王艷文,王夢(mèng)靜,張虹,高鑫鑫,郭晶,李旭勇
1998-2021年我國(guó)人感染H9N2亞型禽流感病毒的遺傳演化規(guī)律
王艷文,王夢(mèng)靜,張虹,高鑫鑫,郭晶,李旭勇
聊城大學(xué)農(nóng)學(xué)院,山東聊城 252000
【目的】通過分析1998—2021年間我國(guó)人感染H9N2亞型禽流感病例的發(fā)病時(shí)間、所在省份、年齡和性別等信息,明確H9N2亞型禽流感病毒的流行病學(xué)特征;通過分析人源H9N2亞型禽流感病毒的基因特征,闡明人源H9N2亞型禽流感病毒的遺傳演化規(guī)律;為H9N2亞型禽流感病毒跨種間傳播的預(yù)警和防控提供數(shù)據(jù)支撐?!痉椒ā炕诹鞲谢驍?shù)據(jù)庫、病例報(bào)道和文獻(xiàn)資料,獲得1998—2021年我國(guó)人感染H9N2亞型禽流感病毒的病例信息和毒株序列數(shù)據(jù)。從時(shí)間、空間、性別和年齡的分布對(duì)感染病例進(jìn)行分析,明確人源H9N2亞型禽流感病毒感染的流行病學(xué)特征。通過DNASTAR中的MegAlign軟件對(duì)人源H9N2病毒的各基因片段的核苷酸序列進(jìn)行同源性分析,利用MEGA7.0軟件構(gòu)建系統(tǒng)進(jìn)化樹和分析病毒蛋白關(guān)鍵位點(diǎn),揭示遺傳演化趨勢(shì)和病毒蛋白關(guān)鍵氨基酸位點(diǎn)的變異情況。通過GISAID網(wǎng)站下載2019—2021年間我國(guó)H9N2亞型禽流感病毒的核苷酸序列,利用mafft比對(duì)后在MEGA7.0中查看人源與禽源H9N2病毒關(guān)鍵氨基酸位點(diǎn)的突變差異,揭示當(dāng)前人源和禽源H9N2病毒可能引起的風(fēng)險(xiǎn)?!窘Y(jié)果】1998—2021年我國(guó)人感染H9N2亞型禽流感病毒病例共71例,從空間分布分析,病例分布于16個(gè)省市,其中91.55%的病例來自于南方12個(gè)省市;從時(shí)間分布分析,2013年以后,我國(guó)報(bào)道的感染病例呈增長(zhǎng)趨勢(shì),2013—2021年累計(jì)感染病例數(shù)占總病例數(shù)的61.97%;從性別和年齡分布分析,男、女性別比為 1﹕1.68,感染病例主要見于幼兒和少兒,占總病例的74.14%。對(duì)人源H9N2病毒進(jìn)行基因組比對(duì)分析,發(fā)現(xiàn)這些病毒均屬于歐亞分支,但是這些病毒各基因片段的核苷酸序列同源性差異較大,HA、NA、PB2、PB1、PA、NP、M和NS的同源性分別為75.3%—100%、80.1%—100%、78.7%—100%、82.5%—100%、72.6%—100%、74.1%—100%、65.5%—100%、82.0%—100%;22株具有完整基因片段的病毒分為8個(gè)基因型,2003、2008和2013年的基因型與1999年的基因型有明顯差異。1998—2021年共有42株人源H9N2病毒株上傳HA序列,其中有38株病毒的HA蛋白發(fā)生Q226L的突變;共有30株人源H9N2病毒株上傳PB2序列,其中9株病毒的PB2蛋白發(fā)生E627V突變,1株病毒的PB2蛋白發(fā)生E627K突變;1株病毒的PB2蛋白的701位點(diǎn)發(fā)生D701N突變,共有31株人源H9N2病毒株上傳 NS與M序列,NS1蛋白的42位點(diǎn)均為S,M1蛋白的30和215位點(diǎn)的氨基酸分別為D和A。2019-2021年人源H9N2病毒的HA蛋白183與190位點(diǎn)、NS1蛋白42位點(diǎn)均發(fā)生突變,人源與禽源H9N2病毒的PB2蛋白701位點(diǎn)均未發(fā)生突變?!窘Y(jié)論】自2013年以來,我國(guó)人感染H9N2亞型禽流感病例數(shù)量呈增長(zhǎng)趨勢(shì),且具有顯著的地域、年齡和性別差異。1998年至今,人源H9N2病毒的基因同源性差異較大,不同分支間病毒基因重排頻繁,形成了復(fù)雜的基因型,提示H9N2亞型禽流感病毒在不斷地進(jìn)化。人源H9N2病毒的關(guān)鍵氨基酸位點(diǎn)出現(xiàn)突變,且在2019—2021年人源比禽源H9N2病毒的關(guān)鍵位點(diǎn)突變率高,提示H9N2亞型禽流感病毒的跨種感染人的潛力逐漸增強(qiáng)。該結(jié)果豐富了對(duì)人源H9N2病毒認(rèn)知,為H9N2亞型禽流感病毒防控提供參考。
禽流感病毒;H9N2亞型;流行病學(xué);遺傳進(jìn)化;跨種間傳播
【研究意義】禽流感病毒(avian influenza virus,AIV)是單股負(fù)鏈RNA病毒,其基因組由8個(gè)基因片段組成,分別是PB2、PB1、PA、HA、NP、NA、M、NS。根據(jù)表面基因HA和NA,可以分為不同的亞型(H1-H16和N1-N9)。1966年在美國(guó)農(nóng)場(chǎng)第一次分離出H9N2亞型AIV[1],1992年我國(guó)雞場(chǎng)首次暴發(fā)H9N2亞型AIV[2]。H9N2亞型AIV雖然是低致病力AIV,但是可以通過混合感染和免疫抑制對(duì)禽類造成傷害[3-5]。1998年我國(guó)首次發(fā)現(xiàn)H9N2亞型AIV感染人病例,這也是世界上首次發(fā)現(xiàn)H9N2亞型AIV可以突破種間屏障感染人,此后人感染H9N2亞型AIV病例零星發(fā)生[6-7];H9N2亞型AIV還為人源H5N1、H5N6、H7N9和H10N8等亞型AIV提供內(nèi)部基因[8-11],具有引起流感大流行的潛力[12-14]。因此,研究我國(guó)人源H9N2亞型AIV流行病學(xué)特征和遺傳演化規(guī)律,對(duì)H9N2亞型AIV跨種間傳播的預(yù)警和防控具有重要科學(xué)意義?!厩叭搜芯窟M(jìn)展】H9N2亞型AIV可感染包括野鳥、水禽、陸禽、豬等在內(nèi)的多種禽類和哺乳動(dòng)物[15-19]。H9N2亞型AIV在我國(guó)家禽中流行廣泛,自20世紀(jì)90年代至今,H9N2病毒不斷進(jìn)化與變異,形成了包括BJ/1/94、SH/F/98、G1、G9、Y280、Y439在內(nèi)的多個(gè)譜系[20-22]。研究發(fā)現(xiàn),近年來絕大部分禽源病毒具備了較強(qiáng)的結(jié)合人類呼吸道受體能力[23],部分病毒對(duì)小鼠的致病力顯著增強(qiáng),且在雪貂模型上具備較強(qiáng)的呼吸道飛沫傳播特性[24]。利用反向遺傳操作技術(shù),陸續(xù)鑒定出影響H9N2亞型AIV致病和傳播特性的部分關(guān)鍵氨基酸位點(diǎn),如HA/Q226L突變可顯著增強(qiáng)病毒結(jié)合人類呼吸道受體能力[25],PB2/E627K或D701N突變?cè)鰪?qiáng)病毒對(duì)小鼠致病力和在雪貂上的傳播力[26-27]。H9N2亞型AIV不僅本身具備較強(qiáng)的流行潛力,還易與其他亞型AIV發(fā)生基因重排,獲得更強(qiáng)的致病力和傳播力[24, 28-31],并為其他新型重組AIV提供部分或完整的內(nèi)部基因,促進(jìn)新型重組AIV的產(chǎn)生[8-11, 22, 32]。1998至2021年6月底,我國(guó)累計(jì)報(bào)道了71例人感染H9N2病毒的病例[33-44],然而目前對(duì)我國(guó)人源H9N2亞型AIV的流行病學(xué)特征和病毒的分子遺傳演化規(guī)律仍缺乏系統(tǒng)研究。【本研究切入點(diǎn)】基于病例報(bào)道、文獻(xiàn)資料、基因數(shù)據(jù)庫,獲取1998—2021年我國(guó)人感染H9N2亞型AIV病例的數(shù)據(jù)和毒株序列,進(jìn)行病毒流行病學(xué)特征、遺傳演化規(guī)律和基因分子特征分析,以期了解人感染H9N2亞型AIV的感染情況和流行趨勢(shì)。通過比較2019—2021年人源與禽源H9N2亞型AIV的關(guān)鍵氨基酸位點(diǎn)的差異,揭示當(dāng)前人源和禽源H9N2病毒可能引起的風(fēng)險(xiǎn)?!緮M解決的關(guān)鍵問題】本研究將明確人源H9N2亞型AIV流行病學(xué)特征,闡明人源H9N2亞型AIV遺傳演化規(guī)律,分析病毒基因分子特征,為H9N2亞型AIV跨種感染人的預(yù)警和防控提供理論基礎(chǔ)和數(shù)據(jù)支撐。
收集WHO、FIC、國(guó)家衛(wèi)生信息管理系統(tǒng)、各省衛(wèi)生組織網(wǎng)站和文獻(xiàn)資料中1998—2021年我國(guó)人感染H9N2亞型AIV病例的信息,在GISAID、IRD和NCBI數(shù)據(jù)庫下載1998—2021年我國(guó)人源H9N2分離株的基因序列。
用GraphPad Prism 8軟件統(tǒng)計(jì)分析數(shù)據(jù),用柱狀圖表示各省份在1998—2021年感染H9N2亞型AIV的病例數(shù);用柱狀圖表示我國(guó)每年累計(jì)感染H9N2亞型AIV病例數(shù)的時(shí)間分布;用折線圖來表示1998—2021年我國(guó)具有詳細(xì)信息的59例人感染H9N2亞型AIV病例在性別和年齡分布。
用DNASTAR中的MegAlign計(jì)算人源H9N2病毒各個(gè)基因片段核苷酸序列同源性。用MEGA7.0中的neighbor-joining方法繪制出人源H9N2病毒的各基因片段核苷酸的進(jìn)化樹,用黑色圓圈表示經(jīng)典毒株的位置;以同源性大于90%為標(biāo)準(zhǔn),對(duì)病毒各基因片段繪制成的進(jìn)化樹進(jìn)行分組,每組以不同顏色表示。
根據(jù)人源H9N2病毒的各基因片段所屬譜系劃分病毒的基因型,其中22株病毒具有全基因組序列,按照不同年份將基因型表示出來。
用MEGA7.0整理和分析人源H9N2病毒蛋白的關(guān)鍵氨基酸位點(diǎn),用表格展示出來,“-”表示該基因未上傳。
在GISAID網(wǎng)站上在下載2019—2021年我國(guó)H9N2亞型AIV的核苷酸序列,在mafft比對(duì)后使用MEGA7.0進(jìn)行統(tǒng)計(jì)H9N2亞型AIV不同位點(diǎn)氨基酸的數(shù)量。使用Excel做出2019—2021年H9N2亞型AIV關(guān)鍵氨基酸位點(diǎn)分布的柱狀圖,橫坐標(biāo)為蛋白的關(guān)鍵氨基酸位點(diǎn);該位點(diǎn)氨基酸的縮寫在柱子上標(biāo)明,縱坐標(biāo)為氨基酸所占百分比。
1998—2021年間,16個(gè)省、市、自治區(qū)和行政區(qū)(廣東、湖北、江蘇、廣西、貴州、福建、四川、云南、安徽、江西、湖南、香港、河南、甘肅、山東、北京)共報(bào)告71例人感染H9N2亞型AIV病例(圖1-A)。病例主要集中在南方,累計(jì)65例,占總病例的91.55%。其中廣東的病例數(shù)為25例(35.21%),位居第一位。因此,密切監(jiān)測(cè)南方地區(qū),尤其是廣東、香港等地H9N2亞型AIV在家禽中的流行和跨種間傳播事件非常必要。
1998年我國(guó)首次發(fā)現(xiàn)H9N2亞型AIV可以感染人,然而1998年之后病例數(shù)開始呈下降趨勢(shì),如圖1-B所示,甚至在2001—2002年連續(xù)兩年未有感染病例的報(bào)告。但是從2013年起病例數(shù)呈增長(zhǎng)趨勢(shì),2013—2020年病例數(shù)占全國(guó)報(bào)道總病例的67.61%(48例)。
在71例人感染H9N2亞型AIV病例中,59例病例有性別和年齡信息,據(jù)此繪制出人感染H9N2亞型AIV病例的年齡和性別分布圖(圖1-C)。從年齡階段分析發(fā)現(xiàn),在感染病例中嬰幼兒19例(32.20%),少兒24例(40.68%),少年3例(5.08%),成年9例(15.25%),老年4例(6.78%)。其中男性22例,女性37例,男、女性別比為1﹕1.68。結(jié)果顯示,嬰幼兒和少兒更易感H9N2亞型AIV,女性比男性更易感染H9N2亞型AIV。
A:全國(guó)人感染H9N2亞型AIV病例的空間分布;B:全國(guó)人感染H9N2亞型AIV病例的時(shí)間分布圖;C:全國(guó)人感染H9N2亞型AIV病例的年齡和性別分布圖
2.4.1 HA和NA的基因進(jìn)化樹 對(duì)人源H9N2分離株的HA和NA基因進(jìn)行同源性分析,繪制基因進(jìn)化樹(圖2),人源H9N2分離株之間的HA和NA基因核苷酸同源性分別為75.3%—100%和80.1%—100%。以同源性高于90%為依據(jù)進(jìn)行分組,HA基因可以分為6組,分布在Y280-like和G1-like譜系中。NA基因可以分為7組,與HA基因譜系不同,可以分為4個(gè)譜系:SH/F/98-like、Y280-like、G9-like和G1-like。
2.4.2 內(nèi)部基因的進(jìn)化樹 人源H9N2分離株內(nèi)部基因之間的同源性分別為PB2: 78.7%—100%,PB1:82.5%—100%,PA:72.6%—100%,NP:74.1%—100%,M:65.5%—100%,NS:82.0%—100%(圖3)。人源H9N2分離株的M基因可分為1組,人源H9N2分離株其它5個(gè)內(nèi)部基因分組情況分別是:PB2:4組,PB1:4組;PA:4組;NP:5組;NS:4組。人源H9N2分離株所屬的譜系在不同的內(nèi)部基因中也不相同,人源H9N2分離株M基因均來自于G1-like譜系,多數(shù)人源H9N2分離株的PB1、PA、NP、NS基因來自于SH/F/98-like譜系。
A:PB2基因進(jìn)化樹;B:PB1基因進(jìn)化樹;C:PA基因進(jìn)化樹;D:NP基因進(jìn)化樹;E:M基因進(jìn)化樹;F:NS基因進(jìn)化樹
H9N2亞型AIV的基因進(jìn)化樹可以分為歐亞譜系和北美譜系,而歐亞譜系又可以分為A/chicken/Beijing/ 1/1994(BJ/1/94-like)、A/duck/Hongkong/Y280/1997(Y280- like)、A/quail/Hongkong/G1/1997(G1-like)、A/duck/ Hongkong/ Y439/1997(Y439-like)、A/chicken/Shanghai/ F/1998(SH/F/98-like)等譜系[20-22]。1999—2009年人源分離株的內(nèi)部基因所在譜系主要為G1-like,在2013—2020年人源分離株內(nèi)部基因所屬譜系主要為SH/F/98-like。根據(jù)人源H9N2分離株基因所屬的譜系劃分基因型,從圖4中可以看出具有完整內(nèi)部基因的22株人源H9N2分離株可以劃分為8個(gè)基因型,在1999年存在一個(gè)未發(fā)生變化的G1的基因型,2003、2008和2013年的基因型與G1的基因型均有明顯差異。
基因型可以分為兩種,一種為兩年或兩年以上都可以檢測(cè)到的主要基因型,另外一種為僅在一年內(nèi)檢測(cè)到的短暫基因型。在短暫基因型與主要基因型僅在單個(gè)基因片段的來源上不同的情況下,將這些短暫基因型命名為主要基因型的變體[44]。在本研究中,人源分離株在2013—2020出現(xiàn)了一個(gè)主要基因型(用紅色框標(biāo)明)。
圖4 1998-2021年感染人的H9N2亞型禽流感基因型演變
如表1所示,1998—2021年共有42株人源H9N2病毒株上傳HA序列,其中有38株病毒的HA蛋白發(fā)生Q226L的突變,3株病毒(A/Shantou/239/1998、A/Hongkong/33982/2009、A/Hongkong/35820/2009)的226位點(diǎn)為Q,1株病毒(A/Guangzhou/333/1999)的226位點(diǎn)為M;共有30株人源H9N2病毒株上傳PB2序列,1株病毒(A/Guangdong/MZ058/2016 (H9N2))的PB2蛋白627位點(diǎn)突變?yōu)镵,9株病毒的627位點(diǎn)突變?yōu)閂,20株病毒的627位點(diǎn)未發(fā)生突變;1株病毒(A/Hongkong/33982/2009(H9N2))的PB2蛋白的701位點(diǎn)突變?yōu)镹,其他病毒的701位點(diǎn)未發(fā)生突變;共有31株人源H9N2病毒株上傳 NS與M序列,所有病毒的NS1蛋白42位點(diǎn)均突變?yōu)镾,M1蛋白的30位點(diǎn)均突變?yōu)镈、215位點(diǎn)均突變?yōu)锳。HA蛋白Q226L的突變,使病毒具有結(jié)合人類受體(α-2,6受體)的能力,PB2蛋白E627V/K、D701N、NS1蛋白A42S和M1蛋白N30D、T215A的突變均可增加病毒對(duì)于小鼠的致病力。這些位點(diǎn)的突變提示H9N2病毒存在人傳人的潛在風(fēng)險(xiǎn)。
表1 部分基因的關(guān)鍵位點(diǎn)分析
續(xù)表1 Continued table 1
“-”表示基因未上傳The gene was not uploaded
HA蛋白的H183N和Q226L的突變可以使病毒具有結(jié)合人類受體(α-2,6受體)的能力。PB2蛋白E627V[45]、E627K[46]和D701N、NS1蛋白A42S的突變可以增強(qiáng)對(duì)于小鼠的致病力。如圖5所示,人源H9N2亞型AIV的HA蛋白183和226位點(diǎn)、NS1蛋白的42位點(diǎn)均發(fā)生突變,揭示人源H9N2病毒的致病力的增加;禽源H9N2亞型AIV的HA蛋白183和226位點(diǎn)突變率是92.38%,揭示禽源H9N2亞型AIV已經(jīng)普遍具有結(jié)合人類受體的能力;PB2蛋白E627V/K的突變,會(huì)導(dǎo)致H9N2亞型AIV的致病力增強(qiáng),提示H9N2病毒對(duì)于人類的威脅在增加。
H9N2禽流感病毒不僅可以為感染人的禽流感病毒提供內(nèi)部基因,而且病毒本身可以跨越種間屏障感染人,威脅我國(guó)公共衛(wèi)生安全。目前對(duì)人源H9N2亞型AIV研究較為匱乏,尤其是對(duì)該病毒的流行病學(xué)特征和遺傳演化規(guī)律缺少系統(tǒng)研究。本研究通過病例報(bào)道、文獻(xiàn)資料、基因數(shù)據(jù)庫等多種方式,獲得了自1998年至2021年6月人感染H9N2亞型AIV的病例數(shù)據(jù),從流行病學(xué)特征和遺傳演化規(guī)律方面進(jìn)行分析,為H9N2亞型AIV跨種間傳播的預(yù)警和防控提供數(shù)據(jù)支撐。
A:2019-2021年中國(guó)禽源H9N2病毒關(guān)鍵位點(diǎn)的分布;B:2019-2021年中國(guó)人源H9N2病毒關(guān)鍵位點(diǎn)的分布
對(duì)某種疫病的流行病學(xué)特征分析不僅可以尋找影響該疫病流行規(guī)律,而且可以針對(duì)性的提出預(yù)防和控制措施和策略。Li[29]與Song[43]等研究發(fā)現(xiàn)南方地區(qū)的人群中H9N2亞型AIV血清陽性率高于北方地區(qū);樂高鐘[47]等報(bào)道的感染H9N2亞型病例中兒童較多。本研究對(duì)1998年至2021年6月人感染H9N2亞型AIV的病例數(shù)據(jù)分析,結(jié)果顯示南方地區(qū)感染數(shù)量遠(yuǎn)高于北方地區(qū);兒童感染數(shù)量較多;近幾年感染H9N2亞型AIV的病例增多,這與之前的研究一致。本研究還對(duì)病例的性別進(jìn)行分析發(fā)現(xiàn)各年齡階段女性比男性更易感。因此對(duì)南方地區(qū)和兒童、女性的密切監(jiān)測(cè)對(duì)于H9N2亞型AIV的防控具有重要意義。
根據(jù)病毒基因型將H9N2亞型AIV分為多個(gè)譜系,其中僅有HA基因的兩個(gè)譜系(G1-like和Y280- like)與人類感染有關(guān)[48]。對(duì)本文中人源H9N2病毒的HA基因進(jìn)行分析,這些病毒均屬于Y280-like和G1-like譜系。自1998年暴發(fā)H9N2禽流感疫情[49],快速傳播到全國(guó)多個(gè)省份,并與家禽中其他亞型AIV基因片段重組,產(chǎn)生基因型復(fù)雜的病毒[50]。本文中的人源H9N2病毒可以劃分為8個(gè)基因型,2003、2008和2013年的基因型與1999年的基因型有明顯差異,這與我國(guó)家禽中H9N2亞型AIV暴發(fā)時(shí)間[51](2001、2007、2011和2013年)是一致的,這說明H9N2亞型AIV在不斷地進(jìn)化,因此對(duì)于H9N2亞型AIV的實(shí)時(shí)監(jiān)測(cè)是非常必要的。在2013—2020年出現(xiàn)了一個(gè)主要基因型,其他均為短暫基因型。密切監(jiān)測(cè)人源H9N2病毒HA基因和主要基因型,對(duì)于H9N2病毒的防控具有重要意義。
流感病毒某些蛋白的關(guān)鍵氨基酸位點(diǎn)可以影響病毒的復(fù)制力、致病力或跨種間傳播能力[52]。例如,HA蛋白的226位點(diǎn)由Q突變?yōu)長(zhǎng)[25],可以增加病毒的傳播能力;PB2蛋白的627位點(diǎn)和701位點(diǎn)的突變可以增加病毒的復(fù)制力、傳播能力和致病力[26, 53];NS1蛋白的42位點(diǎn)和M1蛋白的30位點(diǎn)和215位點(diǎn)的突變可以增加病毒對(duì)于小鼠的致病力[54-55]。本研究中的人源H9N2病毒HA蛋白的226位點(diǎn)多數(shù)為L(zhǎng),一株人源H9N2病毒(A/Guangdong/MZ058/2016(H9N2))的PB2蛋白627位點(diǎn)氨基酸為K,另一株人源H9N2病毒(A/Hongkong/33982/2009(H9N2))的PB2蛋白701位點(diǎn)氨基酸為N,NS1蛋白的42位點(diǎn)均為S,M1蛋白的30和215位點(diǎn)的氨基酸分別為D和A,提示人源H9N2病毒復(fù)制力、致病力和跨種間傳播能力均有增加。密切監(jiān)測(cè)H9N2病毒的氨基酸關(guān)鍵位點(diǎn)變異趨勢(shì)對(duì)于防控H9N2大流行具有重要意義。
禽類是禽流感病毒的天然儲(chǔ)存庫,家禽感染H9N2亞型AIV后會(huì)與其他亞型進(jìn)行重組,產(chǎn)生可以感染人的重組毒株,例如H5N1、H5N6、H7N9和H10N8等亞型AIV。2013年2月我國(guó)首次出現(xiàn)H7N9亞型AIV感染人的事件,至2014年4月感染人數(shù)已達(dá)410例[56],且H7N9亞型AIV出現(xiàn)在人群中的流行,但是在2017年9月家禽接種H7N9疫苗以來,感染人數(shù)開始下降[57]。證明家禽接種疫苗后可以有效控制H7N9亞型AIV的流行。
有研究表明,活禽市場(chǎng)暴露人員H9N2亞型AIV的陽性率要高于其他職業(yè)暴露人員[58]?,F(xiàn)在我國(guó)感染H9N2亞型AIV病例數(shù)已有71例,病例中有14例有活禽接觸史,其他暴露不詳。盡管人感染H9N2亞型AIV的原因暫不明確,但是通過之前的研究可以了解到人在接觸家禽后感染的風(fēng)險(xiǎn)會(huì)增加。因此控制AIV在家禽中的流行以降低傳播給人類的潛在風(fēng)險(xiǎn)是十分必要的。盡管H9N2亞型AIV未出現(xiàn)在人群中的流行,但是近年來感染H9N2亞型AIV的病例數(shù)卻在增加。H9N2亞型AIV變異性強(qiáng),在自然宿主中易發(fā)生基因重配隨之出現(xiàn)新的重組毒株,可能會(huì)造成新的流感大流行。因此需要密切關(guān)注H9N2亞型AIV在人群中的流行及抗原變異情況。
4.1 通過對(duì)1998—2021年我國(guó)人源H9N2亞型禽流感病毒分析,發(fā)現(xiàn)自2013年以來病例數(shù)量呈增長(zhǎng)趨勢(shì),且具有顯著的地域、年齡和性別差異。
4.2 病毒的基因同源性差異較大,病毒基因重排頻繁,形成了復(fù)雜的基因型。
4.3 病毒的關(guān)鍵位點(diǎn)氨基酸出現(xiàn)突變,使病毒的致病力、傳播力和復(fù)制力有增強(qiáng)趨勢(shì)。
4.4 建議大力推廣“人病獸防,關(guān)口前移”的人獸共患傳染病防控理念,持續(xù)開展H9N2亞型禽流感病毒在家禽中的流行和監(jiān)測(cè),加強(qiáng)家禽H9N2病毒的防控力度,從動(dòng)物源頭減少和阻斷H9N2病毒感染人類。
[1] HOMME P J, EASTERDAY B C. Avian influenza virus infections. I. Characteristics of influenza A-Turkey-Wisconsin-1966 virus. Avian Diseases, 1970, 14(1): 66-74.
[2] ZHONG L, WANG X Q, LI Q H, LIU D, CHEN H Z, ZHAO M J, GU X B, HE L, LIU X W, GU M, PENG D X, LIU X F. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. Journal of Virology, 2014, 88(17): 9568-9578. doi:10.1128/JVI.00943-14.
[3] ZHANG P H, TANG Y H, LIU X W, PENG D X, LIU W B, LIU H Q, LU S, LIU X F. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in Eastern China during a 5 year period (1998-2002). The Journal of General Virology, 2008, 89(Pt12): 3102-3112. doi:10.1099/vir.0. 2008/005652-0.
[4] SUN Y P, LIU J H. H9N2 influenza virus in China: a cause of concern. Protein & Cell, 2015, 6(1): 18-25. doi:10.1007/s13238-014-0111-7.
[5] PEACOCK T H P, JAMES J, SEALY J E, IQBAL M. A global perspective on H9N2 avian influenza virus. Viruses, 2019, 11(7): 620. doi:10.3390/v11070620.
[6] HE J, LIU B Y, GONG L, CHEN Z, CHEN X L, HOU S, YU J L, WU J B, XIA Z C, LATIF A, GAO R, SU B, LIU Y. Genetic characterization of the first detected human case of avian influenza A (H5N6) in Anhui Province, East China. Scientific Reports, 2018, 8: 15282. doi:10.1038/s41598-018-33356-4.
[7] ZHANG Q Y, SHI J Z, DENG G H, GUO J, ZENG X Y, HE X J, KONG H H, GU C Y, LI X Y, LIU J X, WANG G J, CHEN Y, LIU L L, LIANG L B, LI Y Y, FAN J, WANG J L, LI W H, GUAN L Z, LI Q M, YANG H L, CHEN P C, JIANG L, GUAN Y T, XIN X G, JIANG Y P, TIAN G B, WANG X R, QIAO C L, LI C J, BU Z G, CHEN H L. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science, 2013, 341(6144): 410-414. doi:10.1126/ science.1240532.
[8] LI X Y, CUI P F, ZENG X Y, JIANG Y P, LI Y B, YANG J X, PAN Y D, GAO X X, ZHAO C H, WANG J H, WANG K, DENG G H, GUO J. Characterization of avian influenza H5N3 reassortants isolated from migratory waterfowl and domestic ducks in China from 2015 to 2018. Transboundary and Emerging Diseases, 2019, 66(6): 2605-2610. doi:10.1111/tbed.13324.
[9] CHEN H Y, YUAN H, GAO R B, ZHANG J X, WANG D Y, XIONG Y, FAN G Y, YANG F, LI X D, ZHOU J F, ZOU S M, YANG L, CHEN T, DONG L B, BO H, ZHAO X, ZHANG Y, LAN Y, SHU Y L. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. The Lancet, 2014, 383(9918): 714-721. doi:10.1016/S0140-6736(14) 60111-2.
[10] YU X F, JIN T, CUI Y J, PU X Y, LI J, XU J, LIU G, JIA H J, LIU D, SONG S L, YU Y, XIE L, HUANG R J, DING H, KOU Y, ZHOU Y Y, WANG Y Y, XU X, YIN Y, WANG J, GUO C Y, YANG X W, HU L P, WU X P, WANG H L, LIU J, ZHAO G Q, ZHOU J Y, PAN J C, GAO G F, YANG R F, WANG J. Influenza H7N9 and H9N2 viruses: coexistence in poultry linked to human H7N9 infection and genome characteristics. Journal of Virology, 2014, 88(6): 3423-3431. doi:10. 1128/JVI.02059-13.
[11] KANDEIL A, EL-SHESHENY R, MAATOUQ A M, MOATASIM Y, SHEHATA M M, BAGATO O, RUBRUM A, SHANMUGANATHAM K, WEBBY R J, ALI M A, KAYALI G. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Archives of Virology, 2014, 159(11): 2861-2876. doi:10. 1007/s00705-014-2118-z.
[12] LIN Y P, SHAW M, GREGORY V, CAMERON K, LIM W, KLIMOV A, SUBBARAO K, GUAN Y, KRAUSS S, SHORTRIDGE K, WEBSTER R, COX N, HAY A. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9654-9658. doi:10.1073/pnas.160270697.
[13] LV J, WEI B Z, YANG Y, YAO M L, CAI Y M, GAO Y W, XIA X Z, ZHAO X N, LIU Z H, LI X X, WANG H, YANG H L, ROESLER U, MIAO Z M, CHAI T J. Experimental transmission in Guinea pigs of H9N2 avian influenza viruses from indoor air of chicken houses. Virus Research, 2012, 170(1/2): 102-108. doi:10.1016/j.virusres.2012. 09.003.
[14] ZHANG K, ZHANG Z W, YU Z J, LI L, CHENG K H, WANG T C, HUANG G, YANG S T, ZHAO Y K, FENG N, FU J, QIN C, GAO Y W, XIA X Z. Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Research, 2013, 175(1): 52-57. doi:10.1016/j. virusres.2013.04.004.
[15] ZHU Y C, ZHANG B, SUN Z H, WANG X J, FAN X H, GAO L X, LIANG Y, CHEN X Y, ZHANG Z F. Replication and pathology of duck influenza virus subtype H9N2 in chukar. Biomedical and Environmental Sciences, 2018, 31(4): 306-310. doi:10.3967/bes2018. 039.
[16] ALI M, YAQUB T, MUKHTAR N, IMRAN M, GHAFOOR A, SHAHID M F, NAEEM M, IQBAL M, SMITH G J D, SU Y C F. Avian influenza A(H9N2) virus in poultry worker, Pakistan, 2015. Emerging Infectious Diseases, 2019, 25(1): 136-139. doi:10.3201/ eid2501.180618.
[17] NAGY A, METTENLEITER T C, ABDELWHAB E M. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiology and Infection, 2017, 145(16): 3320-3333. doi:10.1017/S0950268817002576.
[18] 孫瑩, 張兵, 李嶺, 黃小潔, 侯力丹, 劉丹, 李啟紅, 李俊平, 王樂元, 李慧姣, 楊承槐. 表達(dá)H9亞型禽流感病毒HA基因重組鴨腸炎病毒的構(gòu)建. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(23): 4398-4405. doi:10. 3864/j.issn.0578-1752.2019.23.020.
SUN Y, ZHANG B, LI L, HUANG X J, HOU L D, LIU D, LI Q H, LI J P, WANG L Y, LI H J, YANG C H. Construction of a recombinant duck enteritis virus expressing hemagglutinin of H9N2 avian influenza virus. Scientia Agricultura Sinica, 2019, 52(23): 4398-4405. doi:10.3864/j.issn.0578-1752.2019.23.020. (in Chinese)
[19] 丁潔, 高玉偉, 桑曉宇, 程凱慧, 于志君, 張坤, 柴洪亮, 王鐵成, 夏咸柱, 華育平. H9N2亞型AIV鼠肺適應(yīng)株的獲得及其氨基酸變異分析. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(15): 3056-3063.
DING J, GAO Y W, SANG X Y, CHENG K H, YU Z J, ZHANG K, CHAI H L, WANG T C, XIA X Z, HUA Y P. The adaptation of H9N2 subtype AIV in mouse and analysis of amino acid mutation. Scientia Agricultura Sinica, 2015, 48(15): 3056-3063. (in Chinese)
[20] LU J H, LIU X F, SHAO W X, LIU Y L, WEI D P, LIU H Q. Phylogenetic analysis of eight genes of H9N2 subtype influenza virus: a mainland China strain possessing early isolates' genes that have been circulating. Virus Genes, 2005, 31(2): 163-169. doi:10.1007/s11262- 005-1790-1.
[21] FUSARO A, MONNE I, SALVIATO A, VALASTRO V, SCHIVO A, AMARIN N M, GONZALEZ C, ISMAIL M M, AL-ANKARI A R, AL-BLOWI M H, KHAN O A, MAKEN ALI A S, HEDAYATI A, GARCIA GARCIA J, ZIAY G M, SHOUSHTARI A, AL QAHTANI K N, CAPUA I, HOLMES E C, CATTOLI G. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. Journal of Virology, 2011, 85(16): 8413-8421. doi:10.1128/JVI.00219-11.
[22] XU K M, SMITH G J D, BAHL J, DUAN L, TAI H, VIJAYKRISHNA D, WANG J, ZHANG J X, LI K S, FAN X H, WEBSTER R G, CHEN H, PEIRIS J S M, GUAN Y. The genesis and evolution of H9N2 influenza viruses in poultry from Southern China, 2000 to 2005. Journal of Virology, 2007, 81(19): 10389-10401. doi:10.1128/JVI.00979-07.
[23] SUN X J, BELSER J A, MAINES T R. Adaptation of H9N2 influenza viruses to mammalian hosts: a review of molecular markers. Viruses, 2020, 12(5): 541. doi:10.3390/v12050541.
[24] SORRELL E M, WAN H Q, ARAYA Y, SONG H C, PEREZ D R. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7565-7570. doi:10.1073/pnas.0900877106.
[25] WAN H Q, PEREZ D R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology, 2007, 81(10): 5181-5191. doi:10.1128/JVI.02827-06.
[26] GABRIEL G, HERWIG A, KLENK H D. Interaction of polymerase subunit PB2and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathogens, 2008, 4(2): e11. doi:10. 1371/journal.ppat.0040011.
[27] ZHANG H, LI X Y, GUO J, LI L, CHANG C, LI Y Y, BIAN C, XU K, CHEN H L, SUN B. The PB2E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. The Journal of General Virology, 2014, 95(Pt 4): 779-786. doi:10. 1099/vir.0.061721-0.
[28] GU M, XU L J, WANG X Q, LIU X F. Current situation of H9N2 subtype avian influenza in China. Veterinary Research, 2017, 48(1): 49. doi:10.1186/s13567-017-0453-2.
[29] LI C, WANG S G, BING G X, CARTER R A, WANG Z J, WANG J L, WANG C X, WANG L, WU G, WEBSTER R G, WANG Y Q, SUN H L, SUN Y P, LIU J H, PU J. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerging Microbes & Infections, 2017, 6(1): 1-11. doi:10.1038/emi. 2017.94.
[30] LI X Y, LIU B T, MA S J, CUI P F, LIU W Q, LI Y B, GUO J, CHEN H L. High frequency of reassortment after co-infection of chickens with the H4N6 and H9N2 influenza A viruses and the biological characteristics of the reassortants. Veterinary Microbiology, 2018, 222: 11-17. doi:10.1016/j.vetmic.2018.06.011.
[31] KIMBLE J B, SORRELL E, SHAO H X, MARTIN P L, PEREZ D R. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12084-12088. doi:10.1073/pnas. 1108058108.
[32] HU Z B, PENG F H, XIONG Z H, ZHANG W P, LI T T, SHI Y J, XIE J, JIN X, HUANG J J, XIAO H D, BI D R, SONG N H, LI Z L. Genetic and molecular characterization of H9N2 avian influenza viruses isolated from live poultry markets in Hubei Province, central China, 2013-2017. Virologica Sinica, 2021, 36(2): 291-299. doi:10. 1007/s12250-020-00260-z.
[33] 莊麗, 王恒, 馮蓓, 蔣琳, 蔣維佳. 貴州省首次報(bào)道人感染H9N2禽流感病例的病原學(xué)診斷及意義. 貴州醫(yī)藥, 2019, 43(4): 617-618. doi:10.3969/j.issn.1000-744X.2019.04.044.
ZHUANG L, WANG H, FENG B, JIANG L, JIANG W J. The etiological diagnosis and significance of a human case of H9N2 avian influenza reported in Guizhou Province for the first time. Guizhou Medical Journal, 2019, 43(4): 617-618. doi:10.3969/j.issn.1000-744X. 2019.04.044. (in Chinese)
[34] 朱汝南, 孫宇, 王芳, 趙林清, 鄧潔, 田潤(rùn), 錢淵. 北京兒童中發(fā)現(xiàn)人感染禽流感病毒H9N2病例一例. 中華兒科雜志, 2017, 55(1): 69. doi:10.3760/cma.j.issn.0578-1310.2017.01.016.
ZHU R N, SUN Y, WANG F, ZHAO L Q, DENG J, TIAN R, QIAN Y. A case of human infection with avian influenza virus H9N2 was found in a Beijing child. Chinese Journal of Pediatrics, 2017, 55(1): 69. doi:10.3760/cma.j.issn.0578-1310.2017.01.016. (in Chinese)
[35] 張斯鈺, 黃一偉, 胡世雄, 張恒嬌, 孫倩萊, 鄧志紅, 曾舸, 張紅, 湛志飛, 高立冬. 湖南省2005—2017年人感染禽流感流行病學(xué)特征分析. 中華疾病控制雜志, 2018, 22(10): 1037-1040. doi:10. 16462/j.cnki.zhjbkz.2018.10.014.
ZHANG S Y, HUANG Y W, HU S X, ZHANG H J, SUN Q L, DENG Z H, ZENG G, ZHANG H, ZHAN Z F, GAO L D. Epidemiologic characteristics of human avian influenza in Hunan Province from 2005 to 2017. Chinese Journal of Disease Control & Prevention, 2018, 22(10): 1037-1040. doi:10.16462/j.cnki.zhjbkz.2018.10.014. (in Chinese)
[36] 楊磊, 杜訓(xùn)波, 張曉春, 岳勇, 翁貴武, 昝宇, 韓德琳. 成都市首例人感染H9N2禽流感病例調(diào)查與分析. 中國(guó)人獸共患病學(xué)報(bào), 2017, 33(3): 245-249. doi:10.3969/j.issn.1002-2694.2017.03.010.
YANG L, DU X B, ZHANG X C, YUE Y, WENG G W, ZAN Y, HAN D L. Investigation and analysis of the first cases of human infection with avian influenza A(H9N2) virus in Chengdu, China. Chinese Journal of Zoonoses, 2017, 33(3): 245-249. doi:10.3969/j.issn.1002- 2694.2017.03.010. (in Chinese)
[37] 羅春蕊, 趙曉南, 寧德明, 李多, 徐聞. 云南省首例人感染H9N2禽流感病例發(fā)現(xiàn)與應(yīng)對(duì). 中國(guó)人獸共患病學(xué)報(bào), 2017, 33(3): 241-244. doi:10.3969/j.issn.1002-2694.2017.03.009.
LUO C R, ZHAO X N, NING D M, LI D, XU W. Discovery and response of the first case of human infection with avian influenza A(H9N2) virus in Yunnan Province, China. Chinese Journal of Zoonoses, 2017, 33(3): 241-244. doi:10.3969/j.issn.1002-2694.2017. 03.009. (in Chinese)
[38] 劉峰, 李剛, 劉鳳仁, 俞國(guó)龍. 廣東省深圳市首例孕婦感染H9N2禽流感病例流行病學(xué)調(diào)查. 疾病監(jiān)測(cè), 2019, 34(7): 621-625. doi:10.3784/j.issn.1003-9961.2019.07.010.
LIU F, LI G, LIU F R, YU G L. Epidemiological survey of the first case of pregnant women infection with avian influenza A (H9N2) virus in Shenzhen. Disease Surveillance, 2019, 34(7): 621-625. doi:10.3784/j.issn.1003-9961.2019.07.010. (in Chinese)
[39] 黃政, 歐新華, 袁潔, 劉曉蕾. 長(zhǎng)沙市首例人感染H9N2禽流感病毒的HA基因序列特征分析. 中國(guó)人獸共患病學(xué)報(bào), 2016, 32(11): 997-1000. doi:10.3969/j.issn.1002-2694.2016.011.010.
HUANG Z, OU X H, YUAN J, LIU X L. Isolation and characteristic analysis of an avian influenza virus (H9N2) from a patient in Changsha, China. Chinese Journal of Zoonoses, 2016, 32(11): 997-1000. doi:10.3969/j.issn.1002-2694.2016.011.010. (in Chinese)
[40] 何軍, 劉麗萍, 侯賽, 龔磊, 吳家兵, 胡萬富, 王建軍. 安徽省2株人感染H9N2流感病毒基因特征. 中華流行病學(xué)雜志, 2016, 37(5): 708-713.
HE J, LIU L P, HOU S, GONG L, WU J B, HU W F, WANG J J. Genetic characteristics of two human H9N2 influenza virus strains in Anhui Province. Chinese Journal of Epidemiology, 2016, 37(5): 708-713. (in Chinese)
[41] 郭元吉, 李建國(guó), 程小雯, 王敏, 鄒毅, 李釧華, 蔡訪潺, 廖華樂, 張燁, 郭俊峰, 黃瑞敏, 貝東. 禽H9N2亞型流感病毒能感染人的發(fā)現(xiàn). 中華實(shí)驗(yàn)和臨床病毒學(xué)雜志, 1999, 13(2): 105.
GUO Y J, LI J G, CHENG X W, WANG M, ZOU Y, LI C H, CAI F C, LIAO H L, ZHANG Y, GUO J F, HUANG R M, BEI D. Discovery of men infected by avian influenza A(H9N2) virus. Chinese Journal of Experimental and Clinical Virology, 1999, 13(2): 105. (in Chinese)
[42] BUTT K M, SMITH G J D, CHEN H L, ZHANG L J, LEUNG Y H C, XU K M, LIM W, WEBSTER R G, YUEN K Y, PEIRIS J S M, GUAN Y. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of Clinical Microbiology, 2005, 43(11): 5760-5767. doi:10.1128/JCM.43.11.5760-5767.2005.
[43] SONG W J, QIN K. Human-infecting influenza A (H9N2) virus: a forgotten potential pandemic strain? Zoonoses and Public Health, 2020, 67(3): 203-212. doi:10.1111/zph.12685.
[44] DONG X, XIONG J S, HUANG C L, XIANG J, WU W J, CHEN N S, WEN D N, TU C, QIAO X L, KANG L, YAO Z Z, ZHANG D Y, CHEN Q J. RETRACTED ARTICLE: human H9N2 avian influenza infection: epidemiological and clinical characterization of 16 cases in China. Virologica Sinica, 2021, 36(3): 564. doi:10.1007/s12250-020- 00248-9.
[45] 尹馨, 馬樹杰, 李梅, 鄧國(guó)華, 侯玉杰, 崔鵬飛, 施建忠, 陳化蘭. PB2蛋白E627V突變可增強(qiáng)H7N9病毒對(duì)小鼠的致病力. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(17): 3379-3388. doi:10.3864/j.issn.0578-1752. 2018.17.012.
YIN X, MA S J, LI M, DENG G H, HOU Y J, CUI P F, SHI J Z, CHEN H L. Amino acid substitutions of E627V in polymerase basic protein 2 gene increases the pathogenicity of the H7N9 influenza virus in mice. Scientia Agricultura Sinica, 2018, 51(17): 3379-3388. doi:10.3864/j.issn.0578-1752.2018.17.012. (in Chinese)
[46] HUANG Y Y, HU B X, WEN X T, CAO S J, GAVRILOV B K, DU Q J, KHAN M I, ZHANG X M. Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and Eastern China. Virus Research, 2010, 151(1): 26-32. doi:10.1016/j.virusres.2010.03.010.
[47] 樂高鐘, 吳小秧, 易愛蘭, 羅勤, 馮秀, 游勝. 江西省首例兒童禽流感H9N2亞型病例的調(diào)查分析. 現(xiàn)代預(yù)防醫(yī)學(xué), 2017, 44(5): 785-787, 792.
YUE G Z, WU X Y, YI A L, LUO Q, FENG X, YOU S. The first case of children & #39;s H9N2 subtype avian influenza in Jiangxi Province. Modern Preventive Medicine, 2017, 44(5): 785-787, 792. (in Chinese)
[48] PUSCH E A, SUAREZ D L. The multifaceted zoonotic risk of H9N2 avian influenza. Veterinary Sciences, 2018, 5(4): 82. doi:10.3390/ vetsci5040082.
[49] ZHANG P H, TANG Y H, LIU X W, LIU W B, ZHANG X R, LIU H Q, PENG D X, GAO S, WU Y T, ZHANG L Y, LU S, LIU X F. A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in Eastern China since 1998. Journal of Virology, 2009, 83(17): 8428-8438. doi:10. 1128/JVI.00659-09.
[50] LIU H Q, LIU X F, CHENG J, PENG D X, JIA L J, HUANG Y. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001. Avian Diseases, 2003, 47(1): 116-127. doi:10. 1637/0005-2086(2003)047[0116: PAOTHG]2.0.CO;2.
[51] ZHU R, XU D W, YANG X Q, ZHANG J J, WANG S F, SHI H Y, LIU X F. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014. PLoS One, 2018, 13(7): e0199260. doi:10.1371/journal.pone.0199260.
[52] LI X Y, SHI J Z, GUO J, DENG G H, ZHANG Q Y, WANG J L, HE X J, WANG K C, CHEN J M, LI Y Y, FAN J, KONG H, GU C Y, GUAN Y T, SUZUKI Y, KAWAOKA Y, LIU L L, JIANG Y P, TIAN G B, LI Y B, BU Z G, CHEN H L. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathogens, 2014, 10(11): e1004508. doi:10. 1371/journal.ppat.1004508.
[53] LIU X K, YANG C, SUN X M, LIN X, ZHAO L Z, CHEN H C, JIN M L. Evidence for a novel mechanism of influenza A virus host adaptation modulated by PB2-627. The FEBS Journal, 2019, 286(17): 3389-3400. doi:10.1111/febs.14867.
[54] 張靜, 陳立根, 張宇, 孫乾晉, 李如意, 白牧原, 藺文成, 謝青梅. 1997—2015年我國(guó)不同地區(qū)H9N2亞型禽流感病毒流行情況研究. 中國(guó)家禽, 2016, 38(20): 20-27. doi:10.16372/j.issn.1004-6364.2016. 20.005.
ZHANG J, CHEN L G, ZHANG Y, SUN Q J, LI R Y, BAI M Y, LIN W C, XIE Q M. Prevalence of H9N2 subtype avian influenza virus in different regions of China during 1997 to 2015. China Poultry, 2016, 38(20): 20-27. doi:10.16372/j.issn.1004-6364.2016. 20.005. (in Chinese)
[55] JIAO P R, TIAN G B, LI Y B, DENG G H, JIANG Y P, LIU C, LIU W L, BU Z G, KAWAOKA Y, CHEN H L. A single-amino-acid substitution in the NS1protein changes the pathogenicity of H5N1 avian influenza viruses in mice. Journal of Virology, 2008, 82(3): 1146-1154. doi:10.1128/jvi.01698-07.
[56] FAN S F, DENG G H, SONG J S, TIAN G B, SUO Y B, JIANG Y P, GUAN Y T, BU Z G, KAWAOKA Y, CHEN H L. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology, 2009, 384(1): 28-32. doi:10.1016/j.virol.2008.11.044.
[57] 王云鶴, 包紅梅, 孫佳善, 李雁冰, 徐曉龍, 王子龍, 施建忠, 曾顯營(yíng), 王秀榮, 陳化蘭. H7N9亞型禽流感病毒RT-PCR檢測(cè)方法建立. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(15): 3050-3055.
WANG Y H, BAO H M, SUN J S, LI Y B, XU X L, WANG Z L, SHI J Z, ZENG X Y, WANG X R, CHEN H L. Development of RT-PCR technique for detection of H7N9 subtype avian influenza virus. Scientia Agricultura Sinica, 2015, 48(15): 3050-3055. (in Chinese)
[58] 王萍萍, 郭晶, 李玉保, 劉成, 李旭勇. H7N9亞型禽流感病毒研究進(jìn)展. 中國(guó)人獸共患病學(xué)報(bào), 2021, 37(2): 159-164, 170. doi:10. 3969/j.issn.1002-2694.2021.00.010.
WANG P P, GUO J, LI Y B, LIU C, LI X Y. Research progress in H7N9 subtype avian influenza viruses. Chinese Journal of Zoonoses, 2021, 37(2): 159-164, 170. doi:10.3969/j.issn.1002-2694.2021.00.010. (in Chinese)
[59] 辛麗, 白天, 周劍芳, 唐靜, 陳永坤, 陳濤, 史景紅, 李曉丹, 李燕. 中國(guó)職業(yè)暴露人群感染H9N2禽流感病毒血清學(xué)調(diào)查. 疾病監(jiān)測(cè), 2015, 30(5): 368-371. doi:10.3784/j.issn.1003-9961.2015.05.007.
XIN L, BAI T, ZHOU J F, TANG J, CHEN Y K, CHEN T, SHI J H, LI X D, LI Y. Serological study of human infection with avian influenza A (H9N2) virus in population with occupational exposure in China. Disease Surveillance, 2015, 30(5): 368-371. doi:10.3784/j.issn. 1003-9961.2015.05.007. (in Chinese)
2023年全國(guó)畜牧獸醫(yī)期刊征訂目錄
序號(hào)期刊名稱郵發(fā)代號(hào)刊期年定價(jià)/元聯(lián)系人電話地址郵編E-mail 70養(yǎng)禽與禽病防治46-9月刊60.00 林秋燕020-85283636廣東省廣州市天河區(qū)五山鎮(zhèn)華南農(nóng)業(yè)大學(xué)23號(hào)樓208-210房《養(yǎng)禽與禽病防治》編輯部510642scvm@21cn.net 71湖南畜牧獸醫(yī)42-276雙月刊36.00 蔡文杰0731-84615356湖南省長(zhǎng)沙市芙蓉區(qū)長(zhǎng)榔路8號(hào)湖南省畜牧獸醫(yī)研究所內(nèi)410131hiavs@163.com 72廣東畜牧獸醫(yī)科技自辦發(fā)行雙月刊60.00 馬新燕020-87576452廣東省廣州市天河區(qū)五山大豐一街1號(hào)510640gdxmsykj@163.com 73中國(guó)農(nóng)業(yè)科學(xué)2-138半月刊1188.00 林鑒非010-82109808北京市海淀區(qū)中關(guān)村南大街12號(hào)100081zgnykx@caas.cn 74農(nóng)業(yè)大數(shù)據(jù)學(xué)報(bào)80-388季刊200.00 黃 朝010-82106275北京市海淀區(qū)中關(guān)村南大街12號(hào)100081agbigdata@caas.cn 75上海畜牧獸醫(yī)通訊自辦發(fā)行雙月刊60.00 郭佳宏021-62206294上海市閔行區(qū)北翟路2901號(hào)201106shxmsytx@163.com 76中國(guó)畜牧業(yè)82-855半月刊360.00 鹿紅敏010-57266581/17701135850北京市朝陽區(qū)惠新東街23號(hào)100029myfaxing@126.com 77中國(guó)飼料82-554半月刊240.00 李建軍13520471580北京市海淀區(qū)天秀路10號(hào)中國(guó)農(nóng)大國(guó)際創(chuàng)業(yè)園2號(hào)樓5019100193851423028@qq.com 78畜牧業(yè)環(huán)境82-517半月刊480.00 李建軍13520471580北京市海淀區(qū)天秀路10號(hào)中國(guó)農(nóng)大國(guó)際創(chuàng)業(yè)園2號(hào)樓5019100193851423028@qq.com 79黑龍江動(dòng)物繁殖14-264雙月刊180.00 邰麗萍0451-51522851黑龍江省哈爾濱市松北區(qū)創(chuàng)新三路800號(hào)國(guó)際農(nóng)業(yè)科技創(chuàng)新中心13層1317室150086hljdwfz010@163.com 80南方農(nóng)業(yè)學(xué)報(bào) 48-3月刊540.00 蘭宗寶0771-3243905廣西南寧市西鄉(xiāng)塘區(qū)大學(xué)東路 174 號(hào)530007nfnyxb@163.com
Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021
WANG YanWen, WANG MengJing, ZHANG Hong, GAO XinXin, GUO Jing, LI XuYong
College of Agronomy, Liaocheng University, Liaocheng 252000, Shandong
【Objective】The epidemiological characteristics of H9N2 avian influenza virus were clarified by analyzing the onset time, province, age, gender and other information of human cases infected with H9N2 avian influenza from 1998 to 2021 in China. By analyzing the genetic characteristics of human H9N2 subtype avian influenza virus, the genetic evolution law of human H9N2 subtype avian influenza virus was elucidated. This study could provide data support for the early warning and control of H9N2 subtype avian influenza virus cross-species transmission. 【Method】According to the case report, literature data and gene bank, the case information and strain sequence data of human infection with H9N2 subtype avian influenza virus in China from 1998 to 2021 were obtained. The infection cases were analyzed from the time distribution, space distribution, gender and age distribution, and the epidemiological characteristics of human-derived H9N2 subtype avian influenza virus infection were found. The MegAlign software in DNASTAR were used to analyze Nucleotide sequence of the homology of various gene fragments of human H9N2 isolates, a phylogenetic tree was constructed by MEGA7.0 software, and the key sites of viral proteins were analyzed. The genetic evolution trend of viral proteins and the variation of key amino acid sites were clarified. The 2019-2021 H9N2 subtype avian influenza virus nucleotide sequence in China was downloaded from the GISAID website. After mafft alignment, the key amino acid site mutation differences between human and avian H9N2 viruses were examined in MEGA7.0, the potential risks brought by current human and avian H9N2 viruses were revealed. 【Result】From1998 to 2021, a total of 71 cases of human infection with the H9N2 subtype avian influenza virus occurred in China. From the spatial distribution analysis, the cases were distributed in 16 provinces and cities, of which 91.55% of the cases were from 12 provinces and cities in the south. In terms of time, the number of reported infections has been on the rise after 2013, and the cumulative number of infections from 2013 to 2021 accounted for 61.97% of the total number of infections. From the analysis of gender and age distribution, the ratio of male to female was 1:1.68. Human infection with H9N2 virus was mainly seen in infants and young children, accounting for 74.14% of the total number of cases. Genome comparison analysis of human H9N2 viruses found that these viruses belonged to the Eurasian branch, but the nucleotide sequence of homology of these viruses gene fragments was quite different. The nucleotide homology of HA, NA, PB2, PB1, PA, NP, M, and NS were 75.3%-100%, 80.1%-100%, 78.7%-100%, 82.5%-100%, 72.6%-100%, 74.1 -100%, 65.5%-100%, and 82.0%-100%, respectively. According to the genealogy of human isolates, 22 human isolates with complete gene fragments could be divided into 8 genotypes, genotypes in 2003, 2008, and 2013 were significantly different from genotypes in 1999. A total of 42 human H9N2 virus strains uploaded HA sequences from 1998 to 2021, and 38 of them had the mutation of Q226L in the HA protein; a total of 30 human virus strains uploaded PB2 sequence from 1998 to 2021, and 9 strains of which had the mutation of E627V in the PB2 protein, 1 of which had the mutation of E627K in the PB2 protein; the 701 site of the PB2 protein of one virus had the mutation of D701N, a total of 31 virus strains uploaded NS and M sequence from 1998 to 2021, the 42nd positions of the NS1 protein were all S, and the amino acids at positions 30th and 215th of the M1 protein were D and A, respectively. 【Conclusion】Since 2013, the number of human infections with H9N2 subtype avian influenza reported in China has been on the rise, with significant differences in geographic, age and gender distribution. Since 1998, the genetic homology between human H9N2 isolates was quite different, and the viral gene rearrangement between different branches was frequent, forming a complex genotype. It was suggested that the H9N2 subtype avian influenza virus was constantly evolving. Mutations in key amino acid sites of human H9N2 virus and mutation rate of human viruses was higher than avian H9N2 viruses from 2019 to 2021, suggesting that the potential of H9N2 subtype avian influenza virus to infect humans was gradually increasing. This result enriched the knowledge of human H9N2 virus and provided an important reference for the prevention and control of H9N2 subtype avian influenza virus.
avian influenza virus; H9N2 subtype; epidemiology; genetic evolution: cross-species transmission
10.3864/j.issn.0578-1752.2022.20.017
2021-08-06;
2022-04-07
山東省自然科學(xué)基金(ZR2021MC087)、獸醫(yī)生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金(SKLVBF201906,SKLVBF202005)
王艷文,E-mail:15290068938@163.com。通信作者李旭勇,E-mail:xylicaas@163.com。通信作者郭晶,E-mail:guojing2360846@163.com
(責(zé)任編輯 林鑒非)