吳紹華,張世鑫,楊署光,田維敏
橡膠樹樹皮miRNA定量表達(dá)分析的內(nèi)參篩選
吳紹華,張世鑫,楊署光,田維敏*
中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所/農(nóng)業(yè)農(nóng)村部橡膠樹生物學(xué)與遺傳資源利用重點(diǎn)實(shí)驗(yàn)室/省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地-海南省熱帶作物栽培生理學(xué)重點(diǎn)實(shí)驗(yàn)室,海南???571101
世界所需天然橡膠主要來自橡膠樹,橡膠樹的乳管是合成和儲(chǔ)存天然橡膠的組織,樹干樹皮中的次生乳管與天然橡膠生產(chǎn)密切相關(guān),由維管形成層分化而來。次生乳管數(shù)量與天然橡膠產(chǎn)量呈顯著正相關(guān)。因此,乳管分化是天然橡膠生產(chǎn)面臨的一個(gè)重大理論課題。植物miRNAs是一類長(zhǎng)約20~24個(gè)核苷酸的非編碼小RNA分子,通過介導(dǎo)基因沉默在植物生長(zhǎng)發(fā)育、細(xì)胞分化及逆境適應(yīng)中起著非常重要的調(diào)節(jié)作用。橡膠樹乳管分化過程中差異miRNAs的鑒定對(duì)于進(jìn)一步認(rèn)識(shí)乳管分化的分子機(jī)理具有重要的作用。實(shí)時(shí)熒光定量PCR(qPCR)已廣泛用于miRNA的定量表達(dá)分析,選擇合適的miRNA內(nèi)參對(duì)于準(zhǔn)確進(jìn)行miRNA的表達(dá)定量至關(guān)重要。本研究以冠菌素(coronatine, COR)誘導(dǎo)橡膠樹萌條分化次生乳管的實(shí)驗(yàn)系統(tǒng),采用小RNA Poly A加尾的qPCR技術(shù)分析COR處理對(duì)形成層區(qū)3個(gè)非編碼RNA(、、)和6個(gè)miRNA(、、、、、)候選內(nèi)參的表達(dá)穩(wěn)定性的影響。geNorm和NormFinder軟件的聯(lián)合分析結(jié)果顯示,表達(dá)穩(wěn)定性最高的是和,穩(wěn)定性較差的是。和可作為合適的內(nèi)參基因,用于分析COR影響下的miRNA相對(duì)定量表達(dá),為鑒定橡膠樹次生乳管分化相關(guān)的差異表達(dá)miRNAs奠定良好基礎(chǔ)。
橡膠樹;乳管分化;miRNA;冠菌素;內(nèi)參基因
天然橡膠作為四大工業(yè)原材料之一,在世界工業(yè)化及經(jīng)濟(jì)發(fā)展中起著重要的作用,是我國(guó)重要的戰(zhàn)略物資。世界上98%的天然橡膠都來源于橡膠樹(Muell. Arg.)。橡膠樹的乳管是合成和貯存天然橡膠的組織,其數(shù)量與天然橡膠產(chǎn)量呈顯著正相關(guān)。因此,乳管細(xì)胞的分化機(jī)理研究對(duì)于改良橡膠樹的產(chǎn)膠潛力具有重要的意義。橡膠樹樹皮中的次生乳管是由維管形成層的紡錘狀原始細(xì)胞分化而來。在前期的研究中,我們發(fā)現(xiàn)機(jī)械傷害、茉莉酸、冠菌素(coronatine, COR)及曲古抑菌素A(trichostatin A,TSA)均能誘導(dǎo)次生乳管的分化[1-5]?;贑OR誘導(dǎo)次生乳管分化的實(shí)驗(yàn)系統(tǒng),通過消減SSH文庫及轉(zhuǎn)錄組,初步推測(cè)茉莉酸信號(hào)途徑、CLAVATA-MAPK-WOX及鈣調(diào)信號(hào)途徑可能在次生乳管分化過程中起著重要的調(diào)控作用[4-6]。為了對(duì)這些信號(hào)途徑的差異基因進(jìn)行實(shí)行熒光定量PCR(qPCR)驗(yàn)證,通過COR和TSA誘導(dǎo)橡膠樹萌條樹皮乳管分化系統(tǒng)對(duì)22個(gè)候選的內(nèi)參基因進(jìn)行評(píng)估,結(jié)果顯示在COR誘導(dǎo)次生乳管分化的實(shí)驗(yàn)系統(tǒng)中表達(dá)最穩(wěn)定[6],而是TSA誘導(dǎo)橡膠樹萌條次生乳管分化的過程中的最佳內(nèi)參基因[7]。
miRNAs是一類長(zhǎng)約21~24個(gè)核苷酸的非編碼小RNA分子,其介導(dǎo)的基因表達(dá)調(diào)控在生物生長(zhǎng)發(fā)育、細(xì)胞分化及適應(yīng)各種逆境脅迫中起著非常重要的作用。目前,橡膠樹miRNAs的研究主要集中在逆境響應(yīng)[8-10]、膠乳代謝[11-13]、死皮相關(guān)miRNAs的鑒定[14-15]。對(duì)于miRNA介導(dǎo)橡膠樹器官分化特別是次生乳管分化的研究未見報(bào)道。為研究miRNA介導(dǎo)次生乳管分化的調(diào)控機(jī)制,本課題組前期進(jìn)行了COR誘導(dǎo)橡膠樹內(nèi)層樹皮的小RNA高通量測(cè)序,初步獲得了差異表達(dá)的miRNAs。為對(duì)差異miRNAs進(jìn)行qPCR驗(yàn)證,需要篩選出合適的miRNA內(nèi)參,用于miRNA定量表達(dá)分析。但有關(guān)COR誘導(dǎo)次生乳管分化過程中miRNA實(shí)時(shí)熒光定量PCR內(nèi)參miRNA篩選未見報(bào)道。因此,本研究基于COR處理橡膠樹內(nèi)層樹皮的小RNA高通量測(cè)序數(shù)據(jù)(未發(fā)表),篩選COR處理與對(duì)照表達(dá)量相對(duì)穩(wěn)定的6個(gè)mature miRNA (、、、、、)和3個(gè)常用于其他作物miRNA定量的內(nèi)參、和,采用geNorm[16]和NormFinder[17]軟件進(jìn)行評(píng)估,以篩選出適合橡膠樹樹皮COR響應(yīng)過程中miRNA定量表達(dá)分析的內(nèi)參。
以橡膠樹無性系‘熱研7-33-97’萌條為實(shí)驗(yàn)材料。在自然條件下,每年新萌發(fā)的第1~2伸長(zhǎng)單位的樹皮是沒有次生乳管的[2-3],COR誘導(dǎo)處理可產(chǎn)生次生乳管。本實(shí)驗(yàn)以第二伸長(zhǎng)單位的樹皮作為COR處理的部位。
1.2.1 材料處理及含小RNA的總RNA提取 用單面刀片輕輕刮去第二伸長(zhǎng)單位的莖表皮的角質(zhì)層,然后分別涂20 μmol/L的冠菌素(Sigma, USA)包裹后處理1、2、8、24 h[4],于處理后采集樹皮,每個(gè)時(shí)間點(diǎn)收集9株萌條的樣品,液氮冷凍后于?80℃冰箱保存,用于冰凍切片采集形成層區(qū)樣品。冰凍切割的形成層區(qū)樣品采用mirVana? PARIS? Kit (Invitrogen?, USA)試劑盒分離含小RNA的總RNA。采用DNA-free? DNA去除試劑盒(Invitrogen?, USA)消化總RNA中的痕量DNA。RNA提取后采用瓊脂糖凝膠電泳檢測(cè)RNA的完整性,NanoDrop 2000 (Thermo Fisher Scientific,USA)測(cè)定RNA的純度和濃度。
1.2.2 qPCR候選內(nèi)參miRNA的選擇 基于COR處理橡膠樹內(nèi)皮小RNA測(cè)序數(shù)據(jù)(未發(fā)表),篩選COR處理前后表達(dá)量相對(duì)穩(wěn)定的6個(gè)miRNAs以及、、作為候選內(nèi)參,候選內(nèi)參的引物如表1。
1.2.3 小RNA的反轉(zhuǎn)錄及qPCR分析 本實(shí)驗(yàn)取1 μg RNA采用小RNA Poly(A)加尾反轉(zhuǎn)錄法,參照miRcute miRNA First-Strand cDNA Synthesis Kit (Tiangen,北京)說明書反轉(zhuǎn)錄成第一鏈cDNA。獲得的cDNA產(chǎn)物稀釋10倍后,參照miRcute增強(qiáng)型miRNA熒光定量檢測(cè)試劑盒(SYBR Green, Tiangen,北京)說明書,基于CFX384 Real-Time PCR Detection System(Bio-Rad公司,USA)平臺(tái)進(jìn)行qPCR。
表1 本研究所用引物
根據(jù)熒光定量結(jié)果,獲得內(nèi)參各樣品的平均q值,按照公式將內(nèi)參基因的原始q值轉(zhuǎn)化為相對(duì)表達(dá)量值。
=Eq min?Cq sample
式中,為基因的擴(kuò)增效率,當(dāng)擴(kuò)增效率接近100%時(shí),通常默認(rèn)為2;q sample為該基因在各個(gè)組織中的q值,q min為該基因在所有組織中最小的q值。
然后將值導(dǎo)入geNorm和NormFinder軟件中,對(duì)橡膠樹COR響應(yīng)內(nèi)皮miRNA熒光定量PCR的內(nèi)參進(jìn)行穩(wěn)定性的評(píng)估。geNorm分析根據(jù)值評(píng)估內(nèi)參的穩(wěn)定性,值<1.5。值與內(nèi)參的穩(wěn)定性呈負(fù)相關(guān),即值越小基因越穩(wěn)定。軟件會(huì)根據(jù)值評(píng)估出最穩(wěn)定的基因組合,當(dāng)配對(duì)變異數(shù)V/n+1<0.15,只需要個(gè)內(nèi)參進(jìn)行定量;當(dāng)V/n+1>0.15,則需要+1個(gè)內(nèi)參對(duì)數(shù)據(jù)進(jìn)行定量。
NormFinder軟件通過計(jì)算基因的表達(dá)穩(wěn)定值(stability value,)來評(píng)估候選內(nèi)參基因的穩(wěn)定性,值越小,候選內(nèi)參就越穩(wěn)定。最后,綜合2個(gè)軟件的評(píng)估結(jié)果篩選出適合橡膠樹COR響應(yīng)樹皮miRNA熒光定量PCR的內(nèi)參。
采用RT-PCR對(duì)3個(gè)非編碼RNA (、、)和6個(gè)miRNA (、、、、、)進(jìn)行擴(kuò)增,PCR產(chǎn)物經(jīng)3%的瓊脂糖凝膠電泳檢測(cè),結(jié)果顯示,9個(gè)候選的miRNA內(nèi)參擴(kuò)增條帶單一(圖1),且熒光定量PCR產(chǎn)物的熔解曲線只有單一峰(圖2),表明候選miRNA的內(nèi)參的PCR產(chǎn)物單一、特異性好,符合qPCR實(shí)驗(yàn)標(biāo)準(zhǔn),可用于內(nèi)參miRNA基因的評(píng)估。
圖1 橡膠樹候選miRNA內(nèi)參的RT-PCR擴(kuò)增
本研究采用qPCR分析了3個(gè)非編碼RNA和6個(gè)miRNA的轉(zhuǎn)錄豐度。根據(jù)熒光定量PCR熔解曲線分析顯示,9個(gè)非編碼RNA的PCR產(chǎn)物的熔解曲線均為單峰(圖2),表明產(chǎn)物具有特異性,獲得q值能準(zhǔn)確有效地反映表達(dá)的豐度。q值預(yù)測(cè)內(nèi)參基因的表達(dá)豐度,q值越小,表達(dá)豐度越高。根據(jù)候選miRNA內(nèi)參表達(dá)的q值的分布情況,9個(gè)候選的miRNA內(nèi)參的q值介于16.79~31.59之間,其中的q值最低,表達(dá)量最高;的q值最高,表達(dá)量最小。和6個(gè)miRNA的q值介于16.80~27.69之間(圖3)。
圖2 9個(gè)候選miRNA內(nèi)參的qPCR熔解曲線
圖3 9個(gè)候選miRNA內(nèi)參的Cq值
geNorm分析結(jié)果顯示,COR處理和對(duì)照橡膠樹萌條形成層區(qū)組織候選miRNAs內(nèi)參表達(dá)的穩(wěn)定性從高到低依次為/>>>>>>>,表明橡膠樹樹皮對(duì)COR響應(yīng)的過程中,前3組最穩(wěn)定的miRNA分別為、、,其中和是最穩(wěn)定的miRNA內(nèi)參。最不穩(wěn)定的小分子RNA是(圖4A)。而候選miRNAs內(nèi)參的配對(duì)差異值的分析結(jié)果顯示,橡膠樹樹皮對(duì)COR響應(yīng)的過程中,V3/4的配對(duì)的變異值(pairwise variations)最?。?.101),小于閾值0.15,可判定作為miRNA定量表達(dá)的最優(yōu)內(nèi)參個(gè)數(shù)為3個(gè)(圖4B)。
A:geNorm軟件評(píng)估的miRNA的表達(dá)穩(wěn)定性平均值;B:候選miRNA內(nèi)參的配對(duì)變異值。
NormFinder分析結(jié)果顯示,COR處理和對(duì)照橡膠樹萌條形成層區(qū)組織中候選miRNAs內(nèi)參表達(dá)的穩(wěn)定性從高到低依次為>>>>>>>>,前3個(gè)最穩(wěn)定的miRNA分別為、和,其中是最穩(wěn)定的miRNA內(nèi)參,最不穩(wěn)定的小分子RNA是(圖5)。綜合NormFinder和geNorm分析結(jié)果顯示,在穩(wěn)定性前3位的miRNA中均包含和。而最不穩(wěn)定的3位內(nèi)參基因是一致的,表明橡膠樹樹皮對(duì)COR響應(yīng)的過程中,和較適合作為miRNA相對(duì)定量表達(dá)的內(nèi)參miRNA。
成熟miRNA的定量表達(dá)分析是初步進(jìn)行miRNA功能鑒定的前提。miRNA的表達(dá)豐度的檢測(cè)最初是采用Northern雜交和微陣列分析方法進(jìn)行的。而stem loop qRT-PCR[18]和poly (A)-tailed qRT-PCR 熒光定量表達(dá)技術(shù)出現(xiàn),使得miRNA這類較小的片段的檢測(cè)變得靈敏、方便、快捷。但作為熒光定量表達(dá)技術(shù),其準(zhǔn)確性同樣依賴于合適、穩(wěn)定的內(nèi)參基因的選擇。目前,作為最常用的內(nèi)參,用于諸如葡萄[19]、小桐子[20]、火龍果[21]、青花菜[22]等多種作物的miRNA定量表達(dá)的內(nèi)參。但是,已有的研究證明,并沒有絕對(duì)穩(wěn)定的基因[23],在很多情況下的表達(dá)也是不穩(wěn)定的,不適合作為內(nèi)參,比如小麥[24]、龍眼[25]、核桃[26]等作物。在本研究中,我們通過geNorm與NomFinder軟件評(píng)估,發(fā)現(xiàn)橡膠樹樹皮中的在COR處理?xiàng)l件下也是不穩(wěn)定的,并不適合作為COR處理?xiàng)l件下橡膠樹萌條樹皮形成層區(qū)組織中miRNA的定量表達(dá)的內(nèi)參。除了,、、和其他的miRNA也經(jīng)常作為內(nèi)參,但不同部位及不同處理?xiàng)l件,miRNA的內(nèi)參都是不一致的。干旱脅迫下大豆根和葉中成熟miRNA定量的最適內(nèi)參分別為和a[27]。miRNA表達(dá)的穩(wěn)定性也受到了生物逆境脅迫的影響。在潰瘍病菌感染下,是白楊木的最適內(nèi)參[28];黃桿菌屬subsp.侵染導(dǎo)致的柑桔潰瘍病過程中,和是定量miRNA表達(dá)的最適內(nèi)參[28]。在植物的發(fā)育過程中,miRNA定量的內(nèi)參也是不一致的。甘藍(lán)型油菜在種子的發(fā)育過程中miRNA表達(dá)分析的最適內(nèi)參組合是、和[29];核桃不同分化期葉芽中miRNA表達(dá)分析的最佳內(nèi)參為和[30];在青花菜花蕾發(fā)育過程中,和分別是花蕾4個(gè)不同部位以及花蕾不同發(fā)育時(shí)期的適宜內(nèi)參基因[22]。因此,作為內(nèi)參基因也是相對(duì)穩(wěn)定的,為了較準(zhǔn)確的定量miRNA的表達(dá),應(yīng)該評(píng)估出當(dāng)前實(shí)驗(yàn)條件下的穩(wěn)定表達(dá)的miRNA分子,以篩選出合適的miRNA內(nèi)參。本研究采用geNorm與NomFinder軟件評(píng)估COR誘導(dǎo)橡膠樹次生乳管分化過程中穩(wěn)定的miRNA,結(jié)果顯示和較適合作為miRNA相對(duì)定量表達(dá)的內(nèi)參miRNA,該研究結(jié)果將為進(jìn)一步鑒定橡膠樹次生乳管分化的差異表達(dá)miRNAs提供合適的內(nèi)參選擇。
圖5 NormFinder軟件評(píng)估COR處理橡膠樹萌條形成層組織中9個(gè)miRNA候選內(nèi)參表達(dá)的穩(wěn)定性
[1] 郝秉中, 吳繼林. 創(chuàng)傷(割膠)對(duì)巴西橡膠樹乳管分化的影響[J]. 植物學(xué)報(bào), 1982, 24(4): 388-392.
HAO B Z, WU J L. Effects of wound (tapping) on laticifer differentiation in[J]. Acta Botanica Sinica, 1982, 24(4): 388-392. (in Chinese)
[2] HAO B Z, WU J L. Laticifer differentiation in: induction by exogenous jasmonic acid and linolenic acid[J]. Annals of Botany, 2000, 85: 37-43.
[3] TIAN W M, YANG S G, SHI M J, ZHANG S X, WU J L. Mechanical wounding-induced laticifer differentiation in rubber tree: an indicative role of dehydration, hydrogen peroxide, and jasmonates[J]. Journal of Plant Physiology, 2015, 182: 95-103.
[4] ZHANG S X, WU S H, CHEN Y Y, TIAN W M. Analysis of differentially expressed genes associated with coronatine-induced laticifer differentiation in the rubber tree by subtractive hybridization suppression[J]. PLoS One, 2015, 10(7): e0132070.
[5] ZHANG S X, WU S H, TIAN W M. The secondary laticifer differentiation in rubber tree is induced by trichostatin A, an inhibitor of histone acetylation[J]. Frontiers of Agricultural Science and Engineering, 2016, 3(4): 357-362.
[6] WU S H, ZHANG S X, CHAO J Q, DENG X M, CHEN Y Y, SHI M J, TIAN W M. Transcriptome analysis of the signalling networks in coronatine-induced secondary laticifer differentiation from vascular cambia in rubber trees[J]. Scientific Reports, 2016, 6: 36384.
[7] 吳紹華, 張世鑫, 楊署光, 田維敏. TSA誘導(dǎo)橡膠樹次生乳管分化過程qRT-PCR內(nèi)參基因的篩選[J]. 熱帶作物學(xué)報(bào), 2020, 41(3): 504-512.
WU S H, ZHANG S X, YANG S G, TIAN W M. Selection of reference genes for normalization of quantitative real-time PCR analysis in secondary laticifer differentiation induced by trichostatin a in rubber tree (Muell. Arg.)[J]. Chinese Journal of Tropical Crops, 2020, 41(3): 504-512. (in Chinese)
[8] GéBELIN V, ARGOUT X, ENGCHUAN W, PITOLLAT B, DUAN C, MONTORO P, LECLERCQ J. Identification of novel microRNAs inand computational prediction of their targets[J]. BMC Plant Biology, 2012, 12: 18.
[9] GéBELIN V, LECLERCQ J, HU S, TANG C, MONTORO P. Regulation of MIR genes in response to abiotic stress in[J]. International Journal of Molecular Sciences, 2013, 14(10): 19587-19604.
[10] ZHANG Y, LECLERCQ J, WU S, ORTEGA-ABBOUD E, POINTET S, TANG C, HU S, MONTORO P. Genome-wide analysis inlaticifers revealed species-specific post-transcriptional regulations of several redox-related genes[J]. Scientific Reports, 2019, 9(1): 5701.
[11] KANJANAWATTANAWONG S, TANGPHATSORNRUANG S, TRIWITAYAKORN K, RUANG-AREERATE P, SANGSRAKRU D, POOPEAR S, SOMYONG S, NARANGAJAVANA J. Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis[J]. Molecular Genetics and Genomics, 2014, 289(5): 921-933.
[12] PRAMOOLKIT P, LERTPANYASAMPATHA M, VIBOONJUN U, KONGSAWADWORAKUL P, CHRESTIN H, NARANGAJAVANA J. Involvement of ethylene-responsive microRNAs and their targets in increased latex yield in the rubber tree in response to ethylene treatment[J]. Plant Physiology and Biochemistry, 2014, 84: 203-212.
[13] LECLERCQ J, WU S, FARINAS B, POINTET S, FAVREAU B, VIGNES H, KUSWANHADI K, ORTEGA-ABBOUD E, DUFAYARD JF, GAO S, DROC G, HU S, TANG C, MONTORO P. Post-transcriptional regulation of several biological processes involved in latex production in[J]. Peer Journal, 2020, 8: e8932.
[14] GéBELIN V, LECLERCQ J, KUSWANHADI, ARGOUT X, CHAIDAMSARI T, HU S, TANG C, SARAH G, YANG M, MONTORO P. The small RNA profile in latex fromtrees is affected by tapping panel dryness[J]. Tree Physiology, 2013, 33(10): 1084-1098.
[15] LIU H, HU Y, YUAN K, FENG C, HE Q, SUN L, WANG Z. Genome-wide identification of lncRNAs, miRNAs, mRNAs, and their regulatory networks involved in tapping panel dryness in rubber tree ()[J]. Tree Physiology, 2022, 42(3): 629-645.
[16] VANDESOMPELE J, DE PRETER K, PATTYN F, POPPE B, VAN ROY N, DE PAEPE A, SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): RESEARCH0034.
[17] ANDERSEN C L, JENSEN J L, ORNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: amodel-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245- 5250.
[18] CHEN C, RIDZON D A, BROOMER A J, ZHOU Z, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Research, 2005, 33(20): e179.
[19] LUO M, GAO Z, LI H, LI Q, ZHANG C, XU W, SONG S, MA C, WANG S. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine[J]. Scientific Reports, 2018, 8(1): 4444.
[20] 孔春艷, 陳永坤, 王莎莎, 郝大海, 楊 宇, 龔 明. 小桐子低溫脅迫下microRNA實(shí)時(shí)熒光定量PCR內(nèi)參的篩選與比較[J]. 生物技術(shù)通報(bào), 2019, 35(7): 25-31.
KONG C Y, CHEN Y K, WANG S S, HAO D H, YANG Y, GONG M. Screening and comparison of reference genes for microRNA quantitative real-time pcr inunder chilling stress[J]. Biotechnology Bulletin, 2019, 35(7): 25-31. (in Chinese)
[21] 李阿利, 楊 鹍, 文 壯, 仇志浪, 文曉鵬. 火龍果miRNA表達(dá)分析的qRT-PCR檢測(cè)體系建立[J]. 種子, 2019, 38(3): 6-10, 14.
LI A L, YANG K, WEN Z, QIU Z L, WEN X P. Establishment of qRT-PCR detection system for miRNA expression in[J]. Seed, 2019, 38(3): 6-10, 14. (in Chinese)
[22] 裴徐梨, 荊贊革, 唐 征, 羅天寬. 青花菜花蕾發(fā)育miRNA熒光定量?jī)?nèi)參基因的篩選[J]. 基因組學(xué)與應(yīng)用生物學(xué), 2021, 40(Z1): 2201-2207.
PEI X L, JING Z G, TANG Z, LUO T K. Selection of miRNA reference genes for quantitative RT-PCR in developmental bud of broccoli[J]. Genomics and Applied Biology, 2021, 40(Z1): 2201-2207. (in Chinese)
[23] KULCHESKI F R, MARCELINO-GUIMARAES F C, NEPOMUCENO A L, ABDELNOOR R V, MARGIS R. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean[J]. Analytical Biochemistry, 2010, 406(2): 185-192.
[24] FENG H, HUANG X L, ZHANG Q, WEI G R, WANG X J, KANG Z S. Selection of suitable inner reference genes for relative quantification expression of microRNA in wheat[J]. Plant Physiology and Biochemistry, 2012, 51: 116-122.
[25] LIN Y L, LAI Z X. Evaluation of suitable reference genes for normalization of microRNA expression by realtime reverse transcription PCR analysis during longan somatic embryogenesis[J]. Plant Physiology and Biochemistry, 2013, 66: 20-25.
[26] 周 麗, 全紹文, 馬 麗, 徐 航, 牛建新. 核桃(L.) MicroRNA實(shí)時(shí)熒光定量RT-PCR內(nèi)參基因的篩選[J]. 分子植物育種, 2019, 17(7): 2270-2278.
ZHOU L, QUAN S W, MA L, XU H, NIU J X. Screening of MicroRNA reference genes for Walnut by real-time fluorescence quantitative RT-PCR[J]. Molecular Plant Breeding, 2019, 17(7): 2270-2278. (in Chinese)
[27] 劉偉燦, 王 騏, 周永剛, 鄧 宇, 趙利旦, 王興超, 靳 京, 董園園, 王 南, 王法微, 陳 歡, 李曉薇, 李海燕. 大豆干旱脅迫下miRNA與mRNA熒光定量PCR內(nèi)參基因的篩選[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 44(2): 61-67.
LIU W C, WANG Q, ZHOU Y G, DENG Y, ZHAO L D, WANG X C, JIN J, DONG Y Y, WANG N, WANG F W, CHEN H, LI X W, LI H Y. Selection of reference genes for quantitative polymerase chain reaction of miRNA and mRNA in soybean under drought stress[J]. Journal of Northest A & F University (Nature Science Edition), 2016, 44(2): 61-67. (in Chinese)
[28] ZHANG L C, YANG X Q, YIN Y Y, WANG J X, WANG Y W. Identifcation and validation of miRNA reference genes in poplar under pathogen stress[J]. Molecular Biology Reports, 2021, 48: 3357-3366.
[29] LYU S H, YU Y, XU S R, XU S R, CAI W W, CHEN G X, CHEN J J, PAN D M, SHE W Q. Identification of appropriate reference genes for normalizing miRNA expression in citrus infected bysubsp.[J]. Genes(Basel), 2019, 11(1): 17.
[30] MACHADO R D, CHRISTOFF A P, LOSS-MORAIS G, MARGIS-PINHEIRO M, MARGIS R, K?RBES A P. Comprehensive selection of reference genes for quantitative gene expression analysis during seed development in[J]. Plant Cell Reports, 2015, 34(7): 1139-1149.
Selection of miRNA Reference for Normalization of Quantitative Real-time PCR Analysis in the Bark of Rubber Tree (Muell. Arg.)
WU Shaohua, ZHANG Shixin, YANG Shuguang, TIAN Weimin*
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs / State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Haikou, Hainan 571101, China
Rubber tree is the main source of natural rubber worldwide. Natural rubber is synthesized and stored in laticifer, a tissue composed of laticifer cells. The laticifer cells in the trunk bark are directly associated with natural rubber production and differentiated from the fusiform initials of vascular cambia. As the number of laticifer rings is positively correlated with rubber yield, the differentiation of laticifer from vascular cambia is a major theoretical subject faced to natural rubber industry. Plant miRNAs are a class of small noncoding RNAs about 20?24 nucleotides in length and play a pivotal regulatory role in development, cell differentiation and adversity stress by mediating the the gene silencing. Quantitative Real-time PCR (qPCR) is widely used in the quantitative analysis of the miRNA expression levels, and the selection of appropriate internal reference of miRNA is crucial for accurating the miRNA expression levels. In the present study, the expression stability of three non-coding RNAs (,,) and 6 mature miRNAs (,,,,,) were evaluated on the basis of coronatine-induced secondary laticifer differentiation in the bark of rubber trees using poly (A)-tailed qPCR. According to the analysis of geNorm and NormFinder,andwere the top two stable miRNAs andwas the least stable gene in response to coronatine in the cambium tissue of rubber trees. The results showed thatandcould serve as qPCR reference miRNA to analyze the miRNA expression pattern in COR-induced secondary laticifer differentiation. This study will provide a good basis for identification of the differentially expressed miRNAs related to secondary laticifer differentiation.
Muell. Arg.; laticifer differentiation; miRNA; coronatine; reference gene
S794.1
A
10.3969/j.issn.1000-2561.2022.11.001
2022-03-28;
2022-06-23
海南省基礎(chǔ)與應(yīng)用基礎(chǔ)研究計(jì)劃(自然科學(xué)領(lǐng)域)高層次人才資助項(xiàng)目(No. 2019RC334);國(guó)家天然橡膠產(chǎn)業(yè)技術(shù)體系育種技術(shù)與方法崗位科學(xué)家項(xiàng)目(No. CARS-33-YZ1)。
吳紹華(1983—),男,博士,副研究員,研究方向:橡膠樹分子生物學(xué)。*通信作者(Correponding author):田維敏(TIAN Weimin),E-mail:wmtian@163.com。