商克峰 曹無敵 符夢輯
電極結構對多孔陶瓷孔內微放電特性及苯降解的影響
商克峰1,2曹無敵2符夢輯1
(1. 大連理工大學電氣工程學院 大連 116024 2. 大連理工大學工業(yè)生態(tài)與環(huán)境工程教育部重點實驗室 大連 116024)
微放電可在小的空間中產生高密度等離子體,有利于氣體污染物的高效處理。該文研究了電極結構及電極形狀對多孔陶瓷孔內微放電特性及苯降解的影響。結果表明:在相同外加電壓條件下,與二電極結構相比,三電極結構可生成更多的絲狀放電通道,峰-峰電荷pk-pk提高了3.2倍,放電電荷d提高了4.4倍,放電功率從0.8W提高到8.6W,苯降解效率提高了35.1%;網高壓電極結構相比于彈簧電極,能夠增加有效放電面積并增強放電強度,放電功率相較于彈簧電極構型提高約4W,絲狀放電通道能夠充滿放電空間,顯著提高苯降解效率。
介質阻擋放電 微放電 電極構型 苯降解
介質阻擋放電(Dielectric Barrier Discharge, DBD)是將絕緣介質放置于放電空間內的一種放電形式[1]。絕緣介質抑制放電向弧光或火花放電的轉變,能夠在常溫常壓下產生大量微放電通道,有利于穩(wěn)定地生成等離子體[2],在殺菌消毒[3]、臭氧合成[4-6]、材料表面改性[7-8]、氣流控制[9-10]、環(huán)境保護[11-15]等領域得到了廣泛關注。
微放電是放電被限制在一個有限空間范圍內的氣體放電形式,因其具有高電子密度等特性而被廣泛關注[16]。K. Hensel等研究了由直流高壓產生的多孔材料中微放電的形成,放電從表面放電延伸至陶瓷中,并且在材料內部觀察到微放電[17-18]。D. B. Nguyen等成功地在多孔蜂窩陶瓷反應器中產生等離子體,研究了體系內臭氧和氮氧化物的產生,發(fā)現該裝置在降解有機化合物等方面具有一定優(yōu)勢[19]。此外,DBD裝置中電極結構對于放電特性和活性物質產生特性具有較大的影響[20-21]。李清泉等研究了網眼大小不同的絲網、不同結構形式的極板結構對介質阻擋放電的影響,發(fā)現采用針-板電極時容易形成穩(wěn)定的放電[22]。商克峰等研究了陣列針電極、網電極、平板電極構型對DBD特性、臭氧生成特性的影響,發(fā)現網孔尺寸為0.5mm×0.5mm的網電極放電時生成的臭氧質量濃度最高[23]。然而目前鮮有研究關注如何增強孔內微放電的強度用于提高活性物質生成,進而促進污染物分解。本文研究高壓電極構型對多孔陶瓷孔內微放電特性的影響,并以苯作為目標物,考察了多孔陶瓷微放電等離子體降解揮發(fā)性有機化合物(Volatile Organic Compounds, VOCs)的效果。
實驗系統(tǒng)整體結構如圖1所示,主要由放電裝置、工頻交流電源、電氣參數測試儀器(高壓探頭、低壓探頭和示波器)、配氣系統(tǒng)、氣相色譜儀等構成[9]。
圖1 實驗系統(tǒng)整體結構
多孔陶瓷DBD結構放電裝置如圖2所示,二電極DBD裝置缺少地電極Ⅱ,其中石英玻璃(厚1mm,外徑9mm)作為介質,不銹鋼金屬棒(外徑7mm)作為地電極置于石英介質管內,304不銹鋼編制套網(10目)作為高壓電極放置于多孔陶瓷管外,放電區(qū)域長50mm。多孔陶瓷管內徑為11mm,外徑為20mm,孔徑為60μm,孔隙率為30%。三電極DBD裝置是在二電極結構基礎上,將鋁箔(厚0.8mm)附著于最外層石英玻璃管(內徑30mm,壁厚1mm)上作為地電極Ⅱ,高壓電極分別采用金屬網和不同節(jié)距的不銹鋼彈簧(彈簧線徑1mm,節(jié)距為4mm和9mm)。
圖2 多孔陶瓷DBD結構放電裝置
放電實驗在室溫、正常大氣壓條件下進行。放電裝置由工頻交流高壓電源(0~60kV,50Hz)供電,采用電壓探頭(Tektronix P6015A)測量外加激勵電壓,并用電壓探頭(Tektronix P2220)測量監(jiān)測采樣電容(1μF)兩端的電壓信號,以得到Lissajous圖形;采用電壓探頭(Tektronix TPPO200)測量采樣電阻(100Ω)兩端的電壓信號得到放電電流,由數字示波器(Tektronix TDS2024)監(jiān)測電壓、電流信號;放電功率、單個放電周期內的峰-峰電荷量pk-pk和放電電荷量d通過Lissajous圖形法計算[24],等效總電容cell、介質等效電容d由Lissajous圖形獲得,氣隙等效電容g為
而氣隙電壓g和介質電壓d的關系[25]為
式中,m和m分別為采樣電容值和采樣電容兩端的電壓,本實驗中m為1μF;a為外加電壓。
放電圖像使用Canon EOS 80D相機拍攝。模擬廢氣中苯的濃度采用氣相色譜儀(Shimadzu GC—2010)測試,其降解效率(%)和能量效率Y[g/(kW·h)]分別為
式中,0和1分別為反應器進出口苯濃度,10-4%;為苯的摩爾質量,=78.11g/mol;為氣體流量,L/min;為放電功率,W。
二電極和三電極結構的電壓和電流的波形如圖3所示。實驗中放電長度為5cm,干燥空氣流速為1L/min,外加電壓幅值為18kV,頻率為50Hz。由圖3可以看出,放電是典型的絲狀DBD模式;通過對比二電極系統(tǒng)和三電極系統(tǒng)的電壓電流波形,發(fā)現三電極系統(tǒng)中絲狀電流脈沖通道數目明顯增加,且電流幅值顯著增強,說明增加電極數量可以有效提高放電強度。相比于二電極結構,在正半周期內,三電極結構除產生正向電流細絲外,還存在大量負向電流細絲,表明三電極的放電空間可以擴展到高壓電極到地電極Ⅰ和高壓電極到地電極Ⅱ兩部分區(qū)域,導致三電極系統(tǒng)結構比二電極結構產生更多數量的電流脈沖。外加電壓18kV條件下的放電圖像如圖4所示,可以明顯看出三電極結構放電時的放電強度遠大于二電極結構,高壓電極與地電極Ⅱ之間的空間內充滿放電細絲,這也是三電極結構電流脈沖通道數量增加的原因。
圖3 二電極和三電極結構的電壓電流波形
圖4 二電極和三電極的放電圖像(18kV, f/2.8, ISO-12 800, 2″)
不同電極結構的Lissajous圖形如圖5所示。二電極DBD結構的Lissajous圖形為標準的平行四邊形,但是三電極結構的Lissajous圖形由扁平的平行四邊形變?yōu)槊娣e更大的近似橢圓形。Lissajous圖形的左右對邊和上下對邊的斜率分別對應于放電發(fā)生和熄滅的有效電容,由于放電階段電源向介質等效電容充電,故放電階段對應的有效電容為介質等效電容,而熄滅階段對應的有效電容為介質等效電容與氣隙等效電容串聯(lián)時的總電容[26]。
圖5 二電極和三電極結構的Lissajous圖形
根據Lissajous圖形計算得到的介質等效電容和總電容參數表明,當外加峰值電壓為18kV時,二電極結構的氣隙等效電容g(0.17nF)與三電極結構的氣隙等效電容g(0.24nF)相當,但是三電極結構裝置的介質等效電容d(1.7nF)遠大于二電極結構的d(0.42nF),為二電極結構的3.5倍。在介質阻擋放電中,介質材料的介電常數d與厚度d不變,介質等效電容與放電有效面積成正比[27],即
因此,在增加一個電極后,放電區(qū)域內放電更加強烈,放電細絲通道相應增加(如圖2所示),導致放電有效面積增大,介質等效電容增大。同時,根據式(2)可知,相同外加電壓下,三電極結構的氣隙電壓g較高,放電間隙內電場強度大,這可能是導致三電極結構的電流脈沖幅值與數量較多的原因。
當外加峰值電壓為18kV,三電極結構中高壓電極分別為網電極和彈簧電極(節(jié)距=4mm和=9mm)時的電壓、電流波形如圖6所示,放電圖像如圖7所示。從圖6可以看出,高壓電極為網電極時,電流脈沖數量與峰值都遠大于彈簧電極的情況,在正半周期內,網電極結構的負向電流脈沖細絲數目明顯增多。當彈簧電極作為高壓電極時,節(jié)距較小的電極測得絲狀電流脈沖相對更加強烈。從圖7的放電圖像可以看出,網電極結構的放電強度較高,相較于彈簧結構,其放電電流細絲能夠充滿放電空間。上述結果表明,放電電極的表面積越大,越有利于增多放電點位進而提高絲狀脈沖放電通道。
圖6 不同高壓電極下的電壓電流波形
圖7 不同高壓電極下的放電圖像(18kV, f/2.8, ISO-12 800, 0.5″)
同一外加電壓條件下,不同電極結構的Lissajous圖形如圖8所示。從圖8可以看出,當高壓電極結構從網電極過渡到彈簧電極,并隨著彈簧電極節(jié)距的增大,Lissajous圖形的形狀逐漸趨于扁平。根據式(1)計算不同電極構型下等效電容參數可知,在相同外加峰值電壓下,節(jié)距為4mm的彈簧電極介質電容d(1.46nF)與氣隙電容g(0.2nF)略大于節(jié)距為9mm的彈簧電極結構(d=1.14nF,g=0.16nF),而網電極結構裝置的介質電容d(1.7nF)與氣隙電容g(0.24nF)均最大。由前文分析可知,等效電容大小反映放電有效面積,等效電容越大,放電通道擴散越大。因此可見網高壓電極結構有利于放電細絲擴散,能夠有效提高放電有效面積。同時根據式(2)可知,不同電極結構間的氣隙電壓g相差不大,而網高壓電極可以有效增加放電面積和放電點位,導致絲狀放電通道的數目和強度增加。
圖8 不同高壓電極下的Lissajous圖形
不同電極數量條件下的放電功率如圖9a所示,可以看出功率隨著外加峰值電壓增大而增加,同時三電極結構裝置的放電功率均大于二電極結構,在外加峰值電壓為14kV時,二電極結構裝置的放電功率僅為0.8W,而三電極結構裝置的放電功率增加到8.6W。圖9b考察不同電極數量條件下的電荷特性,包括峰-峰電荷pk-pk和放電電荷d。結果顯示,當外加峰值電壓為18 kV,空氣流量為1L/min時,計算所得三電極結構的pk-pk為28μC,是二電極結構的3.2倍,同時放電電荷約為二電極結構的4.4倍,能夠看出三電極結構裝置可以有效提高放電區(qū)域電荷量。這是因為增加地電極數量后,放電間隙增加,多孔陶瓷管與外層石英玻璃間的空氣可以被電離,從而產生更多的帶電粒子,這也解釋了三電極結構裝置電流脈沖數量遠大于二電極結構的實驗現象。
圖9 電極數量對放電功率和電荷特征的影響
三電極結構裝置中高壓電極構型對放電功率及電荷特性的影響如圖10所示。對比不同外加峰值電壓條件下網電極、彈簧電極(=4mm和=9mm)的放電功率發(fā)現,當峰值電壓小于14kV時,不同節(jié)距的彈簧電極結構的放電功率相差不大,但是都小于網電極結構的放電功率;隨著外加峰值電壓繼續(xù)提高,不同結構電極間的放電功率差值逐漸增加,其中網電極結構的放電功率始終遠高于彈簧結構電極。結合電極構型對等效電容的影響結果可以發(fā)現,這可能與網結構電極的有效放電面積有關。網電極結構擁有最大的有效放電面積,可以產生更多的放電通道,導致放電電流脈沖數量增加(如圖6),以及放電功率的有效提高。從圖10b中可以看出電極構型對電荷特征的影響,其中,相同外加峰值電壓條件下,網電極結構的峰-峰電荷pk-pk和放電電荷d均最大,這與放電功率變化趨勢一致,進一步說明網電極結構有利于電荷的積累。
圖10 電極構型對放電功率和電荷特征的影響
不同電極構型對苯降解效率的影響如圖11a所示,其中苯初始濃度為150×10-4%,氣體流速為50mL/min。從圖11a中可以看出,隨著外加峰值電壓的增大,苯降解效率不斷提高,這與放電功率變化趨勢一致。當外加電壓14kV時,計算得出二電極結構的苯降解能量效率為0.22g/(kW.h),三電極結構的苯降解能量效率為0.16g/(kW.h),雖然降解效率的提高會導致能量效率輕微下降,但是三電極結構的苯降解效率為49.5%,比二電極結構提高了35.1%,說明三電極結構有利于苯的降解。
高壓電極構型對苯降解效率的影響如圖11b所示,其中苯初始濃度為150×10-4%,氣體流速為100mL/min。從圖11b中可知,當外加電壓16kV時,網高壓電極結構的苯降解效率(50.9%)與4mm節(jié)距的彈簧電極結構(50.6%)相差不大;而隨著外加峰值電壓逐漸增大,網高壓電極與4mm節(jié)距的彈簧電極結構的苯降解效率始終高于9mm節(jié)距的彈簧電極結構,這與放電功率和電荷特征變化趨勢一致。在外加峰值電壓為12kV時,計算得到網高壓電極的能量效率為0.25g/(kW.h),4mm和9mm節(jié)距的彈簧高壓電極的能量效率分別為0.29g/(kW.h)和0.19g/(kW.h),說明4mm彈簧電極的能量效率略高于其他兩種電極結構。
圖11 電極數量和構型對苯降解效率的影響
綜上所述,增加地電極及采用網電極或節(jié)距更小的彈簧電極可以有效地提高放電有效面積和放電電荷,導致產生更多的活性粒子及自由電子,從而增加碰撞苯分子的概率,提高苯降解效率。提高放電功率在提高苯降解效率的同時,會導致能量效率輕微下降,因此應綜合考慮,選擇最優(yōu)的電極結構。
1)相較于二電極結構,三電極結構能夠有效增加放電空間,產生更多的放電電流脈沖,提高峰-峰電荷pk-pk和放電電荷d,放電功率更高。
2)在三種不同電極構型(網電極、4mm節(jié)距的彈簧電極和9mm節(jié)距的彈簧電極)中,網電極結構裝置的峰-峰電荷和放電電荷均最大。當外加峰值電壓大于12kV時,網電極的放電功率遠大于彈簧電極。
3)外加電壓相同時,三電極結構及網電極構型提高了放電面積,顯著提高了苯降解效率。
[1] 王新新. 介質阻擋放電及其應用[J]. 高電壓技術, 2009, 34(1): 1-11.
Wang Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 34(1): 1-11.
[2] 王燕, 趙艷輝, 白希堯, 等. DBD等離子體及其應用技術的發(fā)展[J]. 自然雜志, 2002, 24(5): 277-282.
Wang Yan, Zhao Yanhui, Bai Xiyao, et al. DBD plasma and the development of its application[J]. Nature Magazine, 2002, 24(5): 277-282.
[3] 夏文杰, 劉定新. Ar等離子體射流處理乙醇水溶液的放電特性及滅菌效應[J]. 電工技術學報, 2021, 36(4): 765-776.
Xia Wenjie, Liu Dingxin. Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776.
[4] 魏俊, 錢樹樓, 王城, 等. 填充床介質阻擋放電臭氧發(fā)生器的實驗研究[J]. 高電壓技術, 2017, 43(8): 2696-2701.
Wei Jun, Qian Shulou, Wang Cheng, et al. Experimental study of packed-bed dielectric barrier discharge applied on ozone reactor[J]. High Voltage Engineering, 2017, 43(8): 2696-2701.
[5] Yao Shuiliang, Wu Zuliang, Han Jingyi, et al. Study of ozone generation in an atmospheric dielectric barrier discharge reactor[J]. Journal of Electrostatics, 2015, 75: 35-42.
[6] Zeng Xin, Zhang Yafang, Guo Liangyin, et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 085501.
[7] 米彥, 茍家喜, 劉露露, 等. 脈沖介質阻擋放電等離子體改性對BN/EP復合材料擊穿強度和熱導率的影響[J]. 電工技術學報, 2020, 35(18): 3949-3959.
Mi Yan, Gou Jiaxi, Liu Lulu, et al. Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3949-3959.
[8] 詹振宇, 阮浩鷗, 律方成, 等. 等離子體氟化改性環(huán)氧樹脂及其在C4F7N/CO2混合氣體中電氣性能研究[J]. 電工技術學報, 2020, 35(8): 1787-1798.
Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al. Plasma fluorinated epoxy resin and its insulation properties in C4F7N/CO2mixed gas[J]. Transactions ofChina Electrotechnical Society, 2020, 35(8): 1787-1798.
[9] 吳陽陽, 賈敏, 王蔚龍, 等. 新型介質阻擋放電等離子體激勵器的放電與誘導流動特性實驗[J]. 電工技術學報, 2016, 31(24): 45-53.
Wu Yangyang, Jia Min, Wang Weilong, et al. Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53.
[10] 張明, 李丁晨, 李傳, 等. 離子風的應用研究進展[J]. 電工技術學報, 2021, 36(13): 2749-2766.
Zhang Ming, Li Dingchen, Li Chuan, et al. Research progress in the application of ion wind[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766.
[11] Shang Kefeng, Ren Jingyu, Zhang Qi, et al. Successive treatment of benzene and derived byproducts by a novel plasma catalysis-adsorption process[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105767.
[12] Shang Kefeng, Li Jie, Morent R. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 043001.
[13] Shang Kefeng, Wang Meiwei, Peng Bangfa, et al. Characterization of a novel volume-surface DBD reactor: discharge characteristics, ozone production and benzene degradation[J]. Journal of Physics D: Applied Physics, 2020, 53(6): 065201.
[14] Shang Kefeng, Morent R, Wang Ning, et al. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: reactive species identification and their role in SMX degradation[J]. Chemical Engineering Journal, 2022, 431: 133916.
[15] 張曉星, 王宇非, 崔兆侖, 等. 不同填充材料對介質阻擋放電降解SF6的實驗研究[J]. 電工技術學報, 2021, 36(2): 397-406.
Zhang Xiaoxing, Wang Yufei, Cui Zhaolun, et al. Experimental study on the degradation of SF6by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406.
[16] Penache C, Miclea M, Br?uning-Demian A, et al. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy[J]. Plasma Sources Science and Technology, 2002, 11(4): 476-483.
[17] Hensel K, Matsui Y, Katsura S, et al. Generation of microdischarges in porous materials[J]. Czechoslovak Journal of Physics, 2004, 54(3): C683.
[18] Hensel K, Katsura S, Mizuno A. DC microdischarges inside porous ceramics[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 574-575.
[19] Nguyen D B, Shirjana S, Hossain M M, et al. Effective generation of atmospheric pressure plasma in a sandwich-type honeycomb monolith reactor by humidity control[J]. Chemical Engineering Journal, 2020, 401: 125970.
[20] Takaki K, Hatanaka Y, Arima K, et al. Influence of electrode configuration on ozone synthesis and microdischarge property in dielectric barrier discharge reactor[J]. Vacuum, 2008, 83(1): 128-132.
[21] 周波, 王曉靜, 孫才新. 電極結構對介質阻擋放電參數的影響研究[J]. 高壓電器, 2010, 46(4): 31-34, 39.
Zhou Bo, Wang Xiaojing, Sun Caixin. Effect of electrode structure on the parameters of dielectric barrier discharge[J]. High Voltage Apparatus, 2010, 46(4): 31-34, 39.
[22] 李清泉, 馬磊. 影響介質阻擋放電的因素[J]. 高電壓技術, 2007, 33(9): 10-12, 16.
Li Qingquan, Ma Lei. Experimental study of factors affecting dielectric-barrier discharge[J]. High Voltage Engineering, 2007, 33(9): 10-12, 16.
[23] 商克峰, 曹曉萌, 王肖靜, 等. 高壓電極構型對DBD裝置放電特性及臭氧生成的影響[J]. 高電壓技術, 2016, 42(5): 1394-1400.
Shang Kefeng, Cao Xiaomeng, Wang Xiaojing, et al. Effect of high voltage electrode geometry on the discharge characteristics and the ozone generation of a DBD device[J]. High Voltage Engineering, 2016, 42(5): 1394-1400.
[24] Mei Danhua, Zhu Xinbo, He Yaling, et al. Plasma-assisted conversion of CO2in a dielectric barrier discharge reactor: understanding the effect of packing materials[J]. Plasma Sources Science and Technology, 2014, 24(1): 015011.
[25] Tu Xin, Gallon H J, Twigg M V, et al. Dry reforming of methane over a Ni/Al2O3catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274007.
[26] 鞏銀苗, 魯西坤, 景旭, 等. 基于Lissajous圖形的同軸結構電極介質阻擋放電特性研究[J]. 電氣技術, 2018, 19(9): 41-45.
Gong Yinmiao, Lu Xikun, Jing Xu, et al. Research on discharge characteristics of dielectric barrier discharge on coaxial structure electrode base on Lissajous graphics[J]. Electrical Engineering, 2018, 19(9): 41-45.
[27] 冉冬立, 蔡憶昔, 王軍, 等. 基于Q-V Lissajous圖形法的介質阻擋放電試驗研究[J]. 絕緣材料, 2009, 42(4): 72-76.
Ran Dongli, Cai Yixi, Wang Jun, et al. Experimental study on dielectric barrier discharge based on the Q-V Lissajous figure method[J]. Insulating Materials, 2009, 42(4): 72-76.
Effect of Electrode Configuration on Microdischarge Characteristics in Porous Ceramics and Benzene Degradation
Shang Kefeng1,2Cao Wudi2Fu Mengji1
(1. School of Electrical Engineering Dalian University of Technology Dalian 116024 China 2. Key Laboratory of Industrial Ecology and Environmental Engineering Dalian University of Technology Dalian 116024 China)
Dielectric barrier discharge (DBD), which is characterized by numerous microdischarge channels in narrow gas gap, can stably produce discharge plasma at atmospheric pressure and room temperature. DBD process is simple and easy to operate, leading to a wide range of applications such as waste gas/water treatment, material surface modification, biomedicine and so on. Especially DBD has been hotly studied for volatile organic compounds (VOCs) treatment because of its low breakdown voltage, high electron density and reactive species. Previous studies have found that the electrode configuration of DBD device would change the plasma distribution and the generation characteristics of reactive species. However, few studies have focused on how to enhance the microdischarge in DBD reactor for promoting the degradation of VOCs. In this paper a coaxial tri-electrode DBD device filled with a porous ceramic tube with micron pore size is proposed for benzene degradation.
The coaxial DBD reactor has a three electrode configuration which was named surface-volume hybrid DBD. The mesh or spring type high-voltage electrode was tightly pasted at the inside wall of a quartz tube tightly and then a porous ceramic tube with 60 μm pore size was put in the quartz tube (QTⅠ) and acted as a barrier dielectric. The high voltage electrode was powered by an AC (0~60 kV, 50 Hz) power supply. A rod-like electrode wrapped in a quartz tube (QTⅡ) was put in the middle of ceramic tube to act as one of ground electrode as well as an aluminum foil sheet was wrapped on the outside of QTⅠ to act as another ground electrode. Firstly, the effect of electrode configuration and electrode geometry on the microdischarge characteristics including voltage and current waveforms, microdischarge channel distribution, Lissajous figures was measured. The three-electrode configuration presented stronger microdischarge which was characterized by more current pulses on the current waveforms, more and brighter microdischarge channels on the discharge images and larger Lissajous figure area, and mesh electrode also presented stronger microdischarge than spring electrode, but a decrease in the spring gap of spring electrode can effectively enhance the microdischarge intensity. The dielectric equivalent capacitance and charge characteristics calculated from Lissajous figures showed that the dielectric equivalent capacitance, the peak-peak charge and discharge charge of the three-electrode configuration was 3.5 times, 3.2 and 4.4 times that of the two-electrode configuration. In addition, mesh high-voltage electrode configuration can further improve the effective discharge area compared to spring electrode configuration. Moreover, the discharge power was increased from 0.8 W (two-electrode configuration) to 8.6 W (three-electrode configuration) and the benzene degradation efficiency was correspondingly increased by 35.1%. Compared to spring electrode, the mesh high-voltage electrode can enlarge the discharge area and intensity, and enhance the electric discharge power by 4 W, leading to higher benzene degradation efficiency and comparable energy efficiency to spring electrodes, moreover, the energy efficiency of spring electrode with smaller spring gap (4 mm gap) was slightly higher than that of 9mm gap. The study is helpful for understanding how to strengthen the generation of microdischarges and then promotes the application of microdischarges in gaseous pollutant treatment and ozone generation.
Dielectric barrier discharge, microdischarge, electrode geometry, benzene degradation
10.19595/j.cnki.1000-6753.tces.211891
TM8
國家自然科學基金資助項目(51977024,21577011)。
2021-11-18
2021-12-31
商克峰 男,1976年生,博士,教授,博士生導師,研究方向為放電等離子體環(huán)境污染控制技術。E-mail:shangkf@dlut.edu.cn(通信作者)
曹無敵 男,1998年生,碩士,研究方向為放電等離子體環(huán)境污染控制技術。E-mail:cwudi@mail.dlut.edu.cn
(編輯 李 冰)