劉渤,周衛(wèi)民,陳燕,王坤,張殿浩,張文武,孟祥安,王士戈,安百鋼,徐桂英
基于水溶性煤瀝青的MnO@C復合材料的制備及儲鋰性能研究
劉渤1a,周衛(wèi)民1a,陳燕1b,王坤1a,張殿浩2,張文武2,孟祥安2,王士戈2,安百鋼1a,徐桂英1a
(1.遼寧科技大學 a.遼寧省能源材料與電化學重點實驗室 b.機械工程與自動化學院,遼寧 鞍山 114051;2.海城申合科技有限公司,遼寧 鞍山 114200)
制備出具有高容量、良好的倍率性能和循環(huán)穩(wěn)定性的MnO@C復合電極材料。使用水溶性煤瀝青及KMnO4為原料,通過水熱法制備出Mn3O4@C前驅體。然后經(jīng)過高溫碳熱還原制備MnO@C復合電極材料。通過SEM、XPS、XRD和Raman等分析技術對MnO@C復合材料的形貌、表面、結構等進行表征,并使用循環(huán)伏安、恒流充放電和電化學阻抗等電化學分析技術對其電化學性能進行了評價。TEM和SEM結果表明,制備的水溶性煤瀝青表面豐富的含氧官能團與MnSO4溶液中的Mn2+之間有較強的相互作用,提供成核位點,進而促進了后續(xù)MnO@C材料中納米顆粒的形成和均勻生長。這些納米粒子的形成又起到了提升MnO@C電化學性能的作用。XRD、Raman和XPS結果表明,Mn3O4@C前驅體經(jīng)過高溫碳熱還原反應生成MnO@C后,在MnO表面和包覆的碳材料之間生成了大量的Mn—O—C鍵。電化學結果表明,MnO@C電極在0.1 A/g電流密度下循環(huán)100圈后具有606.47 mAh/g較高的儲鋰容量,即使是在0.5 A/g大電流密度下循環(huán)400圈后仍具有293.83 mAh/g的儲鋰容量。同時,電化學測試也表明,MnO@C復合材料具有非常好的倍率性能。使用鞍鋼產(chǎn)的煤瀝青根據(jù)混酸法制備了水溶性煤瀝青。通過使用水溶性煤瀝青和KMnO4成功地制備了Mn3O4@C前驅體。以Mn3O4@C前驅為原料,通過高溫碳熱還原法制備了MnO@C 復合材料。在MnO表面包覆碳層不僅提供活性位點而且起到限制在充放電過程中MnO體積膨脹的作用。特別值得注意的是,Mn—O—C鍵構筑了MnO和碳層之間的快速導電通道,提升了電極反應動力學。
一氧化錳;水溶性煤瀝青;Mn—O—C鍵;界面阻抗;鋰離子電池;負極
鋰離子電池因其工作電壓高、能量密度大和循環(huán)壽命長等特點,已經(jīng)占據(jù)了商用充電電池市場。然而,隨著電動汽車、混合電動汽車、便攜式電子設備和智能電網(wǎng)等大規(guī)模的應用,對鋰離子電池提出了更高能量密度的要求。但傳統(tǒng)的商用石墨負極因其較低的理論容量(372 mAh/g)已很難滿足當今需求[1-3],為了解決這一問題,人們致力于開發(fā)新一代鋰離子電池負極材料。
過渡金屬氧化物(TMOs),如錳基氧化物,其憑借較高的理論容量(>700 mAh/g)和豐富的自然儲量,得到了研究者們廣泛關注。但是,單純的錳基氧化物作為電極材料時,容量會發(fā)生快速地衰減,這一方面是由于其電導率較低,易產(chǎn)生較大的極化;另一方面是由于鋰離子在錳基氧化物晶格內(nèi)部的嵌入/脫出過程中產(chǎn)生的巨大體積膨脹/收縮效應,不但極易使其從集流體上剝落,無法接觸外電路電子,而且還會導致晶格結構的破壞,從而造成容量快速衰減[4-6]。因此,如何構筑穩(wěn)定且快速的導電網(wǎng)絡至關重要。目前,表面碳包覆被認為是提高復合材料電導率和穩(wěn)定性的有效方法之一。理想情況下,在電化學反應過程中,活性材料產(chǎn)生的電子通過表面碳層傳遞到外電路,反之亦然。在此過程中,表面碳層既能夠保護中心活性材料,緩解其在充放電過程中的體積膨脹,還可以為Li+存儲提供更多的電化學活性位點[7-8]。Zhu等[9]為了提升MnO電極材料的結構穩(wěn)定性,進而提高其電化學性能,設計了一種檳榔狀、核殼結構的MnO@C復合材料。MnO核與外部碳殼的協(xié)同作用,極大地提升了復合材料的電導率和結構穩(wěn)定性,在1.0 A/g電流密度下經(jīng)過900次充放電循環(huán)后,MnO@C復合材料仍具有314.3 mAh/g的儲鋰容量。同樣,Sun等[10]為了解決MnO電極材料的循環(huán)穩(wěn)定性和速率性能差等問題,將納米MnO顆粒負載在石墨烯納米片上,制備了MnO/graphene復合材料。得益于石墨烯納米片極高的電導率,MnO/graphene復合材料表現(xiàn)出了優(yōu)異的速率性能和較長的循環(huán)壽命,在2 A/g電流密度下經(jīng)過400次充放電循環(huán)后,其儲鋰容量高達843.3 mAh/g。然而,傳統(tǒng)的碳包覆方法構建的導電網(wǎng)絡往往忽略了中心活性材料和表面碳層之間導電通路,二者通常是以物理方式互連而不是化學鍵共連,這樣使得電子需要克服較大的界面阻抗才能夠從表面碳網(wǎng)絡傳遞至中心活性材料,難以構建通暢的導電網(wǎng)絡。
為了解決這一問題,Hao等[11]受人類神經(jīng)元結構的啟發(fā),設計了一種類神經(jīng)元結構的Fe3O4@C/RGO復合材料。Fe3O4被表面碳層保護并通過Fe—O—C鍵共連在一起,反應開始時,電子可以通過氧橋快速轉移,使Fe3O4@C/RGO復合材料在2 A/g電流密度下經(jīng)過1 000次充放電循環(huán)后仍具有715 mAh/g的儲鋰容量。Jia等[12]采用水熱和PECVD相結合的方法制備了核殼型MnO2@RGO復合材料,同樣發(fā)現(xiàn)Mn—O—C鍵的存在賦予了復合材料超強的導電性和循環(huán)穩(wěn)定性。遺憾的是,到目前為止,如何在MnO@C材料中構筑Mn—O—C鍵的方法仍然沒有被明確提出。此外,MnO@C材料多采用價格昂貴的碳納米管、氧化石墨烯和高分子化合物等作為表面修飾碳層[13-14],不利于實際應用。
鑒于此,本研究采用價格低廉的煤焦油瀝青為碳源,采用水熱法制備了Mn3O4@C前驅體,后續(xù)經(jīng)過高溫碳熱還原,針對性地制備出了富含Mn—O—C鍵的MnO@C復合材料,相較于單純的MnO電極,MnO@C復合材料電極表現(xiàn)出良好的倍率性能和優(yōu)異的循環(huán)穩(wěn)定性。
鞍鋼生產(chǎn)的中溫煤焦油瀝青。高錳酸鉀(KMnO4)、硫酸錳一水合物(MnSO4·H2O)、硫酸(98%)、硝酸(98%)、氫氧化鈉均購買于阿拉丁工業(yè)公司。
1.2.1 MnO@C復合材料的制備
首先以煤焦油瀝青為原料(CP)采用混酸氧化法制備了水溶性煤瀝青(WSP)[15]。MnO@C的制備過程如下。
將3 mmol KMnO4與20 mL去離子水混合,并將得到的混合溶液標記為A溶液。將1.0 g WSP分散于30 mL去離子水中并逐滴加入1 mol/L NaOH溶液至pH=10,而后加入4.5 mmol MnSO4·H2O,對得到的混合溶液常溫下磁力攪拌30 min,并標記該混合溶液為B溶液。將B溶液緩慢加入到A溶液中,攪拌混合均勻后將該溶液轉至100 mL高壓反應釜中。將高壓反應釜放置于150 ℃恒溫干燥箱中,反應12 h。取出后待其冷卻至室溫,將得到的黑色固體產(chǎn)物用去離子水和無水乙醇分別洗滌3次,并在80 ℃干燥箱中干燥12 h,得到Mn3O4@C材料。將Mn3O4@C材料在氮氣氣氛下,經(jīng)過400 ℃炭化5 h得到MnO@C復合材料。在不添加水溶性煤瀝青的條件下,采用同樣的方法再制備MnO2材料。材料制備流程見圖1。
1.2.2 MnO材料的制備
將上述得到的MnO2材料在氮氣氛圍下,經(jīng)過700 ℃炭化2 h制備MnO材料??刂撇煌瑑r態(tài)氧化物發(fā)生的化學反應方程式見式(1)—(4)[16]。
6Mn2++12OH?+O2(aq.)→2Mn3O4+6H2O (1)
2MnO22MnO+O2 (4)
將所制備的樣品、聚偏氟乙烯(PVDF)和乙炔黑按8∶1∶1的質(zhì)量比混合均勻,滴加適量的N-甲基吡咯烷酮(NMP),在瑪瑙中研磨均勻后涂覆在銅箔上,然后將銅箔置于80 ℃下預干燥1 h以除去絕大部分NMP溶劑,再將其放入真空干燥箱中,120 ℃下干燥12 h。待銅箔冷卻至室溫,裁剪成直徑為11 mm的圓形電極片。最后在充滿氬氣(O2<0.1%,H2O<0.1%)的手套箱中,按負極殼、鋰片、隔膜、電解液、電極片、墊片、彈片、正極殼的順序組裝成CR2032型紐扣半電池。
采用D8 ADVAHCL(德國布魯克公司)X射線衍射儀(XRD,Cu Kα,=0.154 06 nm)分析樣品的物相結構,掃描角度2范圍為10°~90°。樣品的分子結構采用法國Horiba JobinYvon公司的HR800型激光拉曼光譜儀進行分析測試,激光波長為532 nm。樣品表面的化學狀態(tài)分析采用Thermo Scientific K-AlphaX射線光電子能譜儀(XPS)。樣品的表面形貌采用德國卡爾蔡司公司的場發(fā)射掃描電鏡(ZEISS IGMA/HD)進行觀察和分析。
采用武漢藍電CT 2001A型測試系統(tǒng)對樣品進行了倍率性能和循環(huán)性能測試,截止電壓為0.01~3.0 V。采用上海辰華CHI 660E電化學工作站對樣品進行循環(huán)伏安性能測試,掃速為0.2 mV/s,電壓范圍為0.01~ 3.0 V。采用上海辰華CHI 660E電化學工作站對樣品進行交流阻抗測試,測試頻率為100 kHz~0.01 Hz。
首先利用XRD對各個階段的樣品結構進行表征,如圖2a所示。在添加水溶性煤瀝青的條件下,采用水熱法,首先成功制備了Mn3O4@C(ICOD NO.01-089-4837)材料(Mn3O4為四方晶系尖晶石結構),后續(xù)經(jīng)過400 ℃炭化5 h,成功制備了立方緊密堆積結構的MnO@C (ICOD NO.01-077-2363)材料,表明高溫炭化過程中,Mn3O4轉變?yōu)镸nO材料。而在不添加水溶性煤瀝青的條件下,同樣的高溫處理,只能制備出價態(tài)更高且為隧道結構的α-MnO2材料(ICOD NO.00-044-0141),這表明水溶性煤瀝青在高溫炭化過程中起到了還原作用,促進了MnO相的生成。為了后續(xù)進一步研究MnO表面包覆碳層對復合材料的影響,將MnO2材料在氮氣氛圍下,進一步經(jīng)過700 ℃炭化2 h制備了MnO材料,可以看到,與單純的MnO相比,MnO@C材料在34.9°、40.5°、58.7°、70.18°、73.80°處的特征峰半高寬明顯增加,這說明MnO@C材料中的MnO趨向于無定形結構,這利于進一步增加儲鋰位點,提升電化學性能[17]。
圖2b為樣品Mn3O4@C、MnO@C和MnO的拉曼光譜圖。由圖2可知,MnO@C在635.91、1 364、1 607 cm?1處同時觀察到3個振動峰,分別對應著MnO中的Mn—O振動峰以及碳材料中的D峰和G峰,這說明碳成功地包覆在MnO表面。此外,與單純的MnO相比,樣品MnO@C的Mn—O特征峰明顯向低波數(shù)偏移,表明MnO與表面碳層有較強的相互作用[18]。MnO@C材料的D峰和G峰比值為1.71,明顯低于Mn3O4@C材料(D峰和G峰比值為2.44),這說明高溫炭化過程提升了錳氧化物表面碳層的石墨化度,這有利于提高復合材料的導電性,從而提升倍率性能。
圖2 MnO2、MnO、MnO@C和Mn3O4@C的XRD譜圖(a),MnO、MnO@C和 Mn3O4@C的拉曼譜圖(b),MnO、Mn3O4和MnO2的晶型結構(c)
為了證實拉曼分析的結果,利用XPS對樣品MnO@C和Mn3O4@C進行分析,結果如圖3所示。圖3a是樣品MnO@C的Mn 2p精細譜,在結合能為653.4 eV和641.7 eV處可以明顯地發(fā)現(xiàn)2個特征峰,分別對應著Mn2+的Mn 2p1/2和Mn 2p3/2軌道,結合能差值為11.7 eV,這說明錳元素是以正二價的形式存在復合材料中[19]。圖3b分別是樣品Mn3O4@C和MnO@C的C 1s精細譜,從C 1s精細譜中可以看出,樣品在結合能284.8 eV和286.3 eV/286.1 eV、288.3 eV和290.4 eV處可以明顯地發(fā)現(xiàn)4個特征峰,分別對應著C==C、C—O、C==O和C=O—OH[20]。此外,值得注意的是,與樣品Mn3O4@C相比,樣品MnO@C的C—O鍵峰位置發(fā)生明顯偏移,這可能與Mn—O—C鍵的形成有關[21]。為了進一步討論Mn—O—C的形成,圖3c給出了樣品的O 1s精細譜,從圖中可以看出,樣品在結合能為531.7 eV、533.3 eV/533.2 eV處都可以發(fā)現(xiàn)2個明顯的特征峰,分別對應著Mn—O—Mn、C==O[22]。但不同的是,樣品MnO@C在530.4 eV處出現(xiàn)1個新的特征峰,對應Mn—O—C[23],結合XRD分析可知,高溫碳熱還原反應有效地促進了Mn—O—C鍵的生成。
圖3 樣品MnO@C的Mn 2p精細譜(a),樣品Mn3O4@C和MnO@C的C 1s精細譜(b),樣品Mn3O4@C和MnO@C的O 1s精細譜(c)
圖4為MnO和MnO@C材料的SEM和TEM圖。由圖可知,單純的MnO材料尺寸較大,顆粒發(fā)生明顯團聚,呈不規(guī)則塊狀結構。而MnO@C材料的SEM圖可以清晰地看到大小均一的MnO納米顆粒均勻地分布在碳層中,MnO顆粒尺寸也由1.2 μm下降至21.2 nm,這利于增大電極/電解質(zhì)界面并縮短Li+的擴散路徑,有效促進復合材料氧化/還原反應動力學的提升。
圖5為瀝青(CP)和水溶性煤瀝青(WSP)的紅外光譜圖。如圖5所示,經(jīng)過強酸氧化后,WSP紅外光譜圖在1 045、1 345、1 720 cm?1處出現(xiàn)了新的特征峰,分別對應C—O、C—OH、C==O官能團,在3 420 cm?1處的—OH峰明顯增強,這表明在瀝青表面修飾了大量的含氧官能團,這有助于其在水溶液中均勻分散[24-25]。同時,進一步將1.0 g WSP分散于30 mL去離子水,測定其Zeta電位為?25.7 mV,這不但進一步說明水溶性煤瀝青在水中具有良好的分散性,而且可以通過靜電相互作用捕獲帶正電的Mn2+。此外,Zhang等[26]通過理論計算和試驗證明了炭材料表面的含氧官能團能夠有效地吸附金屬離子,進而抑制后續(xù)納米氧化物的團聚,實現(xiàn)納米氧化物在碳層中的高度分散?;谝陨闲畔?,可以推斷出水溶性煤瀝青表面豐富的含氧官能團與MnSO4溶液中的Mn2+之間有較強的吸附作用,提供成核位點,進而促進了后續(xù)納米顆粒的形成和均勻生長。
為了證明MnO@C樣品鋰存儲性能的改善,將MnO、Mn3O4@C和MnO@C樣品組裝成紐扣電池并評估這些樣品的電化學性能。圖6a為各樣品的倍率性能。通過對比可知,MnO@C在0.1、0.2、0.5、1.0 A/g的不同電流密度下循環(huán)10圈后,放電比容量分別為500.83、381.64、251.64、136.65 mAh/g。在不同的電流密度下,MnO@C樣品具有最高的儲鋰容量。當電流密度重新回到0.1 A/g時,其仍具有511.68 mAh/g的儲鋰容量,這都表明MnO@C材料具有較好的倍率性能。
圖4 MnO(a)和MnO@C(b)材料的SEM圖,MnO@C(c、d)材料的TEM圖
圖5 CP和WSP的紅外光譜圖
圖6e給出MnO@C電極在電流密度為0.5 A/g下循環(huán)400圈的長循環(huán)性能。由圖可知,MnO@C電極即使在0.5 A/g大電流密度下循環(huán)400圈后仍具有293.83 mAh/g的放電比容量,容量保持率接近100%,這也表明MnO@C具有優(yōu)異的結構穩(wěn)定性。
此外,為進一步研究MnO@C樣品的電化學性能,對樣品進行電化學阻抗分析。圖7a為樣品MnO、MnO@C在100 kHz至0.01 Hz頻率范圍內(nèi)的Nyquist圖,主要由高頻區(qū)代表電荷轉移阻抗(ct)的半圓和低頻區(qū)代表鋰離子擴散速率的傾斜直線組成,MnO與MnO@C的ct值分別為261.3、29.15 Ω。通過對比可以得出,MnO@C具有較小的電荷轉移電阻,這表明碳包覆后能夠明顯地改善MnO的電子電導率和電荷轉移能力。鋰離子的擴散能力與Bode圖低頻區(qū)域的相角有關,相角越小,鋰離子擴散能力越強[28]。如圖7b所示,MnO@C電極在低于0.1 Hz頻率下的相位角更小,具有更強的鋰離子擴散能力。此外,MnO與MnO@C樣品的鋰離子擴散能力可由Warburg系數(shù)進一步證實,值越小表明鋰離子擴散能力越強[29-30]。值根據(jù)公式(5)進行計算。由圖7c可知,MnO與MnO@C樣品的值分別為820.27、30.08 Ω·s1/2,這說明MnO@C樣品具有更佳的鋰離子擴散性能。
圖6 MnO、MnO@C和Mn3O4@C的倍率性能(a),MnO、MnO@C和Mn3O4@C在0.1 A/g電流密度下的循環(huán)性能(b),MnO@C的容量電壓曲線(c),MnO@C的循環(huán)伏安曲線(d), MnO@C在0.5 A/g電流密度下的循環(huán)性能(e)
圖7 MnO和MnO@C的交流阻抗圖(a),MnO和MnO@C的Bode圖(b), MnO和MnO@C中的Z?與ω?1/2的線性關系(c)
re=ct+s+·1/2(5)
1)以水溶性煤瀝青作為MnO納米顆粒的表面修飾碳層,通過水熱和高溫碳熱還原制備了MnO@C復合材料。Raman、XPS和SEM結果表明,本研究實現(xiàn)了對MnO表面的均勻碳包覆,并且MnO與表面碳層之間存在較強的相互作用,形成了Mn—O—C鍵。
2)電化學測試表明,MnO表面碳層和Mn—O—C鍵構筑了MnO和碳層之間的快速導電通道,保證了電荷“自外到內(nèi)”的快速傳輸,并能夠有效抑制MnO的晶格膨脹。MnO@C在0.1 A/g電流密度下經(jīng)過100次充放電循環(huán)后具有606.47 mAh/g的儲鋰容量,在0.5 A/g電流密度下經(jīng)過400次充放電循環(huán)后仍具有293.83 mAh/g的儲鋰容量。
[1] 孫夢璐, 陸萍, 張亦凡, 等. 鈦表面硅復合微弧氧化膜負極的制備及其電化學性能研究[J]. 表面技術, 2021, 50(9): 120-127.
SUN Meng-lu, LU Ping, ZHANG Yi-fan, et al. Prepara-tion of Silicon-Containing Micro-Arc Oxidation Film on Titanium and Related Electrochemical Performance Rese-arch[J]. Surface Technology, 2021, 50(9): 120-127.
[2] 魏劍, 秦蔥敏, 蘇歡, 等. 包覆結構Si/C復合負極材料研究進展[J]. 新型炭材料, 2020, 35(2): 97-111.
WEI Jian, QIN Cong-min, SU Huan, et al. A Review of Silicon/Carbon Composite Anode Materials with an Enca-psulated Structure for Lithium-Ion Rechargeable Batte-ries[J]. New Carbon Materials, 2020, 35(2): 97-111.
[3] 馬琳, 葉劍波, 黃國創(chuàng), 等. SnS2-SnO2/石墨烯復合材料的合成及其電化學儲鋰性能的研究[J]. 表面技術, 2015, 44(1): 8-14.
MA Lin, YE Jian-bo, HUANG Guo-chuang, et al. Synt-hesis and Electrochemical Li-Storage Performance of SnS2- SnO2/Graphene Composites[J]. Surface Technology, 2015, 44(1): 8-14.
[4] ZHANG Lei, SHEN Lian, LIU Yan-gai, et al. Urchin- Like MnO/C Microspheres as High-Performance Lithium- Ion Battery Anode[J]. Ionics, 2021, 27(4): 1423-1428.
[5] 唐曉寧, 朱紹寬, 寧堅, 等. 二氧化錳基超級電容器的電荷儲能機理研究進展[J]. 新型炭材料, 2021, 36(4): 702-710.
TANG Xiao-ning, ZHU Shao-kuan, NING Jian, et al. Charge Storage Mechanisms of Manganese Dioxide- Based Supercapacitors: A Review[J]. New Carbon Mate-rials, 2021, 36(4): 702-710.
[6] LI Se-si, ZHAO Yun-hao, LIU Zheng-wang, et al. Flexible Graphene-Wrapped Carbon Nanotube/Graphene@MnO23D Multilevel Porous Film for High-Performance Lit-hium-Ion Batteries[J]. Small, 2018, 14(32): e1801007.
[7] 陸地, 鄭春滿, 陳宇方, 等. 以酚醛樹脂為碳源原位合成富鋰層狀相/尖晶石/碳核殼結構正極材料及其電化學性能[J]. 高等學校化學學報, 2020, 41(7): 1684-1690.
LU Di, ZHENG Chun-man, CHEN Yu-fang, et al. Synt-hesis of Li-Rich Layers/Spinel/Carbon Composite Cat-hode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1684-1690.
[8] 林偉國, 孫偉航, 曲宗凱, 等. 鋰離子電池負極材料納米多孔硅/石墨/碳復合微球的制備與性能[J]. 高等學?;瘜W學報, 2019, 40(6): 1216-1221.
LIN Wei-guo, SUN Wei-hang, QU Zong-kai, et al. Pre-paration and Performance of Nano-Porous Si/Graphite/C Composite Microspheres as Anode Material for Li-Ion Batteries[J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1216-1221.
[9] ZHU Ling-feng, WANG Yun, WANG Min-ji, et al. Areca- Inspired Core-Shell Structured MnO@C Composite tow-ards Enhanced Lithium-Ion Storage[J]. Carbon, 2021, 184: 706-713.
[10] SUN Yong-ming, HU Xian-luo, LUO Wei, et al. Recons-truction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries[J]. Advanced Functional Materials, 2013, 23(19): 2436-2444.
[11] HAO Shu-meng, LI Qian-jie, QU Jin, et al. Neuron- Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17923-17932.
[12] JIA He nan, LIN Jing huang, LIU Yu lin, et al. Nanosized Core-Shell Structured Graphene-MnO2Nanosheet Arrays as Stable Electrodes for Superior Supercapacitors[J]. Jou-rnal of Materials Chemistry A, 2017, 5(21): 10678-10686.
[13] LI Fen, QIN Teng-teng, SUN Yu-ping, et al. Preparation of a One-Dimensional Hierarchical MnO@CNT@Co- N/C Ternary Nanostructure as a High-Performance Bifun-ctional Electrocatalyst for Rechargeable Zn-Air Batte-ries[J]. Journal of Materials Chemistry A, 2021, 9(39): 22533-22543.
[14] CHENG Fang-yan, CHEN Yu-jie, SUN An-tao, et al. Graphene Encapsulated Porous Monodisperse MnO Mic-rospheres as High-Performance Anode Material for Lit-hium Storage[J]. Ceramics International, 2019, 45(10): 13556-13560.
[15] 鄭曉君, 高麗娟, 劉煥, 等. 混酸法制備水溶性瀝青的實驗條件研究[J]. 遼寧科技大學學報, 2016, 39(5): 376-380.
ZHENG Xiao-jun, GAO Li-juan, LIU Huan, et al. Prepa-ration of Water-Soluble Asphalt by Mixed Acid Met-hod[J]. Journal of University of Science and Technology Liaoning, 2016, 39(5): 376-380.
[16] HUANG Hong-wen, YU Qing, PENG Xin-sheng, et al. Single-Unit-Cell Thick Mn3O4Nanosheets[J]. Chemical Communications, 2011, 47(48): 12831-12833.
[17] PARK J H, CHOI W Y, LEE Sang-min, et al. Graphene Intercalated Free-Standing Carbon Paper Coated with MnO2for Anode Materials of Lithium Ion Batteries[J]. Electrochimica Acta, 2020, 348: 136310.
[18] PANDEY G P, LIU Tao, BROWN E, et al. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pen-toxide for Enhanced Performance in Lithium-Ion Batte-ries and Electrochemical Capacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9200-9210.
[19] CHEN Jun-jie, YANG Ke, WANG Ji-qi, et al. Peanut- Like Yolk/Core-Shell MnO/C Microspheres for Improved Lithium Storage and the Formation Mechanism of MnCO3Precursors[J]. Journal of Alloys and Compounds, 2020, 849: 156637.
[20] WANG Lu, LI Yu-hong, HAN Zhi-da, et al. Composite Structure and Properties of Mn3O4/Graphene Oxide and Mn3O4/Graphene[J]. Journal of Materials Chemistry A, 2013, 1(29): 8385-8397.
[21] FAN Li-shuang, ZHANG Yu, GUO Zhi-kun, et al. Hiera-rchical Mn3O4Anchored on 3D Graphene Aerogels via C—O—Mn Linkage with Superior Electrochemical Perfor-mance for Flexible Asymmetric Supercapacitor[J]. Che-mistry–A European Journal, 2020, 26(42): 9314- 9318.
[22] CAO Li-yun, WANG Rui-yi, XU Zhan-wei, et al. Cons-tructing MnOC Bonds in Mn3O4/Super P Composite for Superior Performance in Li-Ion Battery[J]. Journal of Electroanalytical Chemistry, 2017, 798: 1-8.
[23] LI Shuang, YU Li-li, SHI Yu-ting, et al. Greatly Enhanced Faradic Capacities of 3D Porous Mn3O4/G Composites as Lithium-Ion Anodes and Supercapacitors by C–O–Mn Bonding[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10178-10188.
[24] BOURLINOS A B, GOURNIS D, PETRIDIS D, et al. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids[J]. Langmuir, 2003, 19(15): 6050-6055.
[25] SZABó T, BERKESI O, FORGó P, et al. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides[J]. Chemistry of Materials, 2006, 18(11): 2740-2749.
[26] ZHANG Wan-yu, XU Hai, XIE Fei, et al. General Synt-hesis of Ultrafine Metal Oxide/Reduced Graphene Oxide Nanocomposites for Ultrahigh-Flux Nanofiltration Mem-brane[J]. Nature Communications, 2022, 13: 471.
[27] FANG Guo-zhao, WU Zhuo-xi, ZHOU Jiang, et al. Sodium- Ion Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodium-Ion Battery Anode [J]. Advanced Energy Mate-rials, 2018, 8(19): 1870092.
[28] ZHAO Rui-zheng, QIAN Zhao, LIU Zhong-yuan, et al. Molecular-Level Heterostructures Assembled from Laye-red Black Phosphorene and Ti3C2MXene as Superior Anodes for High-Performance Sodium Ion Batteries[J]. Nano Energy, 2019, 65: 104037.
[29] NIU Yu-bin, XU Mao-wen, DAI Chun-long, et al. Elect-rospun Graphene-Wrapped Na6.24Fe4.88(P2O7)4Nanofibers as a High-Performance Cathode for Sodium-Ion Batte-ries[J]. Physical Chemistry Chemical Physics, 2017, 19(26): 17270-17277.
[30] HUANG Ying-de, YU Rong-tian, MAO Gao-qiang, et al. Unique FeP@C with Polyhedral Structure In-Situ Coated with Reduced Graphene Oxide as an Anode Material for Lithium Ion Batteries[J]. Journal of Alloys and Com-pounds, 2020, 841: 155670.
Preparation and Lithium Storage Properties of MnO@C Composites Based on the Water Soluble Pitches
1a,1a,1b,1a,2,2,2,2,1a,1a
(1. a. Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, b. School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Liaoning Anshan 114051, China; 3. Haicheng Shenhe Technology Co., Ltd., Liaoning Anshan 114200, China)
The aim of this research is to realize the constructions of Mn—O—C bonds by covering the coal tar pitch based carbon materials on the surface of MnO. The formations of Mn—O—C bonds play the main role to construct the conductive network so as to diminish the interfacial resistance, which causes that the prepared MnO@C materials possesses the excellent electrochemical performances such as high Li+storage capacity, excellent rate performances and long cycle performances. Based on the hydrothermal method, the Mn3O4@C precursors are synthesized by using the water soluble coal tar pitches (WSP) and KMnO4. The MnO@C materialsaresynthesized by the carbothermic reduction reaction methods using the Mn3O4@C precursors. The morphologies, surface characteristics and detailed structures of MnO@C materials are verified by the TEM, SEM, XPS, XRD and Raman measurements. TEM and SEM results indicate that plenty of oxygen-containing functional groups existing in the WSP possess the interactions with the Mn2+of MnSO4solution, which is able to facilitate the formations of cores which are beneficial to accelerate the formations and uniformly growing of nano particles in MnO@C materials. Formations of nano particles are also play the role to enhance the electrochemical performances of MnO@C materials. The XRD, Raman and XPS results indicate that a lot of Mn—O—C bonds formed between the surface of MnO and carbon materials in the MnO@C materials. The electrochemical performances of MnO@C materials were evaluated by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy measurements.As a result, it is found that MnO@C shows the storage capacity at 606.47mAh/g after cycling charge-discharge 100 cycles at a current density of 0.1 A/g. Although the current density was increased to 0.5 A/g, the MnO@C composite materials still show the storage capacity at 293.83 mAh/g after 400 cycles.Additionally, the fact that MnO@C materials have the tremendous rate performances was also determined in these presented studies. In summarization, the WSP were successfully prepared mixed acid methods using the coal tar pitches from ANGANG STEEL. The Mn3O4@C precursors were successfully synthesized by using WSP and KMnO4. The MnO@C composite materials are successfully synthesized by using the Mn3O4@C precursors. The electrochemical evaluations show that covering the carbon materials on the surface of MnO is the effective way to enhance the electrochemical performances of MnO, for covering the carbon materials on the surface of MnO provides the active sides not only, but also can restrain the volume expansion of MnO in charge-discharge process. Especially, the constructions of Mn—O—C bonds between the carbon materials and MnO play the main role to enhance the transfer abilities of electronic and ions between the carbon materials and MnO, which proves the electrode reaction kinetics. Considering the fact that coal tar pitches are the bulk commodities, the Mn3O4@C should have the significant cost advantage in fabrication processes.
manganous oxide;water soluble coal tar pitches; Mn—O—C bond; interface impedance; lithium ion batteries; anodes
tb43
A
1001-3660(2023)01-0298-08
10.16490/j.cnki.issn.1001-3660.2023.01.030
2021–12–28;
2022–04–14
2021-12-28;
2022-04-14
遼寧省教育廳項目(LJKQZ2021126)
The Liaoning Province Education Department of China (LJKQZ2021126)
劉渤(1998—),男,碩士研究生,主要研究方向為電化學儲能。
LIU Bo (1998-), Male, Postgraduate, Research focus: electrochemical energy storage.
周衛(wèi)民(1971—),男,博士,副教授,主要研究方向為納米材料制備及其電化學能源貯存與轉換中的應用。
ZHOU Wei-min (1971-), Male, Doctor, Associate professor, Research focus: nanomaterials for electrochemical energy storage and conversion.
通訊作者:徐桂英(1975—),女,博士,副教授,主要研究方向為煤基功能碳材料的制備及其儲能領域的應用。
XU Gui-ying (1975-), Female, Doctor, Associate professor, Research focus: coal-based functional materials for energy storage applications.
劉渤, 周衛(wèi)民, 陳燕, 等. 基于水溶性煤瀝青的MnO@C復合材料的制備及儲鋰性能研究[J]. 表面技術, 2023, 52(1): 298-305.
LIU Bo, ZHOU WEI-min, CHEN Yan, et al. Preparation and Lithium Storage Properties of MnO@C Composites Based on the Water Soluble Pitches[J]. Surface Technology, 2023, 52(1): 298-305.
責任編輯:萬長清