測試了連續(xù)噪聲對(duì)黃體尻蝦虎魚(Gobiusculus flavescens)和大眼長臀鰕虎魚(Pomatoschistus pictus)的求偶情況,發(fā)現(xiàn)二者的求偶行為均有所減少,且大眼長臀鰕虎魚的產(chǎn)卵成功率顯著降低。
3? ?噪聲對(duì)魚類生理的影響
噪聲會(huì)導(dǎo)致魚類聽力受損,阻礙魚類之間信息交流,對(duì)尋求配偶產(chǎn)生不利影響,干擾魚類回聲定位;促使魚體內(nèi)生理激素指標(biāo)升高,生理應(yīng)激指標(biāo)發(fā)生不適變化,強(qiáng)烈的噪聲刺激還會(huì)損傷魚體器官。
3.1? ?對(duì)魚類聽力閾值的恢復(fù)和損傷
長期暴露在噪音下,魚的內(nèi)耳毛細(xì)胞出現(xiàn)疲勞,會(huì)發(fā)生暫時(shí)性聽閾偏移(TTS)或永久性聽閾偏移(PTS)。Crovo等(2015)發(fā)現(xiàn)暴露在交通道路噪聲下的迷人真小鯉(Cyprinella venusta)對(duì)不同聲頻的聽覺閾值都顯著增加;McCauley等(2003)發(fā)現(xiàn)在氣槍噪聲(205~210 dB)刺激下,白斑狗魚(Esox lucius)聽覺閾值偏移20 dB,鉛魚(Couesius plumbeus)最大聽力閾值偏移為35 dB。
暫時(shí)性聽閾偏移(TTS)會(huì)降低魚類交流或評(píng)估環(huán)境的能力,但TTS是可恢復(fù)的。魚類內(nèi)耳毛細(xì)胞的修復(fù)或替換,使得其聽覺閾值偏移得以恢復(fù),恢復(fù)時(shí)間則取決于暴露噪聲的持續(xù)時(shí)間。Scholik & Yan(2001)發(fā)現(xiàn)在噪聲暴露2 h(142 dB)后,黑頭呆魚(Pimephales promelas)聽覺閾值在6 d內(nèi)完全恢復(fù),而在噪聲暴露24 h后,聽覺閾值在14 d仍未完全恢復(fù),該研究說明聽覺閾值的恢復(fù)與暴露于噪聲的持續(xù)時(shí)間具有密切關(guān)聯(lián);Popper 等(2005)分析了氣槍噪聲(205~210 dB)對(duì)魚類聽覺閾移后恢復(fù)情況,發(fā)現(xiàn)聽覺靈敏度較高的鉛魚,其閾值損失恢復(fù)時(shí)間在18 h以內(nèi),而靈敏度較差的白斑狗魚恢復(fù)時(shí)間則需24 h。可見不同魚類在相同噪聲刺激后的恢復(fù)時(shí)間具有顯著差異。
永久性聽閾偏移(PTS)是耳朵中感覺毛細(xì)胞死亡、支配聽覺神經(jīng)纖維受損或聽覺通路中其他組織(鰾)受損的結(jié)果,PTS是不可逆的。研究表明,粉紅鯛 (Pagrus auratus)在長期暴露于氣槍噪聲(峰值222.6 dB)后,其聽力結(jié)構(gòu)嚴(yán)重受損,無恢復(fù)跡象(McCauley et al,2003);黑頭呆魚在暴露于142 dB(300~2000 Hz)噪聲14 d后沒有恢復(fù)聽力閾值(Scholik et al,2001)。這些研究結(jié)果充分表明,魚類長時(shí)間暴露在嘈雜的噪聲環(huán)境中將會(huì)永久地改變聽力閾值。
3.2? ?對(duì)魚類信號(hào)識(shí)別的掩蔽作用
在相同的臨界波段寬度下,人為活動(dòng)會(huì)產(chǎn)生接近或高于魚類發(fā)聲水平的大型近場背景噪聲,這種噪聲有可能“掩蓋”生物上重要的信號(hào),阻止魚類聽到并識(shí)別這種聲信號(hào)(Neenan et al,2016)。人為噪聲的掩蔽可能會(huì)干擾發(fā)聲魚類對(duì)于其同類的信息判斷。這是由于引入的噪聲提高了環(huán)境聲音水平并降低了信噪比,從而縮短了魚類信號(hào)檢測距離,導(dǎo)致其對(duì)聲信號(hào)檢測變得更加困難(Andersson,2011)。這種掩蔽效應(yīng)可能阻礙魚類之間信息交流,對(duì)魚類尋求配偶產(chǎn)生不利影響并干擾其回聲定位。
噪聲會(huì)阻礙魚類之間的信息交流,影響魚類對(duì)聲信號(hào)的接收。Codarin等(2009)研究發(fā)現(xiàn),環(huán)境噪聲和船舶噪聲(115~125 dB)會(huì)干擾短身光鰓雀鯛(Chromis chromis)、弓背石首魚(Sciaena umbra)和紅嘴蝦虎魚(Gobius cruentatus)的聲波通訊及對(duì)同種聲音的探測。
噪聲會(huì)對(duì)魚類尋求配偶產(chǎn)生不利影響(Wollerman & Wiley,2002)。Vasconcelos等(2007)發(fā)現(xiàn)船舶噪聲使腋孔蟾魚的聽力閾值顯著增加,造成其接收同種聲音的能力減弱,這可能會(huì)影響其尋找配偶;Bent等(2021)觀察到與對(duì)照組相比,彩繪蝦虎魚(Pomatoschistus pictus)暴露在交通噪聲和白噪聲環(huán)境下,魚類會(huì)對(duì)異性求愛信號(hào)的識(shí)別產(chǎn)生延遲,因此可能會(huì)降低魚類交配的成功率。
噪聲會(huì)干擾魚類回聲定位。部分魚類幼體能利用周圍的環(huán)境噪聲來確定理想棲息地的方位,而人為噪聲污染可能會(huì)干擾幼體的定居過程,魚類可能會(huì)因?yàn)闊o法找到合適的定居地點(diǎn)而缺乏食物,或被捕食甚至死亡(Radford et al,2010;Holles et al,2013)。
3.3? ?引起魚類的其他生理反應(yīng)
噪聲刺激還會(huì)導(dǎo)致魚類發(fā)生其他生理變化,這種變化在一定程度上反映出了魚類的健康狀況,主要表現(xiàn)為糖皮質(zhì)激素、皮質(zhì)醇、血糖、乳酸、血漿等生理指標(biāo)的上升以及呼吸(通氣)率、耗氧量等生理應(yīng)激指標(biāo)發(fā)生劇烈變化;此外,強(qiáng)烈的噪聲刺激還會(huì)損害魚體的生理器官。
血漿、皮質(zhì)醇和血糖等生理指標(biāo)已被廣泛接受為評(píng)估環(huán)境或生物壓力因素對(duì)魚類影響的指標(biāo)(Reiner,2011)。Debusschere等(2016)進(jìn)行了打樁聲暴露實(shí)驗(yàn),發(fā)現(xiàn)海鱸(Dicentrarchus labrax)的皮質(zhì)醇、耗氧率和全身乳酸濃度顯著降低;Celi等(2016)把金頭鯛(Sparus aurata)暴露在船舶噪聲下,發(fā)現(xiàn)其ACTH、皮質(zhì)醇、葡萄糖、乳酸、紅細(xì)胞壓積、Hsp70、膽固醇、甘油三酯和滲透壓值均顯著增加。
呼吸(通氣)率、耗氧量是生理壓力的重要指標(biāo),在一定程度上同樣能反應(yīng)魚體健康情況。Kusku等(2020)研究表明,尼羅羅非魚(Oreochromis niloticus)長期暴露在水下施工所產(chǎn)生的噪聲下,其鰓蓋搏動(dòng)和胸翼運(yùn)動(dòng)會(huì)顯著增加;Radford等(2016)觀察到,與對(duì)照組相比,暴露在打樁聲中的歐洲鱸(Dicentrarchus labrax),其鰓蓋搏動(dòng)率會(huì)顯著升高。
強(qiáng)烈的噪聲刺激會(huì)造成魚體的器官損傷。Halvorsen等(2012)把湖鱘(Acipenser fulvescens)和尼羅羅非魚暴露在打樁聲環(huán)境下,發(fā)現(xiàn)2種魚的魚鰾均有損傷;Casper等(2013)讓雜交條紋鱸(Morone saxatilis)和羅非魚(Oreochromis mossambicus)暴露于打樁聲下,二者都表現(xiàn)出氣壓創(chuàng)傷,生理活性大大降低。
4? ?展望
有關(guān)噪聲對(duì)魚類的影響研究廣泛并已取得了一定成果,但在模擬聲場場景中也存在不足,缺乏聲場粒子運(yùn)動(dòng)的研究,噪聲暴露實(shí)驗(yàn)設(shè)置形式過于單一、缺乏周期性監(jiān)測。因此,未來探究噪聲對(duì)魚類影響應(yīng)從以下幾個(gè)方面開展。
4.1? ?模擬真實(shí)的自然環(huán)境聲場
改進(jìn)實(shí)驗(yàn)設(shè)計(jì),盡可能模擬真實(shí)的聲場場景。目前大量的實(shí)驗(yàn)都是在室內(nèi)水槽或網(wǎng)箱中進(jìn)行的,或是在開放性水域的圍場中進(jìn)行的;理想的情況下,噪聲暴露實(shí)驗(yàn)應(yīng)設(shè)計(jì)在自然水生環(huán)境中。今后的實(shí)驗(yàn)開展應(yīng)盡量選擇野外實(shí)地或設(shè)計(jì)出接近實(shí)地的開放性水域。
4.2? ?探測粒子運(yùn)動(dòng)對(duì)魚類的影響
粒子運(yùn)動(dòng)的檢測對(duì)于所有魚類(無脊椎動(dòng)物)的聽力是不可或缺的,可被用于定位聲源的方向。然而,目前聲波粒子運(yùn)動(dòng)研究多通過聲壓來計(jì)算粒子相關(guān)性質(zhì)(Nedelec et al,2016),極少能真實(shí)模擬聲波粒子運(yùn)動(dòng),且魚類使用的頻率通常無法達(dá)到計(jì)算粒子相關(guān)性質(zhì)所需。人為噪聲源可能對(duì)魚類和無脊椎動(dòng)物產(chǎn)生近場效應(yīng),近場效應(yīng)對(duì)這些魚類和無脊椎動(dòng)物的影響程度與聲波粒子運(yùn)動(dòng)有關(guān)而與聲壓無關(guān)。
Popper & Hawkins(2018)指出,探究粒子運(yùn)動(dòng)對(duì)魚類影響的主要困難是難以測量粒子運(yùn)動(dòng)和對(duì)粒子運(yùn)動(dòng)建模,以及缺乏關(guān)于粒子運(yùn)動(dòng)對(duì)魚類可能造成不利影響的實(shí)驗(yàn)數(shù)據(jù)。因此,基于該問題本文提出以下建議:
(1)克服在不同水環(huán)境中測量粒子運(yùn)動(dòng)和對(duì)粒子運(yùn)動(dòng)建模的困難,探究阻礙粒子運(yùn)動(dòng)量化的主要障礙,然后予以消除。
(2)使用正確校準(zhǔn)的傳感器進(jìn)行粒子運(yùn)動(dòng)測量,研究魚類對(duì)粒子運(yùn)動(dòng)的探測能力,更好地理解魚類對(duì)粒子運(yùn)動(dòng)探測的力學(xué)和生理學(xué)機(jī)制,并確定其對(duì)粒子運(yùn)動(dòng)的敏感性。
(3)改進(jìn)評(píng)估方法,應(yīng)采用更科學(xué)的方法進(jìn)行評(píng)估,并根據(jù)魚類對(duì)粒子運(yùn)動(dòng)的敏感性獲得更可靠的聽力測量。
(4)探究高粒子運(yùn)動(dòng)水平對(duì)魚類死亡率、損傷和聽力損失、掩蔽以及生理和行為變化的影響。如果是粒子運(yùn)動(dòng)導(dǎo)致的魚類損傷,確定這種影響的機(jī)制,以評(píng)估其產(chǎn)生粒子運(yùn)動(dòng)對(duì)魚類產(chǎn)生的不利影響。
4.3? ?開展多樣化噪聲暴露實(shí)驗(yàn)
噪聲暴露實(shí)驗(yàn)形式應(yīng)多種化,適當(dāng)增加實(shí)驗(yàn)監(jiān)測周期。魚類對(duì)不同噪聲刺激的反應(yīng)會(huì)隨著暴露形式而發(fā)生變化。截至目前,大多數(shù)調(diào)查都涉及短時(shí)噪聲暴露后的反應(yīng)變量,且未進(jìn)行周期性監(jiān)測,僅有少數(shù)研究是關(guān)于重復(fù)、連續(xù)或不規(guī)則長期暴露于人類產(chǎn)生的聲音的信息。因此,應(yīng)開展噪聲暴露時(shí)間和播放形式方面的研究并進(jìn)行周期性監(jiān)測。
5? ?結(jié)論
噪聲對(duì)魚類行為和聽力、信息掩蔽及其他生理等多方面產(chǎn)生的主要不利影響如下:
(1)魚類行為在一定程度噪聲刺激下會(huì)發(fā)生變化,通常表現(xiàn)為魚類游泳速度顯著性增加,其覓食量相應(yīng)減少,產(chǎn)卵成功率降低。
(2)受噪聲刺激,魚類的聽覺閾值可能會(huì)出現(xiàn)暫時(shí)性聽覺閾移(PTS)或永久性聽覺閾移(TTS),PTS可恢復(fù),TTS則不可逆轉(zhuǎn)。
(3)噪聲會(huì)對(duì)魚類接收聲信號(hào)產(chǎn)生掩蔽效應(yīng),阻礙魚類之間信息交流,對(duì)魚類尋求配偶產(chǎn)生不利影響,干擾魚類回聲定位。
(4)噪聲會(huì)促使魚體內(nèi)的血漿、皮質(zhì)醇、乳酸和血糖等生理激素指標(biāo)升高,使魚的呼吸(通氣)率、耗氧量等發(fā)生變化,強(qiáng)噪聲刺激會(huì)損傷魚體器官。
參考文獻(xiàn)
申鈞,1983. 魚類聽覺器官的結(jié)構(gòu)與功能[J]. 生理科學(xué)進(jìn)展, 14(1):60-64.
邢彬彬,許柳雄,殷雷明,等,2018. 魚類的聽覺特性與應(yīng)用研究進(jìn)展[J]. 海洋漁業(yè), 40(4):495-503.
Alves D, Amorim M C P, Fonseca P J, et al, 2016. Assessing acoustic communication active space in the Lusitanian toadfish[J]. Journal of Experimental Biology, 219(8):1122-1129.
Amorim M C P, Vasconcelos R O, Fonseca P J, 2015. Fish sounds and mate choice[C]//F. Ladich (Ed.), Sound communication in fishes[M]. Vienna, Austria: Springer Vienna.
Andersson M H, 2011. Offshore wind farms-ecological effects of noise and habitat alteration on fish[D]. Department of Zoology: Stockholm University.
Bent A M, Ings T C, Mowles S L, et al, 2021. Anthropogenic noise disrupts mate choice behaviors in female Pomatoschistus pictus[J]. Behavioral Ecology, 32(2):201-210.
Blom E L, Kvarnemo C, Dekhla I, et al, 2019. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care[J]. Scientific Reports, 9(1):1-9.
Casper B M, Smith M E, Halvorsen M B, et al, 2013. Effects of exposure to pile driving sounds on fish inner ear tissues[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166(2):352-360.
Celi M, Filiciotto F, Maricchiolo G, et al, 2016. Vessel noise pollution as a human threat to fish:assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758)[J]. Fish Physiology and Biochemistry, 42(2):631-641.
Codarin A, Wysocki L E, Ladich F, et al, 2009. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy)[J]. Marine Pollution Bulletin, 58(12):1880-1887.
Crovo J A, Mendon?a M T, Holt D E, et al, 2015. Stress and auditory responses of the otophysan fish Cyprinella venusta to road traffic noise[J]. PloS ONE, 10(9):e0137290.
De Jong K, Amorim M C P, Fonseca P J, et al, 2018. Noise can affect acoustic communication and subsequent spawning success in fish[J]. Environmental Pollution, 237:814-823.
Debusschere E, Hostens K, Adriaens D, et al, 2016. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving[J]. Environmental Pollution, 208:747-757.
Doks?ter L, Rune G O, Olav H N, et al, 2009. Behavioral responses of herring (Clupea harengus) to 1-2 and 6-7 kHz sonar signals and killer whale feeding sounds[J]. The Journal of the Acoustical Society of America,125(1):554-564.
Halvorsen M B, Casper B M, Matthews F, et al, 2012. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker[J]. Proceedings of the Royal Society B: Biological Sciences, 279:4705-4714.
Herbert-Read J E, Kremer L, Bruintjes R, et al, 2017. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals[J]. Proceedings of the Royal Society B: Biological Sciences, 284:20171627.
Holles S, Simpson S D, Radford A N, et al, 2013. Boat noise disrupts orientation behaviour in a coral reef fish[J]. Marine Ecology Progress Series, 485:295-300.
Kusku H, Yigit ?, Yilmaz S, et al, 2020. Acoustic effects of underwater drilling and piling noise on growth and physiological response of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture Research, 51(8):3166-3174.
Magnhagen C, Johansson K, Sigray P, et al, 2017. Effects of motorboat noise on foraging behaviour in Eurasian perch and roach:a field experiment[J]. Marine Ecology Progress Series, 564:115-125.
Mann D A, Lu Z, Hastings M C, et al, 1998. Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima)[J]. The Journal of the Acoustical Society of America, 104(1):562-568.
McCauley R D, Fewtrell J, Popper A N, et al, 2003. High intensity anthropogenic sound damages fish ears[J]. The Journal of the Acoustical Society of America, 113(1):638-642.
McLaughlin K E, Kunc H P, 2015. Changes in the acoustic environment alter the foraging and sheltering behaviour of the cichlid Amititlania nigrofasciata[J]. Behavioural Processes, 116:75-79.
Mensinger A F, 2014. Disruptive communication: stealth signaling in the toadfish[J]. Journal of Experimental Biology,217(3):344-350.
Millot S, Vandewalle P, Parmentier E, et al, 2011. Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner):an acoustical, behavioural and morphofunctional study[J]. Journal of Experimental Biology, 214(21):3613-3618.
Montgomery J C, Jeffs A, Simpson S D, et al, 2006. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans[J]. Advances in Marine Biology, 51:143-196.
Nedelec S L, Campbell J, Radford A N, et al, 2016. Particle motion: the missing link in underwater acoustic ecology[J]. Methods in Ecology and Evolution, 7(7):836-842.
Neenan S, Piper R, White P, et al, 2016. Does masking matter? Shipping noise and fish vocalizations[J]. Advances in Experimental Medicine & Biology, 875:747.
Popper A N, Fay R R, 2011. Rethinking sound detection by fishes[J]. Hearing Research, 273(1/2):25-36.
Popper A N, Fay R R, Platt C, et al, 2003. Sound Detection Mechanisms and Capabilities of Teleost Fishes[C]//Sensory Processing in Aquatic Environments[M]. Collin S P, Marshall N J, Eds, New York: Springer-Verlag.
Popper A N, Hawkins A D, 2018. The importance of particle motion to fishes and invertebrates[J]. The Journal of the Acoustical Society of America, 143(1):470-488.
Popper A N, Smith M E, Cott P A, et al, 2005. Effects of exposure to seismic airgun use on hearing of three fish species[J]. The Journal of the Acoustical Society of America, 117(6): 3958-3971.
Radford A N, Lèbre L, Lecaillon G, et al, 2016. Repeated exposure reduces the response to impulsive noise in European seabass[J]. Global Change Biology, 22(10):3349-3360.
Radford C A, Stanley J A, Tindle C T, et al, 2010. Localised coastal habitats have distinct underwater sound signatures[J]. Marine Ecology Progress Series, 401:21-29.
Radford C A, Stanley J A, Simpson S D, et al, 2011. Juvenile coral reef fish use sound to locate habitats[J]. Coral Reefs, 30(2):295-305.
Reinert R E, 2011. Biological indicators of stress in fish[J]. Transactions of the American Fisheries Society, 121(2):274-276.
Rogers P H, Cox M, 1988. Underwater sound as a biological stimulus[M]. New York: Springer.
Sabet S S, Wesdorp K, Campbell J, et al, 2016. Behavioural responses to sound exposure in captivity by two fish species with different hearing ability[J]. Animal Behaviour, 116:1-11.
Scholik A R, Yan H Y, 2001. Effects of underwater noise on auditory sensitivity of a cyprinid fish[J]. Hearing Research, 152(1/2):17-24.
Shannon G, McKenna M F, Angeloni L M, et al, 2016. A synthesis of two decades of research documenting the effects of noise on wildlife[J]. Biological Reviews, 91(4):982-1005.
Simpson S D, Meekan M G, Jeffs A, et al, 2008. Settlement-stage coral reef fish prefer the higher-frequency invertebrate-generated audible component of reef noise[J]. Animal Behaviour, 75(6):1861-1868.
Spiga I, Aldred N, Caldwell G S, et al, 2017. Anthropogenic noise compromises the antipredator behaviour of the European seabass, Dicentrarchus labrax (L.)[J]. Marine Pollution Bulletin, 122(1/2):297-305.
Tolimieri N, Jeffs A, Montgomery J C, et al, 2000. Ambient sound as a cue for navigation by the pelagic larvae of reef fishes[J]. Marine Ecology Progress Series, 207:219-224.
Van Oosterom L, Montgomery J C, Jeffs A G, 2016. Evidence for contact calls in fish:conspecific vocalisations and ambient soundscape influence group cohesion in a nocturnal species[J]. Scientific Reports, 6(1):1-8.
Vasconcelos R O, Amorim M C P, Ladich F, et al, 2007. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish[J]. Journal of Experimental Biology, 210(12):2104-2112.
Voellmy I K, Purser J, Flynn D, et al, 2014. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms[J]. Animal Behaviour, 89:191-198.
Wollerman L, Wiley R H, 2002. Background noise from a natural chorus alters female discrimina-tion of male calls in a neotropical frog[J]. Anim Behaviour, 63:15-22.
(責(zé)任編輯? ?萬月華)
Research Status and Prospect of Noise Effect on Fish
ZHAN Hui‐fen1,2, LI Xiao‐bing3, NIMA Dan‐zeng4, ZHANG Zhan4, DA Wa4, WANG Yan5,
LIU Zhen‐biao1,2, LIU Yuan‐yuan1,2, HE Chen‐rui1,2, SHI Xiao‐tao1,2, LIU Guo‐yong1,2
(1. Hubei International Science and Technology Cooperation Base of Fish Passage,
China Three Gorges University, Yichang? ?443002, P.R. China;
2. College of Hydraulic and Environment Engineering, China Three Gorges University,
Yichang? ?443002, P.R. China;
3. China Water Resources Beifang Investigation, Design and Research Co.,Ltd., Tianjin? ?300222, P.R. China;
4. Tibet Water Conservancy and Hydropower Planning Survey and Design Institute, Lhasa? ?850000, P.R. China;
5. College of Civil Engineering and Architecture, China Three Gorges University,Yichang? ?443002, P.R. China)
Abstract: Noise can have a variety of negative effects on the behavior and physiology of fish. Studying the impact of noise on fish is of great significance for the protection of fish resources. In this paper, we summarized the research progress of the noise effect on fish hearing, information masking, physiology and behavior, and discussed the shortcomings of the current research in experimental sound field scene, acoustic particle motion, experimental setting form and experimental period monitoring. In view of the shortcomings of the current research, we put forward some specific suggestions as following: simulating the real sound field scene, detecting the influence of acoustic particle motion on fish, conducting various of noise exposure experiments and periodic monitoring. Our study will provide ideas for further study of the effect of noise on fish.
Key words:noise; fish behavior; fish hearing; information masking; fish physiology; sound wave
particle movement
收稿日期:2022-05-05? ? ? 修回日期:2023-03-29
基金項(xiàng)目:國家自然科學(xué)基金(52179070);國家優(yōu)秀青年科學(xué)基金(51922065);湖北省魚類過壩技術(shù)國際科技合作基地開放基金課題(HIBF-2020007)。
作者簡介:占慧芬,1997年生,女,碩士研究生,研究方向?yàn)槁曭?qū)魚技術(shù)。E-mail:2536870419@qq.com
通信作者:劉國勇,1972年生,男,教授,主要從事水生態(tài)學(xué)、生態(tài)水利學(xué)教學(xué)和科研工作。E-mail:278113027@qq.com