征月良
摘 要:研究發(fā)現(xiàn),卵子孤雌激活后,從囊胚中獲得孤雌胚胎干細(xì)胞(parthenogenetic embryonic stem cells,pESCs),pESCs表達(dá)多能性標(biāo)志物,發(fā)生表觀遺傳修飾重編程。它們具有高度的分化潛能,在體內(nèi)可產(chǎn)生畸胎瘤,在體外能形成類胚體。pESCs能分化成多種類型的細(xì)胞,已被用于細(xì)胞移植治療研究。用pESCs分化來的成纖維細(xì)胞構(gòu)建皮膚組織,移植到皮膚缺損處,能促進(jìn)傷口愈合。源自pESCs的成骨細(xì)胞、成軟骨細(xì)胞和肌腱細(xì)胞接種到支架上并移植到皮下后,能再生出骨、軟骨和肌腱組織,從而可以為治療這些組織的損傷提供細(xì)胞來源。pESCs分化產(chǎn)生的心肌細(xì)胞移植到患急性心肌梗死的宿主心臟后,可改善心臟功能。由pESCs分化的神經(jīng)干細(xì)胞或神經(jīng)元移植到受損大腦或患帕金森病的宿主大腦后,也能促進(jìn)大腦皮層的修復(fù),改善宿主的運動缺陷。因此,pESCs在臨床上具有重要的應(yīng)用和推廣價值,從而為疾病的細(xì)胞移植治療提供理論依據(jù)和臨床應(yīng)用策略。
關(guān)鍵詞:孤雌胚胎干細(xì)胞;分化;細(xì)胞移植;細(xì)胞治療;疾病
中圖分類號:Q813
文獻(xiàn)標(biāo)志碼:A
Applications of parthenogenetic embryonic stem cells in cell transplantation and cell therapy
ZHENG Yueliang
(College of Life Science, Linyi University, Linyi 276000, China)
Abstract: Parthenogenetic embryonic stem cells (pESCs) can be established from blastocysts after parthenogenetic activation of oocytes. pESCs express pluripotent markers and undergo epigenetic modification reprogramming. They have high differentiation potential, and can produce teratomas in vivo and embryoid bodies in vitro. Studies have shown that pESCs can differentiate into many types of cells and have been used in cell transplantation and cell therapy research. The fibroblasts differentiated from pESCs can be used to construct skin tissue, which can promote wound healing after being transplanted to the skin defects. Osteoblasts, chondroblasts, and tenocytes derived from pESCs can regenerate bone, cartilage, and tendon tissue after being seeded into the scaffolds and used for subcutaneous transplantation, thus providing cellular sources for the treatments of injuries of these tissues. Cardiomyocytes differentiated from pESCs can improve the cardiac function after they are transplanted into the hearts of hosts with acute myocardial infarction. Transplantation of neural stem cells or neurons derived from pESCs into the injured brains or the brains of hosts with Parkinsons disease can also promote the repair of cerebral cortex and ameliorate motor deficits of hosts. Therefore, pESCs have important clinical applications and promotion values, thus providing theoretical basis and clinical application strategy for cell transplantation and treatment of diseases.
Key words: parthenogenetic embryonic stem cells; differentiation; cell transplantation; cell therapy; disease
在正常有性生殖過程中,精子基因組和卵子基因組結(jié)合,獲得受精胚胎,胚胎在雙親遺傳物質(zhì)的控制下進(jìn)行發(fā)育。待胚胎發(fā)育至囊胚階段,從受精囊胚可獲得胚胎干細(xì)胞(embryonic stem cells derived from fertilized blastocysts,fESCs)[1]。哺乳動物的卵子孤雌激活后,也可產(chǎn)生胚胎,這種孤雌胚胎的發(fā)育僅是在卵子遺傳物質(zhì)的控制下進(jìn)行的。孤雌胚胎也能發(fā)育至囊胚,從囊胚可獲得孤雌胚胎干細(xì)胞(parthenogenetic embryonic stem cells, pESCs)。近年來,pESCs已成為干細(xì)胞研究的熱點之一,人們對這種干細(xì)胞的特性及其在細(xì)胞移植治療上的應(yīng)用有了一定的了解。
卵子孤雌激活后,獲得pESCs。小鼠pESCs在體外培養(yǎng)時,形成碟狀集落,具有堿性磷酸酶活性,表達(dá)多能性標(biāo)志八聚體結(jié)合轉(zhuǎn)錄因子3/4(octamer-binding transcription factor 3/4,OCT3/4)、階段特異性胚胎抗原1(stage-specific embryonic antigen-1,SSEA-1)和NANOG,這些產(chǎn)物對維持pESCs的未分化狀態(tài)起重要作用[2]。pESCs的印跡基因發(fā)生表觀遺傳修飾重編程,這種重編程與甲基化水平變化有關(guān)。人pESCs在傳代過程中,H19和Meg3的差異甲基化區(qū)域(differentially methylated regions,DMR)未發(fā)生甲基化,而Snrpn的DMR發(fā)生甲基化,引起H19和Meg3的表達(dá)上調(diào)及Snrpn的表達(dá)下調(diào)[3]。MAI等[4]對人pESCs中父系印跡基因的表達(dá)進(jìn)行研究,發(fā)現(xiàn)有些印跡基因的表達(dá)水平與fESCs相同,而其他印跡基因在pESCs中表達(dá)水平下降。相比于fESCs,人pESCs中母系印跡基因的表達(dá)上調(diào)[5]。
pESCs具有高度分化潛能,將其注射到裸鼠體內(nèi),能形成畸胎瘤?;チ龊衼碜酝馀邔拥纳窠?jīng)節(jié)、中胚層的軟骨和內(nèi)胚層的腺體。將pESCs進(jìn)行體外懸浮培養(yǎng),能分化成類胚體(embryoid bodies,EBs)。小鼠EBs用視黃酸處理后,置于成脂誘導(dǎo)培養(yǎng)基中,可產(chǎn)生脂肪細(xì)胞[6]。人pESCs可分化為肝細(xì)胞,此分化細(xì)胞具有常規(guī)肝細(xì)胞的典型超微結(jié)構(gòu),表達(dá)肝細(xì)胞標(biāo)志蛋白CK18和Hepa。吲哚菁綠染色表明這種肝細(xì)胞是功能性細(xì)胞,對物質(zhì)具有吸收和代謝能力[7]。pESCs不僅可分化為體細(xì)胞,也可分化為生殖細(xì)胞。將小鼠pESCs先分化為原始生殖細(xì)胞樣細(xì)胞(primordial germ cell-like cells,PGCLC),然后將PGCLC移植到腎包膜中,可獲得卵子,卵子成熟和受精后,能成功產(chǎn)生小鼠幼崽[8]。
pESCs表達(dá)自然殺傷細(xì)胞(natural killer, NK)活化性受體的配體,對NK細(xì)胞的殺傷非常敏感。在pESCs分化后,這種配體的表達(dá)下調(diào),從而分化細(xì)胞獲得對NK細(xì)胞殺傷的抵抗力。來自pESCs的分化細(xì)胞移植后,如果移植物中仍含有pESCs,可能會增加移植的安全性,因為NK細(xì)胞會將pESCs作為靶細(xì)胞而減輕對分化細(xì)胞的殺傷[9]。盡管pESCs在體內(nèi)可能形成畸胎瘤,但與fESCs相比,pESCs形成畸胎瘤的風(fēng)險較低[10]。近年來,pESCs已用作一種重要的干細(xì)胞來源,以分化產(chǎn)生成纖維細(xì)胞、骨細(xì)胞、軟骨細(xì)胞、肌腱細(xì)胞、心肌細(xì)胞、神經(jīng)干細(xì)胞和神經(jīng)元,來進(jìn)行細(xì)胞移植治療研究。
1 分化成纖維細(xì)胞
胚胎干細(xì)胞在構(gòu)建組織工程化皮膚方面具有巨大的應(yīng)用前景。皮膚成纖維細(xì)胞的增殖和生長對于皮膚再生是重要的。間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)是細(xì)胞治療的重要細(xì)胞來源,它產(chǎn)生的外體能提高胞外信號調(diào)節(jié)激酶1/2的磷酸化水平,促進(jìn)皮膚成纖維細(xì)胞的增殖[11]。MSCs的條件培養(yǎng)基中含有許多與皮膚再生相關(guān)的生長因子,能刺激皮膚成纖維細(xì)胞的生長和細(xì)胞外基質(zhì)的產(chǎn)生,有利于皮膚傷口的愈合[12]。將小鼠pESCs進(jìn)行懸浮培養(yǎng),形成EBs,然后將EBs進(jìn)行貼壁培養(yǎng),從EBs的生長物中富集MSCs。用結(jié)締組織生長因子對MSCs進(jìn)行處理,MSCs能定向分化為成纖維細(xì)胞,這種分化細(xì)胞與fESCs分化來的成纖維細(xì)胞類似,均能表達(dá)高水平的FGF、EGF、VEGF等生長因子,這些生長因子對傷口愈合和皮膚修復(fù)是重要的。將pESCs分化來的成纖維細(xì)胞接種到膠原凝膠,形成組織工程化皮膚等效物(tissue-engineered skin equivalents,TESE),能嵌入膠原凝膠中且活力高。TESE移植到小鼠的皮膚缺損處后,能促進(jìn)傷口愈合,未出現(xiàn)明顯炎癥反應(yīng)。皮膚缺損處發(fā)生上皮再生過程,在TESE移植后15 d被成功修復(fù)[13]。
2 分化成骨細(xì)胞和軟骨細(xì)胞
骨的形成可通過軟骨內(nèi)途徑和骨膜內(nèi)途徑實現(xiàn),前一種途徑是骨骼干細(xì)胞(skeletal stem cell,SSC)在初始軟骨模板上形成骨,后一種途徑是骨膜干細(xì)胞(periosteal stem cell,PSC)在骨膜內(nèi)分化成骨[14]。SSC也可分化形成軟骨,BMP2和sVEGFR1的共同作用有利于SSC向軟骨分化[15]。pESCs具有分化成骨和軟骨組織的潛能。先將小鼠pESCs進(jìn)行懸浮培養(yǎng),形成球狀EBs,然后將EBs置于涂有明膠層的培養(yǎng)皿中,進(jìn)行貼壁培養(yǎng),獲得紡錘狀MSCs。將MSCs分別在成骨分化培養(yǎng)基和成軟骨培養(yǎng)基中培養(yǎng),分化為成骨細(xì)胞和成軟骨細(xì)胞。源自pESCs的成骨細(xì)胞(pESC-derived osteoblasts,pDOs)表達(dá)骨橋蛋白和骨鈣素,而來自pESCs的成軟骨細(xì)胞(pESC-derived chondroblasts,pDCs)表達(dá)II型膠原α1鏈和軟骨蛋白聚糖。將pDOs和pDCs分別接種到珊瑚支架和褐藻酸鈉支架上,它們均能在支架上存活,pDOs附著于珊瑚表面并生長到珊瑚孔中,pDCs在褐藻酸鈉凝膠中生長,形成圓形集落。把這些支架移植到裸鼠背部皮下后,沒有炎癥發(fā)生,pDOs和pDCs在移植處成功再生出骨和軟骨組織。pDOs形成的骨組織為紅色,外被結(jié)締組織包裹,表面有骨小梁,內(nèi)部是軟骨,表明這種骨是通過軟骨內(nèi)骨化的方式形成的。纖維組織分布于骨和軟骨之間,小血管穿過骨組織,血管內(nèi)有紅細(xì)胞。盡管珊瑚支架存在于這種骨組織中,但可以通過脫礦質(zhì)作用去除。pDCs形成半透明軟骨,有柔韌性和抗壓性,外被結(jié)締組織包被,橢圓形細(xì)胞散在分布于軟骨基質(zhì)中。軟骨具腔隙,有少量血管穿過。pESCs能夠分化成骨和軟骨組織,為治療這些組織的損傷提供了一種細(xì)胞來源[2]。
3 分化成肌腱細(xì)胞
肌腱可以將力從肌肉傳遞到骨骼,以支持身體運動,肌腱細(xì)胞是肌腱再生的一種理想細(xì)胞來源。肌腱干細(xì)胞表達(dá)促微管聚合蛋白3和血小板衍生生長因子受體α,它可分化為肌腱細(xì)胞,在肌腱再生中起重要作用[16]。誘導(dǎo)多能性干細(xì)胞也可分化為肌腱細(xì)胞,這些細(xì)胞移植到受損肌腱后,能促進(jìn)肌腱再生[17]。將小鼠pESCs分化成MSCs后,再通過循環(huán)機(jī)械拉伸對MSCs進(jìn)行刺激,以增強其膠原合成能力,使其分化為肌腱細(xì)胞,這種分化細(xì)胞能表達(dá)肌腱細(xì)胞標(biāo)志物如肌腱蛋白C和肌腱調(diào)節(jié)蛋白。肌腱細(xì)胞接種到聚乳酸-羥基乙酸共聚物支架上后,能在支架上附著、生長和增殖, 并分泌細(xì)胞外基質(zhì)。將接種有肌腱細(xì)胞的支架移植到小鼠的背部皮下,沒有畸胎瘤產(chǎn)生,肌腱細(xì)胞形成表面光滑的白色肌腱組織。在這種肌腱組織中,肌腱細(xì)胞位于支架軸上,隨后支架降解,出現(xiàn)縱向排列的膠原纖維和細(xì)胞結(jié)構(gòu)。與天然髕骨肌腱相比,pESCs產(chǎn)生的肌腱中膠原纖維直徑更小,結(jié)構(gòu)更松散,這可能是由于移植的皮下部位缺乏機(jī)械刺激的緣故。pESCs分化來的肌腱細(xì)胞可在體內(nèi)形成肌腱組織,為肌腱損傷的治療提供了一種思路[18]。
4 分化成心肌細(xì)胞
小鼠pESCs可分化為心肌細(xì)胞,心肌細(xì)胞移植到主要組織相容性復(fù)合體(major histocompatibility complex,MHC)匹配小鼠的腎包膜后,能自發(fā)搏動28 d。若將這種心肌細(xì)胞移植到MHC不匹配小鼠的腎包膜,只能自發(fā)搏動7 d。將心肌細(xì)胞和滅活的小鼠胚胎成纖維細(xì)胞混合,加入膠原和培養(yǎng)基制成細(xì)胞混合液,然后將混合液加進(jìn)4個環(huán)形模具組成的培養(yǎng)器皿,膠原凝固后,制成工程化心肌(engineered heart muscles,EHMs)。在EHMs中,心肌細(xì)胞呈各向異性排列,有自發(fā)收縮特性,對細(xì)胞外鈣濃度上升產(chǎn)生正性肌力反應(yīng)。將小鼠EHMs與小鼠脾細(xì)胞和T細(xì)胞共培養(yǎng),用干擾素γ進(jìn)行刺激,未引起共培養(yǎng)系統(tǒng)中這些免疫細(xì)胞的增殖[19]。用胰島素樣生長因子II(insulin-like growth factor-II, IGF-II)過表達(dá)載體對小鼠pESCs進(jìn)行轉(zhuǎn)染,生成IGF-II過表達(dá)的pESCs。IGF-II的過表達(dá)能促進(jìn)pESCs向心肌細(xì)胞分化和成熟,將這些心肌細(xì)胞移植到患急性心肌梗死的小鼠心臟后,可改善其心功能指數(shù),減少梗死區(qū)的膠原沉積和線粒體損傷,促進(jìn)線粒體生成,表明pESCs分化來的心肌細(xì)胞可改善心肌梗死后的病理變化和心臟功能,從而為心肌再生治療提供了一條重要途徑[20]。
5 分化成神經(jīng)干細(xì)胞和神經(jīng)元
細(xì)胞治療作為一種治療帕金森病的方法,已經(jīng)引起人們的極大興趣。胎兒神經(jīng)組織移植可改善帕金森病的癥狀,但這種組織的來源有限,而且胎兒神經(jīng)組織移植在倫理上也存在爭議。pESCs來源于未受精卵子,為帕金森病的治療提供了一種很好的選擇。將人pESCs分化為神經(jīng)干細(xì)胞(human parthenogenetic stem cell-derived neural stem cells,hpNSCs)后,選擇患有神經(jīng)毒素導(dǎo)致的中重度帕金森病的猴作受體,將hpNSCs注射到免疫抑制猴的紋狀體和黑質(zhì)中,動物對手術(shù)的耐受性良好,注射的細(xì)胞既沒有形成腫瘤,也不會遷移到肺、心、肝等其他器官。hpNSCs在整個紋狀體和黑質(zhì)中遷移和植入,并通過胼胝體遷移到對側(cè)大腦半球,其分化產(chǎn)生的多巴胺能神經(jīng)元可改善帕金森病的癥狀[21]。除了猴外,患有創(chuàng)傷性腦損傷(traumatic brain injury, TBI)的大鼠也被用作hpNSCs的受體,進(jìn)行細(xì)胞移植治療研究。將hpNSCs注入TBI大鼠的大腦皮層后,hpNSCs可以遷移并植入TBI的周圍區(qū)域,產(chǎn)生抗炎反應(yīng),減輕炎癥對神經(jīng)元的繼發(fā)性損傷,增強神經(jīng)元的存活力,減少反應(yīng)性膠質(zhì)細(xì)胞的增生,增加與神經(jīng)譜系和髓鞘形成相關(guān)的表型表達(dá),從而促進(jìn)神經(jīng)元修復(fù)。hpNSCs移植后,TBI大鼠在抬高身體的搖擺試驗中擺動偏差減少,前爪抓握能力增強,肢體失用癥狀得以改善,在放射臂水迷宮測試中空間認(rèn)知的犯錯也減少,說明hpNSCs移植可以改善TBI大鼠的運動和認(rèn)知缺陷,從而為TBI的細(xì)胞療法研究開辟一條重要途徑[22]。
大腦皮層對大腦的高級功能至關(guān)重要,成體動物的大腦皮層難以通過神經(jīng)發(fā)生方式來補償因損傷導(dǎo)致的神經(jīng)元損失。小鼠pESCs能分化成具有電生理活性的谷氨酸能神經(jīng)元,這些功能性神經(jīng)元移植到成體小鼠的受損大腦后,能整合到大腦皮層中,而且其發(fā)出的軸突具有皮質(zhì)神經(jīng)元的投射模式,在宿主腦中能發(fā)送軸突投射,從而有利于大腦皮層的修復(fù)[23]。除了小鼠pESCs,人pESCs也可分化成神經(jīng)元,用于疾病的細(xì)胞移植治療研究。將人pESCs分化為神經(jīng)上皮細(xì)胞后,誘導(dǎo)神經(jīng)上皮細(xì)胞繼續(xù)分化為多巴胺能神經(jīng)元,此神經(jīng)元具有電生理活性,能誘發(fā)動作電位和細(xì)胞電流。將這些神經(jīng)元移植到患帕金森病的猴的紋狀體中,移植體能在猴腦中存活、遷移和植入,不會形成腫瘤。猴的運動功能在細(xì)胞移植后得以改善,而且這種改善至少持續(xù)24個月,說明移植的細(xì)胞在受體大腦中能發(fā)揮長時間的功能,從而緩解疾病癥狀[24]。
6 結(jié)語
pESCs由孤雌激活的卵子制備而來,避免了通過破壞受精胚胎來獲得胚胎干細(xì)胞所帶來的有關(guān)倫理方面的問題。pESCs能大量增殖,可擴(kuò)增足夠數(shù)量的細(xì)胞,供人們對干細(xì)胞的移植治療進(jìn)行深入研究。pESCs是多能性干細(xì)胞,具有高度分化能力,可用于細(xì)胞移植治療研究。盡管pESCs為這些研究提供了一種重要的細(xì)胞來源,但在細(xì)胞治療時,需要防止畸胎瘤的發(fā)生,減少移植后細(xì)胞的死亡率,增強移植細(xì)胞的存活率。pESCs包括二倍體pESCs和單倍體pESCs,對它們的分化能力和細(xì)胞移植治療效果需要加以比較。pESCs除了分化成上述分化細(xì)胞外,若分化成其他種類的細(xì)胞,這些細(xì)胞的移植治療效果如何,也需要進(jìn)行研究。另外,人們已以動物為模型,將人pESCs的分化細(xì)胞移植給這些動物來進(jìn)行細(xì)胞移植治療研究。但如果這些細(xì)胞移植給人,它的安全性怎樣,有效性如何,還有待進(jìn)行研究。
參考文獻(xiàn):
[1]CHOI K H, LEE D K, OH J N, et al. Pluripotent pig embryonic stem cell lines originating from in vitro-fertilized and parthenogenetic embryos[J]. Stem Cell Research, 2020, 49: 102093.
[2]YE G, SUN M, LIN S, et al. Uniparental parthenogenetic embryonic stem cell derivatives adaptable for bone and cartilage regeneration[J]. Biochimica et Biophysica Acta-molecular Cell Research, 2023, 1870(1): 119379.
[3]ZHONG C Q, ZHANG M L, YIN Q, et al. Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus[J]. Cell Research, 2016, 26(6): 743-746.
[4]MAI Q Y, MAI X Y, HUANG X, et al. Imprinting status in two human parthenogenetic embryonic stem cell lines: analysis of 63 imprinted gene expression levels in undifferentiated and early differentiated stages[J]. Stem Cells and Development, 2018, 27(6): 430-439.
[5]SAGI I, DE PINHO J C, ZUCCARO M V, et al. Distinct imprinting signatures and biased differentiation of human androgenetic and parthenogenetic embryonic stem cells[J]. Cell Stem Cell, 2019, 25(3): 419-432.
[6]LIU W G, YAN X R, LIU W, et al. Alterations of protein glycosylation in embryonic stem cells during adipogenesis[J]. International Journal of Molecular Medicine, 2018, 41(1): 293-301.
[7]LIANG R, WANG Z Q, KONG X Y, et al. Differentiation of human parthenogenetic embryonic stem cells into functional hepatocyte-like cells[J]. Organogenesis, 2020, 16(4): 137-148.
[8]TIAN C L, LIU L L, ZENG M, et al. Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells[J]. Protein Cell, 2021, 12(12): 947-964.
[9]JOHANNSEN H, MUPPALA V, GRSCHEL C, et al. Immunological properties of murine parthenogenetic stem cells and their differentiation products[J]. Frontiers in Immunology, 2017, 8: 924.
[10]TAO H Y, CHEN X N, WEI A B, et al. Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging[J]. Stem Cells International, 2018, 2018: 7906531.
[11]KIM S, LEE S K, KIM H, et al. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J]. International Journal of Molecular Sciences, 2018, 19(10): 3119.
[12]KIM Y J, SEO D H, LEE S H, et al. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin[J]. Biochemistry Biophysics Reports, 2018, 16: 96-102.
[13]RAO Y, CUI J H, YIN L, et al. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent[J]. Stem Cell Research & Therapy, 2016, 7(1): 156.
[14]DEBNATH S, YALLOWITZ A R, MCCORMICK J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.
[15]MURPHY M P, KOEPKE L S, LOPEZ M T, et al. Articular cartilage regeneration by activated skeletal stem cells[J]. Nature Medicine, 2020, 26(10): 1583-1592.
[16]HARVEY T, FLAMENCO S, FAN C M. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis[J]. Nature Cell Biology, 2019, 21(12): 1490-1503.
[17]KOMURA S, SATAKE T, GOTO A, et al. Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice[J]. Scientific Reports, 2020, 10(1): 3992.
[18]LIU W, YIN L, YAN X R, et al. Directing the differentiation of parthenogenetic stem cells into tenocytes for tissue-engineered tendon regeneration[J]. Stem Cells Translational Medicine, 2017, 6(1): 196-208.
[19]DIDI M, GALLA S, MUPPALA V, et al. Immunological properties of murine parthenogenetic stem cell-derived cardiomyocytes and engineered heart muscle[J]. Frontiers in Immunology, 2017, 8: 955.
[20]SUI Y, ZHANG W, TANG T, et al. Insulin-like growth factor-II overexpression accelerates parthenogenetic stem cell differentiation into cardiomyocytes and improves cardiac function after acute myocardial infarction in mice[J]. Stem Cell Research & Therapy, 2020, 11(1): 86.
[21]GONZALEZ R, GARITAONANDIA I, POUSTOVOITOV M, et al. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman Primate model of parkinsons disease[J]. Cell Transplantation,? 2016, 25(11): 1945-1966.
[22]LEE J Y, ACOSTA S, TUAZON J P, et al. Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model[J]. Theranostics, 2019, 9(4): 1029-1046.
[23]VARRAULT A, ECKARDT S, GIRARD B, et al. Mouse parthenogenetic embryonic stem cells with biparental-like expression of imprinted genes generate cortical-like neurons that integrate into the injured adult cerebral cortex[J]. Stem Cells, 2018, 36(2): 192-205.
[24]WANG Y K, ZHU W W, WU M H, et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinsons disease[J]. Stem Cell Reports, 2018, 11(1): 171-182.