張帥,劉樹峰,魯飛,李慧,劉小魚
燒結(jié)NdFeB表面等離子噴涂Al防護涂層制備工藝及性能研究
張帥,劉樹峰,魯飛,李慧,劉小魚
(包頭稀土研究院 白云鄂博稀土資源研究與綜合利用國家重點實驗室,內(nèi)蒙古 包頭 014030)
目的 采用大氣等離子噴涂工藝在燒結(jié)NdFeB磁體表面制備Al防護涂層,實現(xiàn)NdFeB磁體防護強化。方法 通過不同噴涂工藝制備Al涂層,采用掃描電子顯微鏡觀測涂層表面、截面形貌和堆積厚度,利用垂直拉拔法測試最佳工藝下涂層的結(jié)合強度。噴涂不同厚度Al防護涂層,采用電化學工作站和中性鹽霧腐蝕試驗研究涂層的耐腐蝕性能,利用脈沖磁場磁強計對比分析噴涂Al涂層厚度對磁體磁性能的影響。結(jié)果 噴涂電流從400 A提高至600 A,當噴涂電流為500 A時,涂層表面致密,無明顯濺射堆垛和未熔顆粒;噴涂30次,涂層厚度達到40 μm,結(jié)合強度達15.5 MPa。等離子噴涂Al防護涂層對NdFeB基體構(gòu)成犧牲陽極保護,不同厚度涂層的自腐蝕電位無明顯差異,約為–1.1 V,自腐蝕電流密度相對NdFeB基體降低了2個數(shù)量級。隨著涂層厚度的增加,Al防護涂層的耐腐蝕性能逐步提高,噴涂厚度的70mm的Al防護涂層耐中性鹽霧腐蝕時間最高可達300 h以上。隨著Al涂層厚度從0 μm增加至70 μm,磁體矯頑力略有提升,剩磁降低為原始樣的2.0%~4.26%。結(jié)論 等離子噴涂技術(shù)可極大改善NdFeB磁體的耐腐蝕性能,為NdFeB防護的工業(yè)應用提供了新思路。
燒結(jié)NdFeB;等離子噴涂;Al防護涂層;抗腐蝕性能;磁性能
NdFeB永磁體具有體積小、質(zhì)量輕和磁性能佳的優(yōu)勢,廣泛應用于新能源、節(jié)能環(huán)保行業(yè)、通信、醫(yī)療和消費電子等領(lǐng)域[1-3]。在實際使用過程中,由于NdFeB磁體富釹相與主相之間的電位差較大,容易構(gòu)成腐蝕原電池,造成磁體表面局部區(qū)域產(chǎn)生成分和結(jié)構(gòu)破壞,進而影響磁體外形尺寸的完整性和磁學性能的穩(wěn)定性,降低磁體實際使用壽命[4-6]。耐腐蝕性能差成為了NdFeB磁體在工業(yè)領(lǐng)域大規(guī)模應用的瓶頸。目前,提高NdFeB磁體耐腐蝕的通用做法有2類,一種是在磁體中添加合金元素,以提高晶界相的電勢,進而改善磁體的耐蝕性,但該方法以損失磁體的磁性能為代價[7-8]。另一種是在磁體表面制備防護涂層,阻止腐蝕介質(zhì)向內(nèi)部滲透,通常的方法有電鍍、化學鍍、真空鍍膜等[9-12]。其中電鍍和化學鍍存在鍍液滲透和環(huán)境污染問題,急需尋找環(huán)保無污染的新工藝。
真空鍍Al技術(shù)能夠很好地避免電鍍和化學鍍工藝存在的不足,實施過程無原料外溢,無污染物排放,防護膜層附著力大,近年來在NdFeB磁體表面防護上的應用受到廣泛關(guān)注。但該技術(shù)在推廣應用方面存在以下幾個方面問題:第一,由于柱狀晶的生長特性,需要對涂層進行多層結(jié)構(gòu)優(yōu)化制備或進行磷酸鹽、鉻酸鹽[15]表層鈍化處理,改善柱狀晶微孔缺陷,提升耐腐蝕性,增加了工藝復雜性,同時存在鈍化液處理及排放問題;第二,真空鍍膜的成膜速率不高,難以實現(xiàn)高質(zhì)量防護涂層的快速制備;第三,該技術(shù)鍍膜源高質(zhì)量靶材價格昂貴,增加了磁體生產(chǎn)成本[13-14]。
開發(fā)無污染、高耐蝕、低成本、高效率的NdFeB防護涂層技術(shù)和工藝,并將其應用于工業(yè)生產(chǎn)是NdFeB行業(yè)的一個重要而急迫的課題。對比而言,噴涂法屬于干法施鍍,可以滿足磁體表面防護涂層綠色、快速、低成本的制備要求,備受世人青睞。Ma等[16]通過冷噴涂方法在NdFeB基體表面制備了170 μm Al涂層,并對其腐蝕產(chǎn)物進行了分析。結(jié)果顯示,噴涂Al涂層后,自腐蝕電流密度由4.361′10–6A/cm2降至1.350′10–6A/cm2。3.5% NaCl溶液浸泡360 h后,涂層表面形成了致密Al2O3膜層,對基體起到防護作用。Ma等[17]采用爆炸噴涂工藝在NdFeB表面制備了Al涂層,涂層孔隙率低至0.77%,厚度約為16 μm,中性鹽霧腐蝕200 h后,表面未見明顯銹斑。解偉等[18]通過等離子噴涂方式在NdFeB表面形成了EMAA樹脂涂層,涂層結(jié)合力達23 MPa,中性鹽霧腐蝕時間為300 h??梢妵娡糠ㄔ谥苽銷dFeB防護涂層方面具有極大應用優(yōu)勢。實際應用中,防護涂層及制備工藝對NdFeB磁體磁性能的影響也極為重要,如何在保證涂層耐蝕性的同時,減少對磁體磁性能的影響是涂層制備工藝能否工業(yè)化應用的關(guān)鍵所在。研究表明,涂層厚度及制備工藝對磁體磁性能的影響大不相同。Yu等[19]研究表明,NdFeB磁體表面12 μm的Zn-Cr涂層可使剩磁降低6%左右。Chen等[20]研究了化學鍍Ni-P對磁體磁性能的影響,結(jié)果顯示,磁體剩磁和矯頑力分別降低16%和24%。Mao等[21]對比分析了磁控濺射鍍Al和電鍍Ni/Cu/Ni對磁體磁性能的影響,結(jié)果表明,磁控濺射鍍Al后,磁體矯頑力略有提升,剩磁輕微降低,而電鍍Ni/Cu/Ni后,磁體剩磁和矯頑力分別降低1.0%和1.5%。然而,目前關(guān)于噴涂工藝制備防護涂層對磁體性能影響的研究鮮有報道,嚴重制約了噴涂工藝在NdFeB防護領(lǐng)域的應用推廣。
本文采用等離子噴涂技術(shù)在NdFeB磁體表面制備了不同厚度的Al涂層,研究了涂層厚度對磁體耐腐蝕性能及磁性能的影響,以期為等離子噴涂Al涂層在磁體表面防護中的應用提供借鑒。
以燒結(jié)NdFeB磁體為噴涂基體(牌號45M、45H和45SH,均產(chǎn)自包頭稀土研究院),規(guī)格為30 mm× 20 mm×4 mm,且基體均處于退磁狀態(tài)。噴涂前依次對NdFeB基體進行噴砂、超聲清洗,去除基體表面油污、銹蝕、氧化皮等附著物,粗化、清潔化基體表面,確保基體粗化度和清潔度滿足噴涂要求。
選用氣霧化類球形Al粉作為噴涂粉體,鋁粉純度>99.9%,粉末粒度為20~40 μm,粉體形貌如圖1所示。采用XM-80等離子噴涂設備在NdFeB基體表面噴涂Al防護涂層,具體噴涂工藝見表1,噴槍移動循環(huán)次數(shù)20次,制備Al防護涂層標記為Al-20。涂層厚度通過調(diào)整噴槍移動循環(huán)次數(shù)控制,將噴槍移動循環(huán)次數(shù)增加至30、40、50次,制備不同厚度Al防護涂層,涂層樣品分別標記為Al-30、Al-40、Al-50。
采用SIGMA500型場發(fā)射掃描電鏡觀察粉體及涂層表面、截面形貌,測量涂層厚度,并進行EDS線掃描。
采用垂直拉脫法(GB/T 5210—2006)測量Al涂層與燒結(jié)NdFeB基體間的結(jié)合強度。首先,用環(huán)氧樹脂膠將涂層、基體分別與不銹鋼對偶件粘接,后放置于烘箱50 ℃干燥固化3 h。然后,使用WDW3200萬能力學試驗機進行拉伸,根據(jù)涂層拉脫時臨界載荷與拉脫面積,計算涂層與基體的結(jié)合強度。測試5次,取平均值,獲得涂層與基體的結(jié)合強度。
采用Ivivum電化學工作站進行動電位極化測試。采用傳統(tǒng)三電極體系,其中涂層為工作電極,有效測試面積為10 mm′10 mm,參比電極為飽和甘汞電極(SCE),對電極為鉑片。腐蝕介質(zhì)為3.5%NaCl溶液,測試溫度為(25±3) ℃,掃描速度為1 mV/s。利用塔菲爾(Tafel)外推法對所測試的極化曲線進行擬合,確定自腐蝕電位(corr)和自腐蝕電流密度(corr)等腐蝕參數(shù)。
中性鹽霧腐蝕試驗(NSS)參考GB/T 34491—2017規(guī)定,采用YWX-750型中性鹽霧噴霧試驗箱,測試條件:連續(xù)噴霧,溫度為(35±2)℃、5%±1%(質(zhì)量分數(shù))NaCl溶液,收集的鹽霧沉降溶液pH為6.5~7.2,試樣表面在鹽霧箱中放置的傾斜角度為45°±5°。
選擇45M、5H、45SH這3種牌號釹鐵硼磁體進行不同厚度Al防護涂層的制備。采用Metis Instruments脈沖磁場磁強計分析不同牌號磁體等離子噴涂Al涂層前后磁體的能變化。
圖1 等離子噴涂選用Al粉形貌
涂層致密度和結(jié)合力的提高是制備優(yōu)質(zhì)防護涂層的關(guān)鍵技術(shù)。等離子噴涂涂層致密度和結(jié)合力的高低與噴涂過程中粉料熔融率及扁平化鋪展凝固密切相關(guān)。噴涂粉料經(jīng)等離子體火焰加熱形成熔滴,熔滴在惰性氣體(氬氣或氮氣)的加速下,高速噴射到工件表面,產(chǎn)生碰撞、變形、冷凝收縮,形成扁平化堆積涂層。
不同噴涂電流所制備的Al等離子噴涂防護涂層表面狀態(tài)對比結(jié)果如圖2所示,可見不同電流下涂層的表面狀態(tài)差別明顯。調(diào)節(jié)噴涂電流至400 A,保證其他噴涂工藝不變,涂層表面有明顯未熔顆粒堆積(如圖2a黃色箭頭所示),顆粒粒徑尺寸約為20 μm,滿足噴涂用Al粉粒徑分布。繼續(xù)加大電流至450、500 A,等離子火焰中心溫度提高,Al噴涂粉料基本熔融,涂層表面罕見未熔顆粒,如圖2b、c所示。當噴涂電流為500 A,熔滴在惰性氣體(氬氣或氮氣)加速下,高速噴射到工件表面,產(chǎn)生碰撞、變形、冷凝收縮,形成扁平化程度更好的堆積涂層。當提高噴涂電流至550、600 A,噴涂熔滴過熔,導致噴射到基體表面變形量過大,扁平化粒子邊緣易飛濺,在粒子搭建處出現(xiàn)飛濺小顆粒聚集堆垛,如圖2d、e箭頭所示。這些飛濺小顆粒在隨后的快速冷凝過程中,容易形成貫穿孔洞。相反地,若熔滴熔化不足,會造成熔滴變形量減小,形成未熔大顆粒。噴涂電流為500 A,熔融粒子變形量合適,扁平化冷凝粒子鋪展充分,堆積狀態(tài)良好,無小顆粒飛濺現(xiàn)象,涂層表面致密度和平整度高。綜合考慮,后續(xù)制備不同噴涂次數(shù)Al防護涂層樣品(Al-20、Al-30、Al-40、Al-50)的噴涂工藝選擇500 A,其余工藝參數(shù)見表1。
不同噴涂次數(shù)Al防護涂層的截面形貌對比如圖3所示。從圖3中可以看出,隨著噴涂次數(shù)的增加,涂層厚度逐漸增加。涂層內(nèi)存在部分封閉孔隙,但未觀察到貫穿到NdFeB基體的孔隙。不同噴涂次數(shù)Al涂層的EDS線掃結(jié)果如圖4所示,掃描方式為沿涂層外部向NdFeB基體內(nèi)部掃描。通過涂層截面SEM多次測量涂層厚度,并結(jié)合EDS掃描結(jié)果可知:噴涂次數(shù)20次時,涂層厚度約為20 μm;噴涂次數(shù)30次時,涂層厚度增至40 μm左右;繼續(xù)增加噴涂次數(shù)達50次時,涂層厚度可達70 μm左右。
Al-30涂層在拉伸試驗過程中的力–位移曲線如圖5所示。可以看出,在拉力達到3 129 N時,涂層發(fā)生了脫層。將涂層脫落的臨界應力除以涂層脫落面積,計算得出Al 涂層與NdFeB基體的結(jié)合力可達15.5 MPa。進一步對不同工藝制備的Al防護涂層結(jié)合力進行對比,所列不同工藝均采用垂直拉拔法測試結(jié)合強度,結(jié)果如圖5b所示。其中磁控濺射涂層厚度為7 μm,結(jié)合強度為18.8 MPa,測試機器為CMT5105;化學鍍涂層材料為Ni-P,測試涂層平均厚度為5 μm,結(jié)合強度為9.8 MPa;真空蒸鍍Al涂層厚13 μm,結(jié)合強度為10.8 MPa,測試儀器為WDW- 20;電鍍Zn涂層厚度為4.3 μm,結(jié)合強度為18.9 MPa,測試儀器為WDW-20。采用等離子噴涂工藝制備40 μm厚的Al防護涂層,其結(jié)合強度高于真空蒸鍍和化學鍍的最佳結(jié)合強度,低于磁控濺射和電鍍。
圖2 不同噴涂電流Al涂層表面形貌對比
表1 等離子噴涂工藝參數(shù)
圖3 不同噴涂次數(shù)Al防護涂層截面SEM形貌
圖4 不同噴涂次數(shù)Al涂層截面的EDS 線掃
不同噴涂次數(shù)Al涂層和NdFeB基體的動電位極化曲線如圖6所示。可以看出,NdFeB基體的陽極區(qū)主要表現(xiàn)為活性溶解特征。這是由于NdFeB為粉末冶金制備,表面存在大量孔隙,溶液中Cl–易進入孔隙,加快腐蝕進程。對比顯示,噴涂Al涂層后,Al/NdFeB的陽極極化曲線在活性溶解反應前存在一明顯鈍化區(qū),鈍化區(qū)的出現(xiàn)與Al涂層表面形成的氧化膜有關(guān)。表明噴涂Al后,能夠有效緩減NdFeB基體的腐蝕速率。
圖5 拉脫法測試Al-30涂層結(jié)合力及與現(xiàn)有工藝對比
圖6 不同噴涂次數(shù)Al涂層動電位極化曲線
表2列出了利用Tafel外推法擬合確定的電化學腐蝕參數(shù)。對比顯示,NdFeB基體的自腐蝕電位為–0.846 V,Al涂層的自腐蝕電位基本在–1.1 V左右,相對于NdFeB基體發(fā)生了負移。表明在電化學腐蝕環(huán)境中,Al噴涂涂層的腐蝕傾向性高,相對于NdFeB基體會作為陽極,對基體構(gòu)成犧牲陽極保護。
腐蝕電位為熱力學概念,只能說明腐蝕傾向性,而腐蝕電流密度為動力學概念,與腐蝕速率緊密相關(guān)??梢园l(fā)現(xiàn),Al涂層的自腐蝕電流密度降至5.12′10–6~6.77′10–6A/cm2,相對NdFeB基體(1.18′10–4A/cm2),降低了2個數(shù)量級。依據(jù)Faraday定律,對于同一基體而言,腐蝕速率與腐蝕電流密度成正比??梢夾l噴涂防護層覆蓋后,NdFeB磁體的腐蝕速率明顯降低,表現(xiàn)出優(yōu)異的耐腐蝕性能。Al涂層厚度對自腐蝕電位和自腐蝕電流密度的影響不大。
表2 NdFeB基體和Al涂層在3.5%NaCl溶液中的電化學腐蝕參數(shù)
為了進一步評價Al涂層的耐腐蝕性能,對比分析了不同噴涂次數(shù)Al防護涂層耐中性鹽霧腐蝕結(jié)果,如圖7所示。隨著噴涂次數(shù)的增加,涂層厚度增加,耐鹽霧腐蝕時間增加。噴涂次數(shù)為20次時,噴涂厚度較薄,鹽霧腐蝕24 h后,涂層表面出現(xiàn)點蝕現(xiàn)象。噴涂次數(shù)增加至50次時,噴涂厚度為70 μm左右,耐鹽霧腐蝕時間可達300 h以上。
不同厚度Al噴涂防護層鹽霧腐蝕結(jié)果差異可能與Al涂層表面堆積覆蓋狀態(tài)有關(guān)。如圖8a所示,噴涂過程中,Al顆粒經(jīng)等離子射流加熱后,熔融粒子以層狀結(jié)構(gòu)堆積于燒結(jié)NdFeB表面,而層狀堆積的熔融粒子之間易形成層間裂隙。同時,由于等離子噴涂工藝特性,不可避免地會出現(xiàn)未熔融或半熔融顆粒,造成涂層內(nèi)出現(xiàn)微孔(如圖8b黃箭頭所示)。這些層間裂隙及微孔缺陷為腐蝕介質(zhì)向NdFeB基體內(nèi)部擴散提供了滲透通道,涂層厚度的增加有助于延長腐蝕介質(zhì)滲透通道,進而延長腐蝕介質(zhì)向NdFeB基體內(nèi)部擴散時間,提升耐中性鹽霧腐蝕能力。
圖7 Al噴涂防護涂層中性鹽霧腐蝕照片
圖8 噴涂粒子堆積示意圖(a)及Al涂層橫截面SEM (b)
另外,研究表明[10,17],Al涂層在富Cl-環(huán)境中的腐蝕過程包括鈍化膜Al(OH)3形成、溶解、再鈍化過程,腐蝕反應過程如式(1)、(2)所示[24]:
Al(OH)+Cl–→Al(OH)–Cl(soluble)+OH–(2)
在腐蝕初始階段,Al涂層表面發(fā)生點蝕,形成Al(OH)3鈍化膜。繼續(xù)增加腐蝕時間,噴涂表面吸附的Cl–和鈍化膜Al(OH)3反應,生成可溶性氯化物,鈍化膜破裂,在Al涂層上形成大而深的腐蝕孔洞,加劇腐蝕進程。此外,較薄的涂層(如Al-20)易產(chǎn)生貫穿至基體的層間間隙和孔洞,Cl–沿著這些缺陷可快速浸入并腐蝕基體。
不同工藝制備的Al/NdFeB腐蝕性能的對比結(jié)果見表3。采用等離子噴涂制備的Al涂層,其自腐蝕電流密度相對鑄態(tài)Al高1個數(shù)量級,可能與鑄態(tài)Al表面生成的氧化膜相對致密有關(guān)。噴涂防護層(Al)的耐鹽霧腐蝕時間與電鍍相當,明顯高于物理氣相沉積,但是其噴涂腐蝕電流密度卻低于磁控濺射1個數(shù)量級。根據(jù)陳娥等[25]的研究分析,燒結(jié)NdFeB基體在制備及表面清潔化過程中表面粗糙不平整,磁控濺射鍍Al厚度較低,且沉積速率較慢,這就導致鍍層過薄,不能形成連續(xù)包覆層,從而產(chǎn)生空洞,腐蝕介質(zhì)沿空洞滲入侵蝕基體。另外,物理氣相沉積(磁控濺射或蒸鍍)制備的Al涂層由于柱狀晶生長特性,柱狀晶間隙為腐蝕介質(zhì)向NdFeB基體內(nèi)部擴散提供了快速通道。
選擇45M、45H、45SH等3種牌號NdFeB磁體進行等離子噴涂試驗,測試結(jié)果如圖9所示。隨著噴涂次數(shù)的增加,3種牌號NdFeB磁體的矯頑力略有提升,分析原因可能是由于Al原子或者噴涂過程中的能量離子Ar+在磁疇中形成了釘扎效應,致使矯頑力提升[21,28],而且Al的磁導系數(shù)非常低,Al涂層在自然狀態(tài)下不具有磁性,對NdFeB磁體磁性能的影響較小。其次,磁體的剩磁均呈降低趨勢,45M、45H、45SH隨著噴涂次數(shù)的增加,剩磁變化值均從2%增至約4%。剩磁的降低可能與等離子噴涂使磁體受熱有關(guān),不同噴涂次數(shù)導致受熱時間不同,磁體內(nèi)部組織結(jié)構(gòu)發(fā)生變化,從而導致剩磁略微下降。具體噴涂對組織結(jié)構(gòu)的熱影響有待后續(xù)進一步深入研究。
不同工藝制備NdFeB防護涂層對磁體磁性能影響見表4。其中化學鍍Ni-P對磁性能的影響最大,磁控濺射的影響最小。Ding等[21,29]研究了電鍍工藝會降低磁體剩磁及矯頑力,鍍膜材料及膜厚不同,影響程度也不一樣。本文所做Al-20剩磁降低2.05%,矯頑力提高0.61%;Al-30剩磁降低2.97%,矯頑力提高0.4%。
表3 不同工藝制備Al / NdFeB耐腐蝕性能
圖9 不同噴涂次數(shù)磁體磁性能變化
表4 不同工藝制備NdFeB防護層對磁性能的影響
1)采用大氣等離子噴涂工藝在燒結(jié)NdFeB磁體表面實現(xiàn)了Al防護涂層綠色、快速、低成本制備。
2)Al防護涂層對基體構(gòu)成犧牲陽極保護,噴涂厚度的增加有助于改善涂層的耐腐蝕性能。
3)等離子噴涂Al防護涂層后,磁體矯頑力略有提升,剩磁影響值與電鍍相當。
[1] GUTFLEISCH O, WILLARD M A, BRüCK E, et al. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and more Energy Efficient[J]. Advanced Materials, 2011, 23(7): 821-842.
[2] 林松盛, 蘇一凡, 宋可為, 等. 過渡層對釹鐵硼表面蒸發(fā)鍍鋁涂層耐腐蝕性能的影響[J]. 表面技術(shù), 2017, 46(12): 218-224.
LIN Song-sheng, SU Yi-fan, SONG Ke-wei, et al. Influence of Transition Layer on Corrosion Resistance of Evaporated Al Coating on NdFeB Magnets[J]. Surface Technology, 2017, 46(12): 218-224.
[3] 王靜, 梁樂, 武夢艷, 等. 燒結(jié)NdFeB永磁體的晶界微細結(jié)構(gòu)及性能研究進展[J]. 中國有色金屬學報, 2014, 24(6): 1562-1577.
WANG Jing, LIANG Le, WU Meng-yan, et al. Research Progress on Grain Boundary Fine Microstructure and Magnetic Properties of Sintered NdFeB Magnet[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6): 1562-1577.
[4] LI Zhi-jie, WANG Xiao-er, LI Jia-yang, et al. Effects of Mg Nanopowders Intergranular Addition on the Magnetic Properties and Corrosion Resistance of Sintered Nd-Fe-B[J]. Journal of Magnetism and Magnetic Materials, 2017, 442: 62-66.
[5] ZHOU Qiao-ying, LI Gang, LIU Zhang, et al. Influence of the Electroplating Pretreatment on Corrosion Mechanism of NdFeB Magnets[J]. Journal of Rare Earths, 2016, 34(2): 152-157.
[6] 許偉, 代明江, 胡芳. NdFeB永磁體表面磁控濺射鋁防護鍍層性能研究[J]. 表面技術(shù), 2014, 43(1): 77-80.
XU Wei, DAI Ming-jiang, HU Fang. Corrosion Resistance of Aluminum Film on NdFeB Permanent Magnets by Magnetron Sputtering[J]. Surface Technology, 2014, 43(1): 77-80.
[7] BALA H, PAWLOWSKA G, SZYMURA S, et al. Corrosion Characteristics of Nd-Fe-B Sintered Magnets Containing Various Alloying Elements[J]. Journal of Magnetism and Magnetic Materials, 1990, 87(3): L255- L259.
[8] NI Jun-jie, ZHOU Shu-tai, JIA Zheng-feng, et al. Improvement of Corrosion Resistance in Nd-Fe-B Sintered Magnets by Intergranular Additions of Sn[J]. Journal of Alloys and Compounds, 2014, 588: 558-561.
[9] CAO Rui, ZHU Li-qun, LI Wei-ping, et al. The Effect of Alumina-Silica Sols on Electrodeposited Zinc Coatings for Sintered NdFeB[J]. Journal of Alloys and Compounds, 2017, 726: 95-106.
[10] MAO Shou-dong, YANG Heng-xiu, LI Ji-long, et al. Corrosion Properties of Aluminium Coatings Deposited on Sintered NdFeB by Ion-Beam-Assisted Deposition[J]. Applied Surface Science, 2011, 257(13): 5581-5585.
[11] REFFASS M, BERZIOU C, REBERE C, et al. Corrosion Behaviour of Magnetron-Sputtered Al1–x-Mnx Coatings in Neutral Saline Solution[J]. Corrosion Science, 2010, 52(11): 3615-3623.
[12] JIANG Wei, SHEN Li-da, WANG Kai, et al. Study on Ni-Ni(S)-Ni(P) Multilayer Coating by Friction-Assisted Jet Electroplating on Sintered NdFeB[J]. Journal of Alloys and Compounds, 2019, 787: 1089-1096.
[13] XIE Ting-ting, MAO Shou-dong, CHAO Yu, et al. Structure, Corrosion, and Hardness Properties of Ti/Al Multilayers Coated on NdFeB by Magnetron Sputtering[J]. Vacuum, 2012, 86(10): 1583-1588.
[14] CHEN Jing, YANG Hong-yi, XU Guang-qing, et al. Phosphating Passivation of Vacuum Evaporated Al/NdFeB Magnets Boosting High Anti-Corrosion Performances[J]. Surface and Coatings Technology, 2020, 399: 126115.
[15] ZHANG Peng-jie, LIU Jia-qin, XU Guang-qing, et al. Anticorrosive Property of Al Coatings on Sintered NdFeB Substrates via Plasma Assisted Physical Vapor Deposition Method[J]. Surface and Coatings Technology, 2015, 282: 86-93.
[16] MA Chun-chun, LIU Xiao-fang, ZHOU Chun-gen. Cold- Sprayed Al Coating for Corrosion Protection of Sintered NdFeB[J]. Journal of Thermal Spray Technology, 2014, 23(3): 456-462.
[17] MA Ji-zhao, LIU Xiao-fang, QU Wen-tao, et al. Corrosion Behavior of Detonation Gun Sprayed Al Coating on Sintered NFeB[J]. Journal of Thermal Spray Technology, 2015, 24(3): 394-400.
[18] 解偉, 肖震, 韓珩, 等. 釹鐵硼的熱噴涂涂層及其制備方法: CN105537075A[P]. 2018-12-21.
XIE Wei, XIAO Zhen, HAN Heng, et al. Neodymium- Iron-Boron Thermal-Spraying Coating and Preparation Method Thereof: CN105537075A[P]. 2018-12-21.
[19] YU Sheng-xue, CHEN Lin. Preparation Technology and Performances of Zn-Cr Coating on Sintered NdFeB Permanent Magnet[J]. Journal of Rare Earths, 2006, 24(2): 223-226.
[20] CHEN Zhong, NG A, YI Jian-zhang, et al. Multi-Layered Electroless Ni-P Coatings on Powder-Sintered Nd-Fe-B Permanent Magnet[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(1): 216-222.
[21] MAO Shou-dong, YANG Heng-xiu, LI Jin-long, et al. The Properties of Aluminium Coating on Sintered NdFeB by DC Magnetron Sputtering[J]. Vacuum, 2011, 85(7): 772-775.
[22] WANG Yao, DENG Yu-zhou, MA Yuan-tai, et al. Impro-ving Adhesion of Electroless Ni-P Coating on Sintered NdFeB Magnet[J]. Surface and Coatings Tech-nology, 2011, 206(6): 1203-1210.
[23] ZHANG Peng-jie, XU Guang-qing, LIU Jia-qing, et al. Effect of Pretreating Technologies on the Adhesive Strength and Anticorrosion Property of Zn Coated NdFeB Specimens[J]. Applied Surface Science, 2016, 363: 499- 506.
[24] NGUYEN T H. The Chemical Nature of Aluminum Corrosion[J]. Journal of The Electrochemical Society, 1982, 129(1):27.
[25] CHEN E, PENG Kun, YANG Wu-lin, et al. Effects of Al Coating on Corrosion Resistance of Sintered NdFeB Magnet[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9): 2864-2869.
[26] 陳靜, 凌國平. 釹鐵硼在AlCl3-EMIC離子液體中電沉積鋁層的耐腐蝕性能[J]. 材料保護, 2011, 44(11): 1-4.
CHEN Jing, LING Guo-ping. Corrosion Resistance of Electrodeposited Aluminum Coating on NdFeB Magnet from AlCl3-EMIC Ionic Liquid[J]. Materials Protection, 2011, 44(11): 1-4.
[27] ZHANG Yan-yan, ZHENG Da-jiang, SONG Guang-ling, et al. Effect of Vacuum Degree on Adhesion Strength and Corrosion Resistance of Magnetron Sputtered Aluminum Coating on NdFeB Magnet[J]. Materials and Corrosion, 2019, 70(7): 1230-1241.
[28] XU J L, XIAO Q F, MEI D D, et al. Preparation and Characterization of Amorphous SiO2Coatings Deposited by Mirco-Arc Oxidation on Sintered NdFeB Permanent Magnets[J]. Journal of Magnetism and Magnetic Mate-rials, 2017, 426: 361-368.
[29] DING Jing-jing, XU Ba-jin, LING Guo-ping. Al-Mn Coating Electrodeposited from Ionic Liquid on NdFeB Magnet with High Hardness and Corrosion Resistance[J]. Applied Surface Science, 2014, 305: 309-313.
Preparation Technology and Properties of Al Protective Coatings on the Surface of Sintered NdFeB Magnet Via Plasma Spray
,,,,
(State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Inner Mongolia Baotou 014030, China)
The air plasma spraying process is a novel surface protective technology on sintered NdFeB, which have a quantity of advantage on preparation process, corrosion resistance and other properties. There are some researches had been reported about cold spraying and part of hot spraying technology applied on surface protective. Although the air plasma spraying have been mentioned seldom, it can greatly improve the corrosion resistance of NdFeB magnets and can provide new ideas for industrial applications in NdFeB protection. The work aims to prepare Al protective coatings on the surface of sintered NdFeB magnets by atmospheric plasma spraying technology, so as to strengthen the protection of NdFeB magnets by plasma spraying technology.
In this work, sintered NdFeB magnets with dimensions of 30 mm×20 mm×4 mm were degreased, dried in air, and then grit-blasted prior to deposition. All specimens were in the state of demagnetization. Pure aluminum powders (>99.9%) were divided into 20-40 μm, and then were applied to spray onto the NdFeB substrate. As a result, with the spraying current increased from 400 A to 600 A, through observing the surface and cross-section morphology with SEM (SIGMA500), the best spraying current was 500 A, under which the surface of coating was dense without obvious sputtering stacking and unmelted particles. Finally the sprayed current was 500 A, the carrier gas flow rate was 1 800 L/h, the powder feed rate was 0.1 r/min, the distance was 150 mm. Under this process parameter, with the spraying number increased from 20 to 50 times, the thickness of coating had increased; when the spraying number reached to 30 times, the average thickness was up to 40 μm and the adhesive strength was over 15.5 MPa.
Then, the corrosion resistance of coatings with different thickness were tested through electrochemical workstation (Ivivum) and salt spray test (YWX-750), and magnetic properties were tested with impulse magnetic field magnetometer (Metis Instruments). The Al coating was a sacrificial anode to protect the substrate and the self-corrosion voltage was about –1.1 V vs saturated calomel electrode, which had no apparently influence in thickness of Al coating. The self-corrosion current was smaller two orders of magnitude after deposition of Al coating on the NdFeB matrix, which decreased from 1.18′10–4A/cm2to 5.12′10–6–6.77′10–6A/cm2; as the thickness of Al coatings increased, the corrosion resistance of Al coatings was increased, and that of coatings as thick as 70 μm was over 300 h. With the thickness of coating increased from 0 to 70 μm, the coercivity of the magnet was slightly increased and the residual magnetism was decreased from 2.0% to 4.26% of the original sample. Plasma spraying coating with excellent performance in adhesion, corrosion resistance and preparation process were used to prepare Al protective coatings and achieve the great protection to NdFeB magnet. The sprayed Al coating is a sacrificial anode to protect the substrate and have almost no damage to magnet properties.
sintered NdFeB; plasma spray; Al protective coating; anticorrosion properties; magnetic properties
TG174
A
1001-3660(2022)12-0208-09
10.16490/j.cnki.issn.1001-3660.2022.12.021
2021–10–22;
2022–02–17
2021-10-22;
2022-02-17
內(nèi)蒙古自然基金(2020MS05015);內(nèi)蒙古科技興蒙重點專項(XM2020BT01)
Natural Science Foundation of Inner Mongolia (2020MS05015); The Key Program for Science and Technology Prospering Inner Mongolia (XM2020BT01)
張帥(1994—),男,碩士,工程師,主要研究方向為表面工程。
ZHANG Shuai (1994-), Male, Master, Engineer, Research focus: surface engineering.
魯飛(1986—),男,碩士,高級工程師,主要研究方向為功能材料。
LU Fei (1986-), Male, Master, Senior engineer, Postgraduate, Research focus: functional materials.
張帥, 劉樹峰, 魯飛, 等. 燒結(jié)NdFeB表面等離子噴涂Al防護涂層制備工藝及性能研究[J]. 表面技術(shù), 2022, 51(12): 208-216.
ZHANG Shuai, LIU Shu-feng, LU Fei, et al. Preparation Technology and Properties of Al Protective Coatings on the Surface of Sintered NdFeB Magnet Via Plasma Spray[J]. Surface Technology, 2022, 51(12): 208-216.
責任編輯:劉世忠