張金瑞,任思洋,戴吉照,丁凡,肖謀良,劉學(xué)軍,嚴(yán)昌榮,葛體達(dá),汪景寬,劉勤,王鍇,張福鎖
地膜對(duì)農(nóng)業(yè)生產(chǎn)的影響及其污染控制
張金瑞1, 2,任思洋1, 3,戴吉照4,丁凡4,肖謀良5,劉學(xué)軍1, 2,嚴(yán)昌榮6,葛體達(dá)5,汪景寬4,劉勤6,王鍇1, 2,張福鎖1
1中國(guó)農(nóng)業(yè)大學(xué)國(guó)家農(nóng)業(yè)綠色發(fā)展研究院植物-土壤相互作用教育部重點(diǎn)實(shí)驗(yàn)室,中國(guó)北京 100193;2中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院農(nóng)田土壤污染防控與修復(fù)北京市重點(diǎn)實(shí)驗(yàn)室,中國(guó)北京 100193;3班戈大學(xué)自然科學(xué)學(xué)院,英國(guó)班戈LL57 2DG;4沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,中國(guó)沈陽(yáng) 110086;5寧波大學(xué)植物病毒學(xué)研究所農(nóng)產(chǎn)品質(zhì)量安全危害因子與風(fēng)險(xiǎn)防控國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)浙江寧波 315211;6中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所/農(nóng)業(yè)農(nóng)村部農(nóng)膜污染防控重點(diǎn)實(shí)驗(yàn)室,中國(guó)北京 100081
地膜覆蓋具有顯著的農(nóng)業(yè)生產(chǎn)效益,可以增溫保墑,防蟲抑草,擴(kuò)大作物種植適宜區(qū),從而提高農(nóng)作物產(chǎn)量和品質(zhì),因此在世界范圍內(nèi)尤其是在干旱半干旱地區(qū)農(nóng)田中得到廣泛應(yīng)用。然而,塑料地膜降解速率極其緩慢,加上中國(guó)地膜回收工作的開展較為落后,導(dǎo)致大量的塑料碎片殘留在農(nóng)田中,從而造成土壤環(huán)境的殘膜及微塑料污染。本文基于文獻(xiàn)資料、調(diào)研和統(tǒng)計(jì)數(shù)據(jù),就地膜對(duì)中國(guó)農(nóng)業(yè)生產(chǎn)的影響及其污染防控進(jìn)行了分析。殘膜及微塑料污染會(huì)改變土壤理化性質(zhì),限制土壤水分和養(yǎng)分運(yùn)移,并對(duì)土壤動(dòng)植物的生長(zhǎng)、發(fā)育和繁殖產(chǎn)生危害,改變土壤微生物的豐度和群落結(jié)構(gòu),損害土壤健康,長(zhǎng)此以往會(huì)造成作物產(chǎn)量和品質(zhì)下降,甚至威脅到糧食安全。微塑料存在被植物吸收的可能性,從而通過食物鏈進(jìn)入人體,對(duì)人體健康產(chǎn)生威脅。此外,微塑料巨大的比表面積使其極容易通過吸附作用成為其他污染物(重金屬、農(nóng)藥和抗生素等)的載體,增加污染物的轉(zhuǎn)移富集風(fēng)險(xiǎn),從而造成土壤生態(tài)環(huán)境復(fù)合污染。中國(guó)地膜生產(chǎn)、使用相關(guān)標(biāo)準(zhǔn)正在逐步完善,但同發(fā)達(dá)國(guó)家和地區(qū)相比仍有一定的差距。中國(guó)尚未形成完善可持續(xù)的地膜回收體系,農(nóng)田土壤中的微塑料污染研究仍不夠充分,同時(shí)針對(duì)殘膜及微塑料污染防控的政策和法規(guī)也有待于進(jìn)一步完善。因此應(yīng)進(jìn)一步借鑒發(fā)達(dá)國(guó)家和地區(qū)的經(jīng)驗(yàn),結(jié)合中國(guó)實(shí)際情況,因地制宜制定地膜生產(chǎn)、回收相關(guān)標(biāo)準(zhǔn)以及殘膜和微塑料污染防治的政策法規(guī)。
地膜;農(nóng)業(yè)效益;殘膜及微塑料污染;環(huán)境效應(yīng);污染防治
地膜覆蓋是中國(guó)農(nóng)產(chǎn)品安全供應(yīng)的關(guān)鍵舉措之一。地膜具有增溫保墑作用,極大地提高了水資源和營(yíng)養(yǎng)物質(zhì)的利用效率,擴(kuò)大了作物的種植區(qū)域,并為提前種植和收獲作物提供了條件[1-3],同時(shí)還可以防蟲抑草,提高農(nóng)藥的使用效果[4-5],從而可使農(nóng)作物產(chǎn)量增加30%以上,為中國(guó)等國(guó)家的糧食安全做出了巨大貢獻(xiàn)[6]。但長(zhǎng)期覆膜且回收利用不當(dāng)導(dǎo)致的農(nóng)田殘膜及微塑料污染反而會(huì)影響作物生長(zhǎng),甚至威脅糧食生產(chǎn)安全[7]。
本文通過總結(jié)已報(bào)道的地膜和微塑料的文獻(xiàn),綜合分析中國(guó)當(dāng)前地膜使用和殘留狀況、農(nóng)業(yè)效益、環(huán)境效應(yīng)和處理方式等,歸納了地膜覆蓋對(duì)土壤環(huán)境質(zhì)量、土壤生物和地上作物的影響,以及現(xiàn)行的地膜回收處理方式和管理措施,并提出地膜污染防治的政策建議,凝練地膜和微塑料未來研究的主要方向,以期為中國(guó)農(nóng)業(yè)綠色發(fā)展中的地膜可持續(xù)使用和污染防控提供參考。
地膜主要組成成分包括聚乙烯(polyethylene,PE)和乙烯-乙酸乙烯酯共聚物(ethylene-vinyl acetate copolymer,EVA)等[8],以PE應(yīng)用最為廣泛。同時(shí),地膜作為塑料制品,需要各種添加劑來賦予不同的性能,主要的添加劑種類包括增塑劑、阻燃劑、抗氧化劑、光穩(wěn)定劑、著色劑和促降解劑等[9-13]。
根據(jù)中國(guó)農(nóng)村統(tǒng)計(jì)年鑒數(shù)據(jù),中國(guó)地膜使用量從20世紀(jì)90年代逐年增長(zhǎng),于2016年達(dá)到峰值147.0萬(wàn)t,之后緩慢回落,2019年仍達(dá)到137.9萬(wàn)t ,總覆蓋面積為1 762.8萬(wàn)hm2,約占農(nóng)作物總播種面積的10.7%(圖1)[14]。各地區(qū)由于農(nóng)作物種類和種植模式的差異,覆膜農(nóng)田比例不同導(dǎo)致地膜使用量存在明顯的區(qū)域特征。調(diào)查數(shù)據(jù)還顯示,西北的玉米和棉花產(chǎn)區(qū)、東北的花生產(chǎn)區(qū)、華北的花生和棉花產(chǎn)區(qū)、西南的煙草產(chǎn)區(qū)及所有蔬菜集中產(chǎn)區(qū),是地膜高強(qiáng)度使用的區(qū)域[15]。在農(nóng)業(yè)大省如山東、河南和四川,西北干旱半干旱地區(qū)如新疆、甘肅和內(nèi)蒙古,西南冷涼地區(qū)如云南等地的地膜使用量明顯高于其他省份,這7個(gè)省份2019年的地膜使用量合計(jì)為78.1萬(wàn)t,占全國(guó)總量的56.6%[14]。
與此同時(shí),中國(guó)地膜厚度薄易破碎,回收比例低,導(dǎo)致農(nóng)田土壤中地膜殘留量較高。長(zhǎng)期以來,中國(guó)地膜厚度標(biāo)準(zhǔn)為0.008 mm,但市場(chǎng)上生產(chǎn)流通的地膜厚度多為0.004—0.006 mm[16],這種地膜容易老化破碎,不利于回收再利用,中國(guó)地膜當(dāng)季回收率不到60%[17]。隨著近年來國(guó)家相關(guān)標(biāo)準(zhǔn)、法規(guī)的發(fā)布,地膜厚度的最低限度提高到0.01 mm[18],但歐美、日本等發(fā)達(dá)國(guó)家和地區(qū)的地膜最小厚度均在0.02 mm以上。調(diào)查結(jié)果表明,長(zhǎng)期覆膜農(nóng)田土壤中地膜殘留量為72—259 kg·hm-2[15]。地膜使用量和使用方式的差異導(dǎo)致各地區(qū)土壤地膜殘留量也明顯不同,西北地區(qū)殘膜量要遠(yuǎn)高于其他地區(qū)。如新疆長(zhǎng)期覆膜棉田的地膜平均殘留量在200 kg?hm-2以上,最高可達(dá)540 kg?hm-2,而甘肅、內(nèi)蒙古、東北地區(qū)、山西和河北部分地區(qū)的平均殘留量在100 kg?hm-2以上[17]。
圖1 1991—2019年中國(guó)農(nóng)田地膜使用量和覆蓋面積
土壤中的殘膜在光、熱、機(jī)械活動(dòng)、土壤動(dòng)物和微生物的作用下會(huì)破裂降解[19],但很難完全降解[20],尺寸達(dá)5 mm以下時(shí),即形成微塑料[21]。殘膜及微塑料存在于土壤中,會(huì)破壞耕層土壤結(jié)構(gòu)性質(zhì)、改變土壤微生物組成,危害土壤動(dòng)物生長(zhǎng),影響水分和養(yǎng)分遷移、阻礙種子發(fā)芽和植物根系生長(zhǎng),最終造成糧食減產(chǎn),甚至可能威脅糧食生產(chǎn)安全[22]。土壤中微塑料還可能通過食物鏈進(jìn)入人體,從而威脅人體健康[23]。為解決地膜殘留問題,可降解地膜的研制受到極大的關(guān)注,但各種可降解地膜的實(shí)際降解效果和生態(tài)環(huán)境效應(yīng)還存在較大爭(zhēng)議,且成本更高[24-25]。因此,如何確保中國(guó)地膜可持續(xù)發(fā)展意義重大。
地膜覆蓋之所以能在中國(guó)旱作和低溫區(qū)得以廣泛應(yīng)用,主要是因?yàn)槠淇朔藴囟群退謨纱笙拗埔蜃?。地膜白天的增溫作用和晚上的保溫作用主要是通過減少土面蒸發(fā),阻礙近地面氣層熱量交換,增加凈輻射來實(shí)現(xiàn)的[26-27]。白天增溫階段,普通地膜透光率很高,白天太陽(yáng)的短波輻射可以透過地膜將光能轉(zhuǎn)化為熱能,同時(shí)阻礙水分蒸發(fā)對(duì)熱量的消耗和減少熱量的散失。晚上保溫階段,地膜的阻隔作用和其表面水汽對(duì)熱量輻射的阻礙,可以有效減少土層對(duì)外的長(zhǎng)波輻射和氣體的對(duì)流。杜社妮等[28]研究表明,在玉米苗期,地膜覆蓋的5—25 cm土層土壤日平均溫度較不覆膜提高2.4—3.0℃,在玉米生長(zhǎng)后期,表層土壤較不覆膜土壤降低0.5—1.1℃,主要是因?yàn)橛衩咨L(zhǎng)后期冠層密實(shí),減少太陽(yáng)短波輻射,這樣在苗期低溫階段可以提高土溫來為玉米生長(zhǎng)提供適宜環(huán)境,而生長(zhǎng)后期則避免了夏季高溫的脅迫對(duì)玉米生長(zhǎng)的不利影響。霍軼珍等[29]在研究中也得出了類似的結(jié)論。同時(shí),地膜顏色對(duì)土壤溫度的影響較大,白色透明地膜在玉米生長(zhǎng)前期可以增加土壤溫度4℃,而黑色地膜在白天會(huì)降低土壤溫度1—2.5℃,在晚上會(huì)增加土壤溫度[30]。
同時(shí),地膜具有一定的保水性能。地膜具有不透水性和疏水性,降雨量較小時(shí)(無(wú)效降水)可以將壟面降水匯集,重新分配到壟溝轉(zhuǎn)變?yōu)橛行Ы邓甗31]。由于地膜對(duì)水汽蒸發(fā)的阻隔,有效降低土面蒸發(fā),增加了土壤含水量[32-35]。解文艷[36]發(fā)現(xiàn),地膜覆蓋條件下0—60、0—200 cm土層中6年平均貯水量較不覆膜分別提高了9.78和23.45 mm,并且在不同降水年份,地膜覆蓋處理均能顯著提高土壤貯水量。在干旱時(shí),地膜覆蓋起到提墑的效果,有利于穩(wěn)產(chǎn)高產(chǎn)。馬浩等[37]通過田間定位試驗(yàn),研究了地膜覆蓋對(duì)水分利用的影響,結(jié)果表明,在冬小麥播種前,全年地膜全覆蓋能將0—200 cm土層貯水量顯著提高17.3 mm,同時(shí)顯著提高了小麥水分利用效率11.3%。其他研究也得出類似結(jié)論[32, 38]。
地膜覆蓋可以提高肥料利用率,主要是通過加快有機(jī)質(zhì)分解提高養(yǎng)分有效性和防止養(yǎng)分流失兩方面來實(shí)現(xiàn)的。由于地膜覆蓋有增溫保墑的作用,提高地表溫度,可以使土壤保持相對(duì)疏松狀態(tài),團(tuán)粒間充滿水汽,為土壤微生物的活動(dòng)提供適宜的水熱條件,提高微生物活性,加速土壤有機(jī)質(zhì)分解,為植物提供更多的有效可溶性養(yǎng)分[35,39-40]。同時(shí)地膜覆蓋也一定程度上避免了風(fēng)蝕、雨水沖刷,減少因揮發(fā)或淋溶造成養(yǎng)分的損失。周昌明[41]報(bào)道,地膜覆蓋降低了0—50 cm土層的有機(jī)質(zhì)含量,提高了0—50 cm土層土壤養(yǎng)分含量,說明地膜覆蓋促進(jìn)了土壤表層有機(jī)質(zhì)的分解,提高了土壤養(yǎng)分的利用效率。侯紅波等[42]的不同覆蓋方式對(duì)坡耕地氮磷流失影響的研究結(jié)果表明,地膜覆蓋條件下氮總流失量較不覆膜降低48.3%,磷總流失較不覆膜降低21.6%,說明地膜覆蓋可以有效降低土壤侵蝕和養(yǎng)分流失,提高肥料利用效率。ZHANG等[43]用土壤培養(yǎng)法在山東蒙陰研究地膜覆蓋對(duì)花生地土壤氮素礦化的影響中發(fā)現(xiàn),在花生開花期和結(jié)夾期,地膜覆蓋使表層(0—20 cm)土壤凈氮礦化率分別是不覆蓋處理的2.0倍和1.2倍。
由于機(jī)械阻礙及對(duì)地溫影響的變化,地膜覆蓋能夠有效地抑制雜草的生長(zhǎng),減少除草劑和農(nóng)藥的使用。不同顏色地膜因其透光度不同,對(duì)膜下地溫的升降和抑制雜草的效果也不同,其中黑色地膜的除草效果最好,除草效率達(dá)到92.18%—94.98%[44-46]。黑色地膜的透光率不足10%,削弱了綠色植物進(jìn)行光合作用所必需的可見光通過量,使膜下雜草因光合作用不充分而不能正常生長(zhǎng)。吳治國(guó)等[47]研究表明,黑色地膜覆蓋降低了雜草數(shù)量和重量,對(duì)雜草生長(zhǎng)有明顯抑制作用。陳剛等[48]研究表明,黑色地膜覆蓋防控何首烏田間雙子葉雜草效果達(dá)到73.78%,透明地膜覆蓋防控何首烏田間雙子葉雜草效果為47.02%,黑色地膜和無(wú)色地膜覆蓋的樣地中均沒有發(fā)現(xiàn)單子葉雜草,不覆膜對(duì)照區(qū)有13.91%的單子葉雜草,說明黑色地膜和透明地膜均有抑制雜草效果,但黑色地膜防草效果更明顯。
地膜覆蓋能夠在天旱保墑,雨后提墑,防止土表結(jié)皮,改善農(nóng)作物生長(zhǎng)的微生態(tài)環(huán)境,壯大作物根系,提高養(yǎng)分向籽實(shí)中的供應(yīng)量,加強(qiáng)土壤微生物的活性,為作物生長(zhǎng)提供適宜的環(huán)境和充足的養(yǎng)分,以提高作物的產(chǎn)量和品質(zhì)[39-49]。地膜覆蓋,能使糧食作物平均增產(chǎn)20%—35%,經(jīng)濟(jì)作物平均增產(chǎn)20%—60%[15]。有研究報(bào)道,長(zhǎng)期地膜覆蓋可以增加籽實(shí)中磷含量,說明對(duì)農(nóng)作物的品質(zhì)有一定的提升[50]。
然而,不同地區(qū)地膜的增產(chǎn)效果存在較大的差異。趙愛琴等[51]基于Meta分析的中國(guó)馬鈴薯地膜覆蓋產(chǎn)量效應(yīng)分析表明,地膜覆蓋馬鈴薯產(chǎn)量在平均溫度小于10℃和降雨量小于500 mm的地區(qū)增產(chǎn)效果最為顯著,增產(chǎn)率分別為40.5%和37.6%。地膜覆蓋使北方的旱作區(qū)玉米產(chǎn)量最高能增加150%,大范圍玉米平均增產(chǎn)25%—30%,而在西南濕潤(rùn)區(qū),地膜覆蓋的增產(chǎn)效果最小,增產(chǎn)13%[52]。葛均筑等[53]在武漢通過大田試驗(yàn)表明,地膜覆蓋可以縮短玉米營(yíng)養(yǎng)生長(zhǎng)期1—3 d,延長(zhǎng)玉米灌漿期2—6 d,增加玉米灌漿期占全生育期比重0.50%—9.74%,顯著提高玉米籽粒產(chǎn)量。
地膜覆蓋不僅能夠改善膜下作物生長(zhǎng)微環(huán)境,為作物生長(zhǎng)發(fā)育提供適宜的溫度和水分等條件,而且能夠解決積溫不足、無(wú)霜期短等問題,擴(kuò)大了糧食和蔬菜等喜溫作物的種植面積。地膜覆蓋可以使部分喜溫作物栽培適宜區(qū)向北推移2—5個(gè)緯度,即向北推移200—500 km,也可以使作物種植海拔上升500—1 000 m,擴(kuò)大了作物種植面積[15]。劉明春等[54]通過甘肅省玉米不同氣候適宜性研究表明,地膜覆蓋使玉米出苗提前5 d左右,抽雄和吐絲期提前10 d,提前成熟18—22 d,增產(chǎn)了25.7%,可以避開陰雨寡照天氣的影響,利于玉米灌漿籽粒增重。
3.1.1 對(duì)土壤水分運(yùn)移的不利影響 農(nóng)業(yè)生產(chǎn)中地膜的覆蓋可以起到保溫保墑的作用[55]。然而地膜形成的殘膜和微塑料在土壤中積累,會(huì)改變土壤物理結(jié)構(gòu),如改變土壤水穩(wěn)定性團(tuán)聚體比例,降低土壤容重和孔隙度[56]。不同類型的殘膜和微塑料在土壤團(tuán)聚體中的作用效果并不一致。土壤水分的運(yùn)移與土壤容重、團(tuán)聚體結(jié)構(gòu)和孔隙分布等特征密切相關(guān),土壤結(jié)構(gòu)的改變,勢(shì)必影響到土壤水分運(yùn)輸。ZHANG等[57]研究表明,聚酯纖維的積累使土壤中大于30 μm的土壤孔隙體積增加,而降低小于30 μm的土壤孔隙體積,然而氣孔體積的改變并未影響土壤飽和導(dǎo)水率。另外,土壤中殘膜的積累,除了通過改變土壤結(jié)構(gòu)對(duì)水分滲透發(fā)揮作用外,還可以通過其本身的物理隔離作用,影響其在土壤中的分布。LI等[58]研究表明,當(dāng)含量在0—360 kg?hm-2時(shí),殘膜會(huì)阻礙水分的運(yùn)移;然而當(dāng)殘膜含量超過360 kg?hm-2時(shí),反而有利于水分的長(zhǎng)距離流動(dòng)。然而據(jù)目前調(diào)查資料顯示,除了個(gè)別區(qū)域外,大部分農(nóng)膜殘留較嚴(yán)重的地區(qū),其含量均小于360 kg?hm-2。因此,在實(shí)際生產(chǎn)中可能需要增加水分灌溉量或者澆灌密度,以保障作物獲得較充足的水分。
3.1.2 對(duì)作物養(yǎng)分利用與產(chǎn)量的負(fù)面影響 殘膜和微塑料在農(nóng)田中積累,改變水分的運(yùn)移能力的同時(shí),也會(huì)影響?zhàn)B分的運(yùn)輸和分布,進(jìn)而影響作物根系對(duì)養(yǎng)分的吸收[58-59]。HU等[60]發(fā)現(xiàn),當(dāng)殘膜量小于360 kg?hm-2時(shí),由于水分運(yùn)移受到阻隔,硝態(tài)氮的運(yùn)輸也受影響;而當(dāng)殘膜含量超過360 kg?hm-2有利于硝態(tài)氮隨著水分運(yùn)移而長(zhǎng)距離運(yùn)輸。因此,有效養(yǎng)分的運(yùn)輸和水分的運(yùn)移通常是協(xié)同發(fā)生。此外,殘膜可阻礙作物根系的生長(zhǎng)和分布,不利于根系對(duì)養(yǎng)分的吸收。農(nóng)田土壤中微塑料主要來源于塑料薄膜殘膜的風(fēng)化和破碎,雖然作物種植時(shí)薄膜的使用可以顯著提高作物產(chǎn)量,然而殘膜和微塑料的積累對(duì)土壤理化性質(zhì)和作物根系的影響,勢(shì)必對(duì)作物的生長(zhǎng)和產(chǎn)量造成影響。GAO等[2]在對(duì)1980—2017年間發(fā)表的關(guān)于殘膜積累下作物產(chǎn)量變化的文獻(xiàn)進(jìn)行整合分析后發(fā)現(xiàn),覆膜使玉米、棉花和土豆的平均產(chǎn)量增加24.3%,但隨著殘膜積累量增加,平均產(chǎn)量逐漸降低,當(dāng)殘膜積累量大于240 kg?hm-2時(shí)減產(chǎn)率達(dá)到16.1%,在殘膜積累量為480 kg?hm-2時(shí)減產(chǎn)率可高達(dá)24.2%。因此,在農(nóng)業(yè)生產(chǎn)中,如果長(zhǎng)期使用地膜而不進(jìn)行回收,當(dāng)殘膜積累至一定量時(shí),有可能會(huì)消減覆膜優(yōu)勢(shì),造成減產(chǎn)的潛在風(fēng)險(xiǎn)[61]。
3.2.1 對(duì)土壤動(dòng)物、微生物和地上植物的危害 微塑料在土壤中積累,會(huì)直接影響土壤動(dòng)物的行為和生長(zhǎng)[62-63]。如通過堵塞生物通道,迫使單尾蟲挖掘新通道以防止被困[64];通過釋放有害物質(zhì),抑制線蟲的生長(zhǎng)等[65]。另外,當(dāng)土壤動(dòng)物誤食微塑料時(shí),會(huì)產(chǎn)生飽腹現(xiàn)象而減少進(jìn)食,因此會(huì)造成能量攝入不足、生長(zhǎng)緩慢甚至死亡[66-68];同時(shí)有可能造成食道損傷、腸道阻塞、繁殖率降低以及其他生化反應(yīng),如免疫反應(yīng)降低、代謝失調(diào)等。微塑料中含有多種有毒添加劑,如鄰苯二甲酸鹽、雙酚A等,具有雌激素活性,對(duì)脊椎動(dòng)物或部分無(wú)脊椎動(dòng)物的內(nèi)分泌造成干擾,從而影響它們的繁殖行為[69]。
微塑料對(duì)生物的影響可分為直接作用和間接作用。首先,較小粒徑的微塑料(<1 μm)可能與生物體細(xì)胞膜、細(xì)胞器或生物分子發(fā)生作用,通過其化學(xué)毒性引起炎癥反應(yīng)、膜通透性改變、氧化應(yīng)激和擾亂膜過程等多種不良反應(yīng)[70]。這些過程對(duì)土壤動(dòng)物和微生物等均具有不良影響。另外,較小顆粒的微塑料能通過植物根系或葉片氣孔進(jìn)入植物體內(nèi),造成植物生長(zhǎng)受到抑制以及氧化應(yīng)激損傷等現(xiàn)象[23,71]。同時(shí)微塑料在植物體內(nèi)積累,阻礙細(xì)胞間的連接,堵塞細(xì)胞壁通道,不利于植物對(duì)養(yǎng)分的吸收和運(yùn)輸[72-73]。此外,微塑料可以通過改變土壤物理化學(xué)性質(zhì)和土壤生物區(qū)系及其活性,影響植物根系的活性和養(yǎng)分吸收能力,進(jìn)而影響植物的生長(zhǎng)和發(fā)育。
3.2.2 通過食物鏈進(jìn)入人體的風(fēng)險(xiǎn) 目前已經(jīng)被證實(shí),通過日常熱量食物攝入人體的微塑料平均可高達(dá)每年每人39 000—52 000個(gè),包括海產(chǎn)品、糖類、蜂蜜、酒精以及飲用水等。如果考慮呼吸攝入量,該值可高達(dá)74 000—121 000個(gè),目前尚缺乏肉類、谷物和蔬菜等微塑料來源的數(shù)據(jù)[74]。然而微塑料可以通過食物鏈進(jìn)入人體已是不爭(zhēng)的事實(shí)[75]。微塑料可以被土壤動(dòng)物如蚯蚓和蝸牛等攝入體內(nèi),有研究從雞的內(nèi)臟和糞便中發(fā)現(xiàn)微塑料的存在,可能是通過取食蚯蚓等土壤動(dòng)物,或者直接誤食塑料和微塑料進(jìn)入體內(nèi)[76]。哺乳動(dòng)物中鼠類的肝臟、腎臟和腸道中也被發(fā)現(xiàn)微塑料的積累[77]。表明微塑料是可以進(jìn)入動(dòng)物組織中,并進(jìn)行積累和在食物鏈中傳輸。甚至有研究表明農(nóng)作物如小麥和萵苣能直接吸收微塑料并在體內(nèi)積累[23,78],人類通過直接取食這類谷物和蔬菜,進(jìn)而可能將微塑料攝入體內(nèi)。這些證據(jù)均表明,微塑料可以通過食物鏈向更高營(yíng)養(yǎng)級(jí)的動(dòng)物體內(nèi)富集,從而對(duì)食物安全和人類健康具有潛在威脅。
3.2.3 與其他污染物(重金屬、有機(jī)化合物等)的復(fù)合污染 微塑料依靠自身的特性對(duì)土壤動(dòng)物、微生物和人體產(chǎn)生危害,同時(shí)還可以作為有機(jī)污染物的載體,向環(huán)境輸入污染物,從而對(duì)生態(tài)環(huán)境造成影響。研究表明,在設(shè)施大棚種植蔬菜的土壤中,發(fā)現(xiàn)微塑料和鄰苯二甲酸酯類(phthalic acid esters,PAEs)具有顯著的共污染現(xiàn)象[79]。PAEs是一種內(nèi)分泌干擾性的半揮發(fā)性有機(jī)物,對(duì)人體的生殖和發(fā)育功能產(chǎn)生毒性,并且會(huì)產(chǎn)生致癌作用等,因此被稱為“環(huán)境激素”。PAEs被廣泛地應(yīng)用于包裝材料、塑料和農(nóng)藥生產(chǎn)中。其中地膜中有多種PAEs被美國(guó)國(guó)家環(huán)境保護(hù)局列為環(huán)境污染物[80]。因此設(shè)施農(nóng)業(yè)中大量農(nóng)膜的使用,不僅使農(nóng)膜破碎形成的微塑料在土壤中積累,同時(shí)也攜帶大量的PAEs進(jìn)入土壤中,是農(nóng)田土壤PAEs污染的主要來源之一。
除了自身會(huì)釋放有機(jī)污染物之外,微塑料還可以通過吸附作用富集有機(jī)污染物,從而影響其遷移、轉(zhuǎn)化和生態(tài)毒理效應(yīng)。如研究表明,聚氯乙烯塑料能吸附疏水性有機(jī)污染物(如壬基苯酚、菲等),并通過攝食作用進(jìn)入海蚯蚓體內(nèi),造成海蚯蚓攝食量減少、存活率和免疫力降低等毒害作用[81]。WANG等[82]研究發(fā)現(xiàn),微塑料對(duì)多氯聯(lián)苯在蚯蚓中的生物富集同時(shí)存在“源”和“匯”的功能,主要取決于微塑料和蚯蚓中多氯聯(lián)苯的擴(kuò)散梯度;另外發(fā)現(xiàn),小粒徑的微塑料(50—150 μm)對(duì)多氯聯(lián)苯具有更高的轉(zhuǎn)移系數(shù),而小粒徑的微塑料更容易被蚯蚓攝入,從而增加蚯蚓中多氯聯(lián)苯生物富集。微塑料在土壤中會(huì)不斷地風(fēng)化和機(jī)械破碎,形成更小顆粒。在這種情況下,微塑料與其他污染物的復(fù)合污染提高了污染物向食物鏈的轉(zhuǎn)移風(fēng)險(xiǎn),增加污染物的生態(tài)毒理效應(yīng)。
殘膜及微塑料還會(huì)同農(nóng)藥及土壤重金屬相互作用。地膜的覆蓋,可使噴灑下來的農(nóng)藥和土壤中的部分重金屬被吸附,如果對(duì)農(nóng)膜進(jìn)行回收處理,可以有效降低農(nóng)田土壤中農(nóng)藥和重金屬的污染。然而由于現(xiàn)在農(nóng)業(yè)生產(chǎn)中普遍對(duì)農(nóng)膜回收的不足,農(nóng)膜中吸附和富集的農(nóng)藥和重金屬隨著薄膜的破碎進(jìn)入土壤,造成復(fù)合污染的風(fēng)險(xiǎn)。另外,微塑料可以降低土壤中鎘的吸附,同時(shí)促進(jìn)其解吸附,從而提高鎘在農(nóng)田土壤中的移動(dòng)性,增加農(nóng)田系統(tǒng)的生態(tài)風(fēng)險(xiǎn)[83]。除此之外,土壤中塑料和微塑料可以吸附和攜帶多種重金屬,包括鉻、鉛、銀、銅、銻、汞、鐵、砷和錳等,因此土壤中的微塑料可以作為重金屬轉(zhuǎn)移的重要載體,增加了重金屬在食物鏈積累或向其他生態(tài)系統(tǒng)轉(zhuǎn)移的風(fēng)險(xiǎn)[84-85]。
微塑料是分子構(gòu)成以碳基為主的高聚合物,如聚乙烯或聚苯乙烯塑料中碳含量達(dá)90%[86-87]。其中只有0.11%—0.48%塑料中的碳可以通過可溶性有機(jī)碳(dissolved organic carbon,DOC)的形式釋放到環(huán)境中,而這其中可以被微生物利用的DOC只占22%—46%[87]。因此,微塑料不易被微生物分解和利用,較難參與到生物地球化學(xué)循環(huán)過程中。然而,微塑料可以通過改變土壤理化性質(zhì)和微生物群落結(jié)構(gòu)特征,進(jìn)而影響土壤的元素循環(huán)。例如,聚酯纖維微塑料通過增加土壤孔隙度和通氣性,促進(jìn)好氧微生物的種群數(shù)量和活性,提高有機(jī)碳分解相關(guān)酶的活性,進(jìn)而促進(jìn)有機(jī)碳的分解和礦化[57,88-89]。
微塑料中幾乎不含氮磷等養(yǎng)分元素,但是微塑料可以通過影響土壤物理化學(xué)性質(zhì),如增加土壤孔徑和氧氣的擴(kuò)散能力,調(diào)節(jié)驅(qū)動(dòng)元素轉(zhuǎn)化的微生物群落,從而影響?zhàn)B分循環(huán)。例如研究表明,微塑料可以提高參與硝化作用過程中的氨單加氧酶()的基因豐度,但同時(shí)也增加了土壤反硝化作用潛勢(shì),因此對(duì)土壤氮的礦化損失(主要以N2O釋放的形式)無(wú)影響;然而硝化和反硝化作用對(duì)不同種類的微塑料的響應(yīng)并不一致[71,90-91]。此外,微塑料通過改變叢枝菌根真菌與作物根系的共生關(guān)系,進(jìn)而影響作物對(duì)氮的獲取[56]。由于微塑料比表面積大和存在帶電荷的基團(tuán),可以通過吸附土壤中的養(yǎng)分進(jìn)而造成土壤養(yǎng)分的脅迫。如聚乙烯醇微塑料表面因帶羰基(=O)和羥基(-OH),可吸附土壤中的NH4+-N,從而降低土壤中氮的可利用性[92]。因此,農(nóng)田土壤中微塑料的積累,會(huì)影響?zhàn)B分在作物-土壤-微生物系統(tǒng)中的吸收與傳輸。
通過調(diào)查了解發(fā)現(xiàn),中國(guó)以外的其他國(guó)家和地區(qū)地膜應(yīng)用面積十分有限(約占作物面積10%),重點(diǎn)國(guó)家和地區(qū)是日本、韓國(guó)、美國(guó)、歐洲和南美洲等,以高厚度(≥0.02 mm)、高強(qiáng)度的地膜占絕對(duì)優(yōu)勢(shì),應(yīng)用對(duì)象主要是經(jīng)濟(jì)作物和蔬菜等,在大田糧食作物中的應(yīng)用面積很小[93-95]。在覆膜作物收獲后進(jìn)行地膜回收是國(guó)際上通用的、強(qiáng)制性的做法,但處理方式存在差異。在日本,回收地膜是作為產(chǎn)業(yè)垃圾進(jìn)行處理,對(duì)地膜使用者、處理者的權(quán)益進(jìn)行了明確規(guī)定,即地膜使用者有使用地膜的權(quán)力,但也負(fù)有回收、清洗和交給處理企業(yè)的義務(wù)[96-98]。農(nóng)民部分付費(fèi)讓相關(guān)公益類企業(yè)或公司將使用后的地膜運(yùn)走處理,政府需要對(duì)地膜回收處理給予一定比例的投入。在歐洲,大部分國(guó)家采用生產(chǎn)者有限度的責(zé)任延伸制,地膜使用者在用后需要對(duì)地膜進(jìn)行回收處理,并堆放在田頭,地膜生產(chǎn)者或者是委托企業(yè),在政府資助下對(duì)地膜進(jìn)行回收處理[95]。
相比其他國(guó)家,中國(guó)的地膜應(yīng)用具有特殊性,同樣,地膜回收處理也只是近5年來才開始受到社會(huì)和政府的高度重視[52,99]??傮w而言,中國(guó)地膜回收處理還相對(duì)粗放,關(guān)于地膜回收處理的法律、法規(guī)和管理辦法也是近幾年開始著手制定和頒布,但關(guān)于具體的實(shí)施機(jī)制還沒有完全建立,還在摸索之中[5,100]。根據(jù)國(guó)內(nèi)外調(diào)研,應(yīng)當(dāng)首先明確政府部門、地膜生產(chǎn)者、銷售者、使用者的權(quán)力、責(zé)任和義務(wù),構(gòu)建由地膜產(chǎn)業(yè)鏈相關(guān)方共同承擔(dān)的地膜生產(chǎn)者有限責(zé)任延伸機(jī)制[101]。
在政府部門方面,明確回收的地膜是農(nóng)業(yè)的產(chǎn)業(yè)垃圾,而不是可以自我循環(huán)的資源。政府負(fù)有對(duì)地膜生產(chǎn)、銷售、回收處理的監(jiān)管和問責(zé)權(quán)力,同時(shí)還應(yīng)該為回收地膜處理承擔(dān)一定的義務(wù)和責(zé)任(投入一定比例的資金,或者是通過補(bǔ)貼農(nóng)民進(jìn)行耕地地力維持,由農(nóng)民向相關(guān)地膜回收企業(yè)進(jìn)行支付。日本政府投入了地膜處理費(fèi)用的1/3,中國(guó)的投入比例尚需研究確定)。作為地膜使用者,具有使用地膜的權(quán)力,但同時(shí)必須承擔(dān)相應(yīng)的責(zé)任和義務(wù),主要是地膜使用結(jié)束后將地膜按照一定要求回收并進(jìn)行適當(dāng)處理的責(zé)任和義務(wù)(這個(gè)問題目前并沒有進(jìn)行明確規(guī)定,可借鑒日本和歐洲的經(jīng)驗(yàn),強(qiáng)化使用者權(quán)力和責(zé)任義務(wù))[102]。作為地膜生產(chǎn)者和銷售者,具有通過生產(chǎn)銷售合格地膜產(chǎn)品賺取利潤(rùn)的權(quán)力,與地方政府、地膜使用者共同完成使用后地膜的回收處理是其有限延伸責(zé)任[103]。在這樣一個(gè)框架下,在縣域單元(或者鄉(xiāng)鎮(zhèn))引入地膜回收處理企業(yè)(政府通過購(gòu)買服務(wù)將部分資金投入企業(yè),地膜生產(chǎn)銷售者補(bǔ)貼回收企業(yè),回收的地膜處理獲得部分殘值),政府開展管理和投入,生產(chǎn)和銷售者部分補(bǔ)貼回收企業(yè),使用者通過勞動(dòng)力投入,在不同區(qū)域構(gòu)建適合各自實(shí)際情況的、多方投入和參與地膜回收處理體系,形成可以在一定程度上自我維持運(yùn)行的系統(tǒng)。
同時(shí),必須對(duì)回收地膜的處理和再利用進(jìn)行科學(xué)評(píng)估,從多維度考慮回收地膜的出路,形成可實(shí)施、可落地的處理方法?;厥盏啬さ奶幚砗驮倮玫耐緩綉?yīng)取決于回收地膜本身的特點(diǎn)、所處的環(huán)境及所擁有的技術(shù)和經(jīng)濟(jì)條件,因此所有的再利用和處理方式應(yīng)該是開放的,可以選擇的。目前,急需對(duì)不同回收地膜處理方式(棄置地頭、填埋、就地焚燒、控制焚燒、回收清洗造粒、回收簡(jiǎn)單清理作為木塑原料等)的生態(tài)、經(jīng)濟(jì)和環(huán)境影響進(jìn)行綜合評(píng)價(jià),形成一套用來選擇回收地膜處理和再利用方式的技術(shù)工具,將回收到田頭道邊的地膜科學(xué)處理,防止產(chǎn)生二次污染的問題。
覆蓋地膜短期內(nèi)顯著改善了作物的生長(zhǎng)環(huán)境,促進(jìn)了農(nóng)業(yè)生產(chǎn),但長(zhǎng)期回收管理不當(dāng)導(dǎo)致了嚴(yán)重的土壤殘膜和微塑料污染,會(huì)對(duì)土壤生態(tài)環(huán)境和農(nóng)業(yè)生產(chǎn)造成嚴(yán)重破壞。綜合以上地膜和微塑料領(lǐng)域的研究進(jìn)展及中國(guó)農(nóng)田地膜使用和微塑料污染現(xiàn)狀的分析,筆者認(rèn)為未來的研究方向應(yīng)包括:
(1)微塑料分析方法的標(biāo)準(zhǔn)化。包括土壤中微塑料的提取、豐度定量和組分定性鑒別的標(biāo)準(zhǔn)化,以及計(jì)量單位的統(tǒng)一化。分析方法是土壤微塑料研究的基礎(chǔ),方法的標(biāo)準(zhǔn)化是不同研究間相互交流、比較的前提。
(2)微塑料在土壤-作物系統(tǒng)內(nèi)的豐度分布及遷移規(guī)律。在土壤微塑料分析方法成熟的基礎(chǔ)上,定量不同土地利用類型、不同種植模式下土壤微塑料的豐度及分布特征,重點(diǎn)是微塑料的界面交互作用機(jī)理,如土壤根際區(qū)域和土水界面的微塑料運(yùn)移特征。
(3)土壤中殘膜和微塑料的生態(tài)環(huán)境效應(yīng)。當(dāng)前研究對(duì)象主要集中在植物和土壤無(wú)脊椎動(dòng)物等低營(yíng)養(yǎng)級(jí)生物,無(wú)法全面表征殘膜和微塑料對(duì)完整食物鏈的風(fēng)險(xiǎn)暴露評(píng)價(jià)。應(yīng)加強(qiáng)殘膜和微塑料對(duì)高營(yíng)養(yǎng)級(jí)生物生長(zhǎng)脅迫的研究,最終對(duì)微塑料通過食物鏈進(jìn)入人體的潛力及健康風(fēng)險(xiǎn)進(jìn)行定量評(píng)估。
(4)加快新型可降解地膜的研制。加強(qiáng)地膜降解性能和殘膜生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)研究及厚地膜和可降解地膜的推廣應(yīng)用,以期從源頭削減土壤塑料污染。
(5)農(nóng)田土壤塑料污染的防治策略。應(yīng)整合政府、企業(yè)、農(nóng)戶等各方力量,制定完善地膜生產(chǎn)、使用、回收等各個(gè)環(huán)節(jié)的政策法規(guī)及標(biāo)準(zhǔn),并嚴(yán)格執(zhí)行。
[1] 殷濤, 何文清, 嚴(yán)昌榮, 劉爽, 劉恩科. 地膜秸稈雙覆蓋對(duì)免耕種植玉米田土壤水熱效應(yīng)的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(19): 78-87. doi:10.3969/j.issn.1002-6819.2014.19.010.
YIN T, HE W Q, YAN C R, LIU S, LIU E K. Effects of plastic mulching on surface of no-till straw mulching on soil water and temperature. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 78-87. doi:10.3969/j.issn.1002-6819.2014. 19.010. (in Chinese)
[2] GAO H H, YAN C R, LIU Q, DING W L, CHEN B Q, LI Z. Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis. Science of the Total Environment, 2019, 651: 484-492. doi:10.1016/j.scitotenv.2018.09.105.
[3] LIU X, DONG W Y, SI P F, ZHANG Z, CHEN B Q, YAN C R, ZHANG Y Q, LIU E K. Linkage between soil organic carbon and the utilization of soil microbial carbon under plastic film mulching in a semi-arid agroecosystem in China. Archives of Agronomy and Soil Science, 2019, 65(13): 1788-1801. doi:10.1080/03650340.2019. 1578346.
[4] RUíZ-MACHUCA L M, IBARRA-JIMéNEZ L, VALDEZ- AGUILAR L A, ROBLEDO-TORRES V, BENAVIDES-MENDOZA A, CABRERA-DE LA FUENTE M. Cultivation of potato-use of plastic mulch and row covers on soil temperature, growth, nutrient status, and yield. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2015, 65(1): 30-35. doi:10.1080/09064710.2014. 960888.
[5] 嚴(yán)昌榮, 何文清, 劉爽. 中國(guó)地膜覆蓋及殘留污染防控. 北京: 科學(xué)出版社, 2015.
YAN C R, HE W Q, LIU S. Application of Mulch Films and Prevention of Its Residual Pollution in China. Beijing: Science Press, 2015. (in Chinese)
[6] SUN D B, LI H G, WANG E L, HE W Q, HAO W P, YAN C R, LI Y Z, MEI X R, ZHANG Y Q, SUN Z X, JIA Z K, ZHOU H P, FAN T L, ZHANG X C, LIU Q, WANG F J, ZHANG C C, SHEN J B, WANG Q S, ZHANG F S. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 2020, 7(10): 1523-1526. doi:10.1093/nsr/nwaa146.
[7] ZHANG D, NG E L, HU W L, WANG H Y, GALAVIZ P, YANG H D, SUN W T, LI C X, MA X W, FU B, ZHAO P Y, ZHANG F L, JIN S Q, ZHOU M D, DU L F, PENG C, ZHANG X J, XU Z Y, XI B, LIU X X, SUN S Y, CHENG Z H, JIANG L H, WANG Y F, GONG L, KOU C L, LI Y, MA Y H, HUANG D F, ZHU J, YAO J W, LIN C W, QIN S, ZHOU L Q, HE B H, CHEN D L, LI H C, ZHAI L M, LEI Q L, WU S X, ZHANG Y T, PAN J T, GU B J, LIU H B. Plastic pollution in croplands threatens long-term food security. Global Change Biology, 2020, 26(6): 3356-3367. doi:10.1111/gcb.15043.
[8] ESPí E, SALMERóN A, FONTECHA A, GARCíA Y, REAL A I. PLastic films for agricultural applications. Journal of Plastic Film & Sheeting, 2006, 22(2): 85-102. doi:10.1177/8756087906064220.
[9] JIA P Y, XIA H Y, TANG K H, ZHOU Y H. Plasticizers derived from biomass resources: a short review. Polymers, 2018, 10(12): 1303. doi:10.3390/polym10121303.
[10] GHOMI E R, KHOSRAVI F, MOSSAYEBI Z, ARDAHAEI A S, DEHAGHI F M, KHORASANI M, NEISIANY R E, DAS O, MARANI A, MENSAH R A, JIANG L, XU Q, F?RSTH M, BERTO F, RAMAKRISHNA S. The flame retardancy of polyethylene composites: from fundamental concepts to nanocomposites. Molecules (Basel, Switzerland), 2020, 25(21): 5157. doi:10.3390/ molecules25215157.
[11] ANDRADY A L, HAMID H, TORIKAI A. Effects of solar UV and climate change on materials. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2011, 10(2): 292-300. doi:10. 1039/c0pp90038a.
[12] 孫仕軍, 朱振闖, 陳志君, 楊丹, 張旭東. 不同顏色地膜和種植密度對(duì)春玉米田間地溫、耗水及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(19): 3323-3336. doi:10.3864/j.issn.0578-1752.2019.19.004.
SUN S J, ZHU Z C, CHEN Z J, YANG D, ZHANG X D. Effects of different colored plastic film mulching and planting density on soil temperature, evapotranspiration and yield of spring maize. Scientia Agricultura Sinica, 2019, 52(19): 3323-3336. doi:10.3864/j.issn.0578- 1752.2019.19.004. (in Chinese)
[13] KRUEGER M C, HARMS H, SCHLOSSER D. Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 2015, 99(21): 8857-8874. doi:10.1007/s00253-015-6879-4.
[14] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)農(nóng)村統(tǒng)計(jì)年鑒. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2020.
State Statistics Bureau. China Rural Statistical Yearbook. Beijing: China Statistics Press, 2020. (in Chinese)
[15] 嚴(yán)昌榮, 劉恩科, 舒帆, 劉勤, 劉爽, 何文清. 中國(guó)地膜覆蓋和殘留污染特點(diǎn)與防控技術(shù). 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2014, 31(2): 95-102. doi:10.13254/j.jare.2013.0223.
YAN C R, LIU E K, SHU F, LIU Q, LIU S, HE W Q. Review of agricultural plastic mulching and its residual pollution and prevention measures in China. Journal of Agricultural Resources and Environment, 2014, 31(2): 95-102. doi:10.13254/j.jare.2013.0223. (in Chinese)
[16] 馬蕾, 呂金良. 中國(guó)農(nóng)用地膜使用現(xiàn)狀及回收機(jī)制研究. 農(nóng)業(yè)科技通訊, 2019(11): 19-23.
MA L, Lü J L. Research on current situation and recycling mechanism of agricultural mulch in china. Bulletin of Agricultural Science and Technology, 2019(11): 19-23. (in Chinese)
[17] 趙巖, 陳學(xué)庚, 溫浩軍, 鄭炫, 牛琪, 康建明. 農(nóng)田殘膜污染治理技術(shù)研究現(xiàn)狀與展望. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(6): 1-14. doi:10. 6041/j.issn.1000-1298.2017.06.001.
ZHAO Y, CHEN X G, WEN H J, ZHENG X, NIU Q, KANG J M. Research status and prospect of control technology for residual plastic film pollution in farmland. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 1-14. doi:10.6041/j.issn.1000- 1298.2017.06.001. (in Chinese)
[18] 國(guó)家發(fā)展改革委, 生態(tài)環(huán)境部. 國(guó)家發(fā)展改革委、生態(tài)環(huán)境部關(guān)于進(jìn)一步加強(qiáng)塑料污染治理的意見. https://www.ndrc.gov.cn/xxgk/ zcfb/tz/202001/t20200119_1219275.html?code=&state=123, 2020-1- 16.
National Development and Reform Commission, the Ministry of Ecology and Environment. National Development and Reform Commission and the Ministry of Ecology and Environment on further strengthening the management of plastic pollution. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123, 2020-1-16. (in Chinese)
[19] NG E L, LIN S Y, DUNGAN A M, COLWELL J M, EDE S, LWANGA E H, MENG K, GEISSEN V, BLACKALL L L, CHEN D L. Microplastic pollution alters forest soil microbiome. Journal of Hazardous Materials, 2021, 409: 124606. doi:10.1016/j.jhazmat.2020. 124606.
[20] CHAMAS A, MOON H, ZHENG J J, QIU Y, TABASSUM T, JANG J H, ABU-OMAR M, SCOTT S L, SUH S. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. doi:10.1021/acssuschemeng.9b06635.
[21] LAW K L, THOMPSON R C. Microplastics in the seas. Science, 2014, 345(6193): 144-145. doi:10.1126/science.1254065.
[22] KUMAR M, XIONG X N, HE M J, TSANG D C W, GUPTA J, KHAN E, HARRAD S, HOU D Y, OK Y S, BOLAN N S. Microplastics as pollutants in agricultural soils. Environmental Pollution, 2020, 265: 114980. doi:10.1016/j.envpol.2020.114980.
[23] LI L Z, LUO Y M, LI R J, ZHOU Q, PEIJNENBURG W J G M, YIN N, YANG J, TU C, ZHANG Y C. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 2020, 3(11): 929-937. doi:10.1038/s41893-020-0567-9.
[24] QI Y L, OSSOWICKI A, YANG X M, HUERTA LWANGA E, DINI-ANDREOTE F, GEISSEN V, GARBEVA P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 2020, 387: 121711. doi:10.1016/j.jhazmat. 2019.121711.
[25] SELKE S, AURAS R, NGUYEN T A, CASTRO AGUIRRE E, CHERUVATHUR R, LIU Y. Evaluation of biodegradation-promoting additives for plastics. Environmental Science & Technology, 2015, 49(6): 3769-3777. doi:10.1021/es504258u.
[26] 劉凱, 謝英荷, 李廷亮, 張奇茹, 竇露, 柳玉鳳, 紀(jì)美娟. 地膜覆蓋對(duì)中國(guó)干旱半干旱地區(qū)土壤溫度及土壤水分的影響. 山西農(nóng)業(yè)科學(xué), 2019, 47(10): 1847-1852. doi:10.3969/j.issn.1002-2481.2019. 10.37.
LIU K, XIE Y H, LI T L, ZHANG Q R, DOU L, LIU Y F, JI M J. Overview of the effects of plastic film mulching on soil temperature and soil moisture in arid and semi-arid regions of China. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1847-1852. doi:10. 3969/j.issn.1002-2481.2019.10.37. (in Chinese)
[27] 王平, 謝成俊, 陳娟, 代立蘭, 王國(guó)宇, 魏瓏. 地膜覆蓋對(duì)半干旱地區(qū)土壤環(huán)境及作物產(chǎn)量的影響研究綜述. 甘肅農(nóng)業(yè)科技, 2011(12): 34-37. doi:10.3969/j.issn.1001-1463.2011.12.016.
WANG P, XIE C J, CHEN J, DAI L L, WANG G Y, WEI L. Research on effect of film-covered on the soil environment and crop yield in semi-arid areas. Gansu Agricultural Science and Technology, 2011(12): 34-37. doi:10.3969/j.issn.1001-1463.2011.12.016. (in Chinese)
[28] 杜社妮, 白崗栓. 玉米地膜覆蓋的土壤環(huán)境效應(yīng). 干旱地區(qū)農(nóng)業(yè)研究, 2007, 25(5): 56-59.
DU S N, BAI G S. Studies on effects of plastic film mulching on soil environment of maize field. Agricultural Research in the Arid Areas, 2007, 25(5): 56-59. (in Chinese)
[29] 霍軼珍, 丁春蓮, 王文達(dá), 韓翠蓮, 郭彥芬, 李生勇. 黑色地膜覆蓋土壤水熱效應(yīng)及對(duì)玉米產(chǎn)量的影響. 水土保持研究, 2020, 27(1): 335-339. doi:10.13869/j.cnki.rswc.2020.01.046.
HUO Y Z, DING C L, WANG W D, HAN C L, GUO Y F, LI S Y. Effects of black plastic film mulching on soil moisture, soil temperature and maize yield. Research of Soil and Water Conservation, 2020, 27(1): 335-339. doi:10.13869/j.cnki.rswc.2020. 01.046. (in Chinese)
[30] WANG Z Y, LI M X, FLURY M, SCHAEFFER S M, CHANG Y, TAO Z, JIA Z J, LI S T, DING F, WANG J K. Agronomic performance of polyethylene and biodegradable plastic film mulches in a maize cropping system in a humid continental climate. Science of the Total Environment, 2021, 786: 147460. doi:10.1016/j.scitotenv. 2021.147460.
[31] 樊廷錄, 李永平, 李尚中, 劉世新, 王淑英, 馬明生. 旱作地膜玉米密植增產(chǎn)用水效應(yīng)及土壤水分時(shí)空變化. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(19): 3721-3732. doi:10.3864/j.issn.0578-1752.2016.19.005.
FAN T L, LI Y P, LI S Z, LIU S X, WANG S Y, MA M S. Grain yield and water use efficiency and soil water changes of dryland corn with film mulching and close planting. Scientia Agricultura Sinica, 2016, 49(19): 3721-3732. doi:10.3864/j.issn.0578-1752.2016.19.005. (in Chinese)
[32] 陳林, 楊新國(guó), 翟德蘋, 宋乃平, 楊明秀, 候靜. 檸條秸稈和地膜覆蓋對(duì)土壤水分和玉米產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(2): 108-116. doi:10.3969/j.issn.1002-6819.2015.02.016.
CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J. Effects of mulching withpowder and plastic film on soil water and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 108-116. doi:10.3969/j.issn. 1002-6819.2015.02.016. (in Chinese)
[33] 范穎丹, 柴守璽, 程宏波, 陳玉章, 楊長(zhǎng)剛, 黃彩霞, 常磊, 逄蕾. 覆蓋方式對(duì)旱地冬小麥土壤水分的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(11): 3137-3144. doi:10.13287/j.1001-9332.2013.0538.
FAN Y D, CHAI S X, CHENG H B, CHEN Y Z, YANG C G, HUANG C X, CHANG L, PANG L. Effects of mulching on soil moisture in a dryland winter wheat field, Northwest China. Chinese Journal of Applied Ecology, 2013, 24(11): 3137-3144. doi:10.13287/ j.1001-9332.2013.0538. (in Chinese)
[34] 李尚中, 樊廷錄, 王勇, 趙剛, 王磊, 唐小明, 黨翼, 趙暉. 不同覆膜集雨種植方式對(duì)旱地玉米葉綠素?zé)晒馓匦?、產(chǎn)量和水分利用效率的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(2): 458-466. doi:10.13287/j. 1001-9332.2014.0050.
LI S Z, FAN T L, WANG Y, ZHAO G, WANG L, TANG X M, DANG Y, ZHAO H. Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize. Chinese Journal of Applied Ecology, 2014, 25(2): 458-466. doi:10.13287/j.1001-9332.2014.0050. (in Chinese)
[35] 李小剛, 李鳳民. 旱作地膜覆蓋農(nóng)田土壤有機(jī)碳平衡及氮循環(huán)特征. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(23): 4630-4638. doi:10.3864/j.issn. 0578-1752.2015.23.004.
LI X G, LI F M. Soil organic carbon balance and nitrogen cycling in plastic film mulched croplands in rainfed farming systems. Scientia Agricultura Sinica, 2015, 48(23): 4630-4638. doi:10.3864/j.issn. 0578-1752.2015.23.004. (in Chinese)
[36] 解文艷. 旱作褐土覆蓋耕作措施對(duì)土壤環(huán)境的影響及玉米生長(zhǎng)的響應(yīng)[D]. 太原: 太原理工大學(xué), 2015.
XIE W Y. Effect of different mulching methods on soil environment of rainfed cinnamon soil and related maize responses[D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)
[37] 馬浩, 郝明德, 郭慧慧, 蘇富源, 牛育華. 渭北旱塬不同覆蓋措施對(duì)小麥產(chǎn)量和水分利用效率的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2016, 34(6): 51-57. doi:10.7606/j.issn.1000-7601.2016.06.08.
MA H, HAO M D, GUO H H, SU F Y, NIU Y H. Effects of different mulching treatments on yield and water use efficiency of winter wheat in Weibei Highland. Agricultural Research in the Arid Areas, 2016, 34(6): 51-57. doi:10.7606/j.issn.1000-7601.2016.06.08. (in Chinese)
[38] 程宏波, 牛建彪, 柴守璽, 常磊, 楊長(zhǎng)剛. 不同覆蓋材料和方式對(duì)旱地春小麥產(chǎn)量及土壤水溫環(huán)境的影響. 草業(yè)學(xué)報(bào), 2016, 25(2): 47-57. doi:10.11686/cyxb2015395.
CHENG H B, NIU J B, CHAI S X, CHANG L, YANG C G. Effect of different mulching materials and methods on soil moisture and temperature and grain yield of dryland spring wheat in northwestern China. Acta Prataculturae Sinica, 2016, 25(2): 47-57. doi:10.11686/ cyxb2015395. (in Chinese)
[39] 孫東寶. 北方旱作區(qū)作物產(chǎn)量和水肥利用特征與提升途徑[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2017.
SUN D B. Yield, water and nutrient use efficiency of dryland crops in Northern China[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[40] 張旭東. 覆膜種植和施肥對(duì)半干旱地區(qū)資源高效利用及玉米生產(chǎn)持續(xù)性的影響機(jī)制[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
ZHANG X D. Influencing mechanism of mulch planting and fertilization on the efficient utilization of resources and maize production sustainability in semi-arid areas[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[41] 周昌明. 地膜覆蓋及種植方式對(duì)土壤水氮利用及夏玉米生長(zhǎng)、產(chǎn)量的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
ZHOU C M. Effect of different environmental films mulching and cropping patterns on soil water and nitrogen utilization and summer maize growth[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[42] 侯紅波, 劉偉, 李恩堯, 彭佩欽, 李裕元, 任可愛. 不同覆蓋方式對(duì)紅壤坡耕地氮磷流失的影響. 湖南生態(tài)科學(xué)學(xué)報(bào), 2019, 6(1): 16-20. doi:10.3969/j.issn.2095-7300.2019.01.003.
HOU H B, LIU W, LI E Y, PENG P Q, LI Y Y, REN K A. Effect of different mulching methods on nitrogen and phosphorous loss in red soil slopes of dongting lake. Journal of Hunan Ecological Science, 2019, 6(1): 16-20. doi:10.3969/j.issn.2095-7300.2019.01.003. (in Chinese)
[43] ZHANG H Y, LIU Q J, YU X X, Lü G, WU Y Z. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut () cultivated land in the Yimeng Mountainous Area, China. Agriculture, Ecosystems & Environment, 2012, 158: 164-171. doi:10.1016/j.agee.2012.06.009.
[44] 呂威, 董黎, 孫宇涵, 李云. 淺談國(guó)內(nèi)外雜草控制方法. 中國(guó)農(nóng)學(xué)通報(bào), 2018, 34(11): 34-39.
Lü W, DONG L, SUN Y H, LI Y. Weed control methods at home and abroad. Chinese Agricultural Science Bulletin, 2018, 34(11): 34-39. (in Chinese)
[45] 許樹寧, 吳建明, 黃杏, 謝金蘭, 羅亞偉, 梁闐, 黃家雍, 李楊瑞. 不同地膜覆蓋對(duì)土壤溫度、水分及甘蔗生長(zhǎng)和產(chǎn)量的影響. 南方農(nóng)業(yè)學(xué)報(bào), 2014, 45(12): 2137-2142. doi:10.3969/j: issn.2095-1191.2014. 12.2137.
XU S N, WU J M, HUANG X, XIE J L, LUO Y W, LIANG T, HUANG J Y, LI Y R. Effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane. Journal of Southern Agriculture, 2014, 45(12): 2137-2142. doi:10. 3969/j: issn.2095-1191.2014.12.2137. (in Chinese)
[46] 岳德成, 李青梅, 韓菊紅, 柳建偉, 史廣亮, 姜延軍, 胡冠芳, 賈春虹. 覆膜時(shí)期對(duì)3種地膜在全膜雙壟溝播玉米田應(yīng)用效果的影響. 灌溉排水學(xué)報(bào), 2018, 37(2): 30-37. doi:10.13522/j.cnki.ggps.2017. 0333.
YUE D C, LI Q M, HAN J H, LIU J W, SHI G L, JIANG Y J, HU G F, JIA C H. Application effect of three kinds of plastic film mulching in corn field of whole-mulching plastic films on double ridges. Journal of Irrigation and Drainage, 2018, 37(2): 30-37. doi:10.13522/j. cnki. ggps.2017.0333. (in Chinese)
[47] 吳治國(guó), 閆軍明, 魏暉. 黑色地膜對(duì)設(shè)施蔬菜防草、控草、降溫作用與機(jī)理研究. 農(nóng)業(yè)科技通訊, 2013(10): 150-152. doi:10.3969/j. issn.1000-6400.2013.10.055.
WU Z G, YAN J M, WEI H. Study on the effect and mechanism of black mulch on grass control and grass cooling in vegetable facilities. Bulletin of Agricultural Science and Technology, 2013(10): 150-152. doi:10.3969/j.issn.1000-6400.2013.10.055. (in Chinese)
[48] 陳剛, 趙致, 王華磊, 李金玲, 羅春麗, 劉紅昌. 地膜覆蓋對(duì)何首烏生長(zhǎng)及其田間雜草防控效果的影響. 山地農(nóng)業(yè)生物學(xué)報(bào), 2013, 32(1): 92-94. doi:10.15958/j.cnki.sdnyswxb.2013.01.012.
CHEN G, ZHAO Z, WANG H L, LI J L, LUO C L, LIU H C. Effect of plastic film mulch on growth ofand weed control in field. Journal of Mountain Agriculture and Biology, 2013, 32(1): 92-94. doi:10.15958/j.cnki.sdnyswxb.2013.01.012. (in Chinese)
[49] 李建奇. 地膜覆蓋對(duì)春玉米產(chǎn)量、品質(zhì)的影響機(jī)理研究. 玉米科學(xué), 2008, 16(5): 87-92, 97.
LI J Q. The mechanism study of the influences of plastics film mulch on grain yield and seed quality of spring maize. Journal of Maize Sciences, 2008, 16(5): 87-92, 97. (in Chinese)
[50] DING F, LI S Y, Lü X T, DIJKSTRA F A, SCHAEFFER S, AN T T, PEI J B, SUN L J, WANG J K. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. Journal of Plant Ecology, 2019, 12(4): 682-692. doi:10.1093/jpe/rtz006.
[51] 趙愛琴, 魏秀菊, 朱明. 基于Meta-analysis的中國(guó)馬鈴薯地膜覆蓋產(chǎn)量效應(yīng)分析. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(24): 1-7. doi:10.11975/ j.issn.1002-6819.2015.24.001.
ZHAO A Q, WEI X J, ZHU M. Meta analysis on impact of plastic film on potato yield in China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 1-7. doi:10.11975/j.issn. 1002-6819.2015.24.001. (in Chinese)
[52] 嚴(yán)昌榮, 何文清, 薛穎昊, 劉恩科, 劉勤. 生物降解地膜應(yīng)用與地膜殘留污染防控. 生物工程學(xué)報(bào), 2016, 32(6): 748-760. doi:10. 13345/j.cjb.160008.
YAN C R, HE W Q, XUE Y H, LIU E K, LIU Q. Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture. Chinese Journal of Biotechnology, 2016, 32(6): 748-760. doi:10.13345/j.cjb.160008. (in Chinese)
[53] 葛均筑, 李淑婭, 鐘新月, 袁國(guó)印, 徐瑩, 田少陽(yáng), 曹湊貴, 翟中兵, 劉詩(shī)晴. 施氮量與地膜覆蓋對(duì)長(zhǎng)江中游春玉米產(chǎn)量性能及氮肥利用效率的影響. 作物學(xué)報(bào), 2014, 40(6): 1081-1092. doi:10.3724/SP. J.1006.2014.01081.
GE J Z, LI S Y, ZHONG X Y, YUAN G Y, XU Y, TIAN S Y, CAO C G, ZHAI Z B, LIU S Q. Effects of nitrogen application and film mulching on yield performance parameters and nitrogen use efficiency of spring maize in the middle reaches of Yangtze River. Acta Agronomica Sinica, 2014, 40(6): 1081-1092. doi:10.3724/SP.J.1006. 2014.01081. (in Chinese)
[54] 劉明春, 鄧振鏞, 李巧珍, 楊小利, 蒲金涌. 甘肅省玉米氣候生態(tài)適應(yīng)性研究. 干旱地區(qū)農(nóng)業(yè)研究, 2005, 23(3): 112-117. doi:10.3321/ j.issn: 1000-7601.2005.03.024.
LIU M C, DENG Z Y, LI Q Z, YANG X L, PU J Y. The suitable planting division of corn in Gansu. Agricultural Research in the Arid Areas, 2005, 23(3): 112-117. doi:10.3321/j.issn: 1000-7601.2005.03. 024. (in Chinese)
[55] FANG H, LI Y N, GU X B, YU M, DU Y D, CHEN P P, LI Y P. Evapotranspiration partitioning, water use efficiency, and maize yield under different film mulching and nitrogen application in northwest China. Field Crops Research, 2021, 264: 108103. doi:10.1016/j. fcr.2021.108103.
[56] DE SOUZA MACHADO A A, LAU C W, KLOAS W, BERGMANN J, BACHELIER J B, FALTIN E, BECKER R, G?RLICH A S, RILLIG M C. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 2019, 53(10): 6044-6052. doi:10.1021/acs.est.9b01339.
[57] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of the Total Environment, 2019, 670: 1-7. doi:10.1016/j.scitotenv.2019.03.149.
[58] LI Y Q, ZHAO C X, YAN C R, MAO L L, LIU Q, LI Z, HE W Q. Effects of agricultural plastic film residues on transportation and distribution of water and nitrate in soil. Chemosphere, 2020, 242: 125131. doi:10.1016/j.chemosphere.2019.125131.
[59] LEHMANN A, LEIFHEIT E F, GERDAWISCHKE M, RILLIG M C. Microplastics have shape-and polymer-dependent effects on soil aggregation and organic matter loss-an experimental and meta- analytical approach. Microplastics and Nanoplastics, 2021, 1(1): 7. doi:10.1186/s43591-021-00007-x.
[60] HU Q, LI X Y, GON?ALVES J M, SHI H B, TIAN T, CHEN N. Effects of residual plastic-film mulch on field corn growth and productivity. Science of the Total Environment, 2020, 729: 138901. doi:10.1016/j.scitotenv.2020.138901.
[61] HU J, HE D, ZHANG X, LI X, CHEN Y, WEI G, ZHANG Y, OK Y S, LUO Y. National-scale distribution of micro(meso)plastics in farmland soils across China: implications for environmental impacts. Journal of Hazardous Materials, 2021, 424 (Pt A). doi:10.1016/j.jhazmat.2021. 127283.
[62] 丁凡, 李詩(shī)彤, 王展, 馮良山, 趙祥云, 汪景寬. 塑料和可降解地膜的殘留與降解及對(duì)土壤健康的影響: 進(jìn)展與思考. 湖南生態(tài)科學(xué)學(xué)報(bào), 2021, 8(3): 83-89. doi:10.3969/j.issn.2095-7300.2021.03.013.
DING F, LI S T, WANG Z, FENG L S, ZHAO X Y, WANG J K. Residue and degradation of plastic and degradable mulch in cropland and their effects on soil health: progress and perspective. Journal of Hunan Ecological Science, 2021, 8(3): 83-89. doi:10.3969/j.issn. 2095-7300.2021.03.013. (in Chinese)
[63] 楊杰, 李連禎, 周倩, 李瑞杰, 涂晨, 駱永明. 土壤環(huán)境中微塑料污染: 來源、過程及風(fēng)險(xiǎn). 土壤學(xué)報(bào), 2021, 58(2): 281-298. doi:10.11766/trxb202006090286.
YANG J, LI L Z, ZHOU Q, LI R J, TU C, LUO Y M. Microplastics contamination of soil environment: sources, processes and risks. Acta Pedologica Sinica, 2021, 58(2): 281-298. doi:10.11766/trxb202006090286. (in Chinese)
[64] KIM S W, AN Y J. Soil microplastics inhibit the movement of springtail species. Environment International, 2019, 126: 699-706. doi:10.1016/j.envint.2019.02.067.
[65] KIM S W, WALDMAN W R, KIM T Y, RILLIG M C. Effects of different microplastics onin the soil environment: tracking the extractable additives using an ecotoxicological approach. Environmental Science & Technology, 2020, 54(21): 13868-13878. doi:10.1021/acs.est.0c04641.
[66] DA COSTA J P, SANTOS P S M, DUARTE A C, ROCHA-SANTOS T. (Nano)plastics in the environment-Sources, fates and effects. Science of the Total Environment, 2016, 566/567: 15-26. doi:10. 1016/j.scitotenv.2016.05.041.
[67] LAHIVE E, WALTON A, HORTON A A, SPURGEON D J, SVENDSEN C. Microplastic particles reduce reproduction in the terrestrial wormcrypticus in a soil exposure. Environmental Pollution, 2019, 255: 113174. doi:10.1016/j.envpol. 2019.113174.
[68] WANG J, LIU X H, LI Y, POWELL T, WANG X, WANG G Y, ZHANG P P. Microplastics as contaminants in the soil environment: a mini-review. Science of the Total Environment, 2019, 691: 848-857. doi:10.1016/j.scitotenv.2019.07.209.
[69] SOHONI P, SUMPTER J P. Several environmental oestrogens are also anti-androgens. The Journal of Endocrinology, 1998, 158(3): 327-339. doi:10.1677/joe.0.1580327.
[70] DE SOUZA MACHADO A A, LAU C W, TILL J, KLOAS W, LEHMANN A, BECKER R, RILLIG M C. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 2018, 52(17): 9656-9665. doi:10.1021/acs.est.8b02212.
[71] JIANG X F, CHEN H, LIAO Y C, YE Z Q, LI M, KLOBU?AR G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant. Environmental Pollution, 2019, 250: 831-838. doi:10.1016/j.envpol.2019.04.055.
[72] ASLI S, NEUMANN P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 2009, 32(5): 577-584. doi:10.1111/j.1365-3040.2009.01952.x.
[73] MA X M, GEISER-LEE J, DENG Y, KOLMAKOV A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 2010, 408(16): 3053-3061. doi:10.1016/j.scitotenv.2010.03.031.
[74] COX K D, COVERNTON G A, DAVIES H L, DOWER J F, JUANES F, DUDAS S E. Human consumption of microplastics. Environmental Science & Technology, 2019, 53(12): 7068-7074. doi:10.1021/acs. est.9b01517.
[75] GUO J J, HUANG X P, XIANG L, WANG Y Z, LI Y W, LI H, CAI Q Y, MO C H, WONG M H. Source, migration and toxicology of microplastics in soil. Environment International, 2020, 137: 105263. doi:10.1016/j.envint.2019.105263.
[76] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, CHI J D L A, SANCHEZ DEL CID L, CHI C, ESCALONA SEGURA G, GERTSEN H, SALáNKI T, VAN DER PLOEG M, KOELMANS A A, GEISSEN V. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 2017, 7: 14071. doi:10. 1038/s41598-017-14588-2.
[77] DENG Y F, ZHANG Y, LEMOS B, REN H Q. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 2017, 7: 46687. doi:10. 1038/srep46687.
[78] GAO M L, LIU Y, SONG Z G. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (L. var.Hort). Chemosphere, 2019, 237: 124482.
[79] LI Q L, ZENG A R, JIANG X, GU X Y. Are microplastics correlated to phthalates in facility agriculture soil? Journal of Hazardous Materials, 2021, 412: 125164. doi:10.1016/j.jhazmat.2021.125164.
[80] QI R M, JONES D L, LI Z, LIU Q, YAN C R. Behavior of microplastics and plastic film residues in the soil environment: a critical review. Science of the Total Environment, 2020, 703: 134722. doi:10.1016/j.scitotenv.2019.134722.
[81] BROWNE M A, NIVEN S J, GALLOWAY T S, ROWLAND S J, THOMPSON R C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 2013, 23(23): 2388-2392. doi:10.1016/j.cub.2013. 10.012.
[82] WANG J, LI J, WANG Q, SUN Y Z. Microplastics as a vector for HOC bioaccumulation in earthwormin soil: importance of chemical diffusion and particle size. Environmental Science & Technology, 2020, 54(19): 12154-12163. doi:10.1021/acs.est.0c03712.
[83] ZHANG S W, HAN B, SUN Y H, WANG F Y. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 2020, 388: 121775. doi:10.1016/j.jhazmat.2019.121775.
[84] DONG Y M, GAO M L, LIU X W, QIU W W, SONG Z G. The mechanism of polystyrene microplastics to affect arsenic volatilization in arsenic-contaminated paddy soils. Journal of Hazardous Materials, 2020, 398: 122896. doi:10.1016/j.jhazmat.2020.122896.
[85] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. The Science of the Total Environment, 2019, 694: 133798. doi:10.1016/j.scitotenv.2019.133798.
[86] RILLIG M C. Microplastic disguising as soil carbon storage. Environmental Science & Technology, 2018, 52(11): 6079-6080. doi:10.1021/acs.est.8b02338.
[87] ZHU L X, ZHAO S Y, BITTAR T B, STUBBINS A, LI D J. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. Journal of Hazardous Materials, 2020, 383: 121065. doi:10.1016/j.jhazmat.2019.121065.
[88] GUO Q Q, XIAO M R, MA Y, NIU H, ZHANG G S. Polyester microfiber and natural organic matter impact microbial communities, carbon-degraded enzymes, and carbon accumulation in a clayey soil. Journal of Hazardous Materials, 2021, 405: 124701. doi:10.1016/j. jhazmat.2020.124701.
[89] XIAO M L, SHAHBAZ M, LIANG Y, YANG J, WANG S, CHADWICKA D R, JONES D, CHEN J P, GE T D. Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: a three-source-partitioning study. Journal of Hazardous Materials, 2021, 416: 126221. doi:10.1016/j. jhazmat.2021.126221.
[90] GAO B, YAO H Y, LI Y Y, ZHU Y Z. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environmental Toxicology and Chemistry, 2021, 40(2): 352-365. doi:10.1002/etc.4916.
[91] SEELEY M E, SONG B, PASSIE R, HALE R C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 2020, 11(1): 2372. doi:10.1038/s41467-020-16235-3.
[92] CHEN H P, WANG Y H, SUN X, PENG Y K, XIAO L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 2020, 243: 125271. doi:10.1016/j. chemosphere.2019.125271.
[93] 靳拓, 薛穎昊, 張明明, 周濤, 劉宏金, 張凱, 習(xí)斌. 國(guó)內(nèi)外農(nóng)用地膜使用政策、執(zhí)行標(biāo)準(zhǔn)與回收狀況. 生態(tài)環(huán)境學(xué)報(bào), 2020, 29(2): 411-420. doi:10.16258/j.cnki.1674-5906.2020.02.024.
JIN T, XUE Y H, ZHANG M M, ZHOU T, LIU H J, ZHANG K, XI B. Research advances in regulations, standards and recovery of mulch film. Ecology and Environmental Sciences, 2020, 29(2): 411-420. doi:10.16258/j.cnki.1674-5906.2020.02.024. (in Chinese)
[94] CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environmental Pollution, 2018, 240: 387-395. doi:10.1016/j.envpol.2018.05.008.
[95] EUROPEAN COMMISSION. Circular economy in the eu-record recycling rates and use of recycled materials in the eu. https://europa. eu/rapid/press-release_STAT-19-1509_en.html, 2019-3-4.
[96] 曲陽(yáng). 日本循環(huán)管理法制對(duì)中國(guó)的啟示. 法學(xué), 2005(6): 124-128.
QU Y. Japanese recycling management legal system and its implications for China. Law Science, 2005(6): 124-128. (in Chinese)
[97] 于利民. 二戰(zhàn)后日本普通廢棄物分類回收體系剖析[D]. 蘇州: 蘇州大學(xué), 2017.
YU L M. Analysis on the classification system of Japanese common garbage recycling after world warⅡ[D]. Suzhou: Soochow University, 2017. (in Chinese)
[98] MINISTRY OF THE ENVIRONMENT OF JAPAN. Solid waste management and recycling technology of japan: Toward a sustainable society. https://www.env.go.jp/en/recycle/smcs/, 2012-2.
[99] 薛穎昊, 曹肆林, 徐志宇, 靳拓, 賈濤, 嚴(yán)昌榮. 地膜殘留污染防控技術(shù)現(xiàn)狀及發(fā)展趨勢(shì). 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2017, 36(8): 1595-1600. doi:10.11654/jaes.2017-0298.
XUE Y H, CAO S L, XU Z Y, JIN T, JIA T, YAN C R. Status and trends in application of technology to prevent plastic film residual pollution. Journal of Agro-Environment Science, 2017, 36(8): 1595-1600. doi:10.11654/jaes.2017-0298. (in Chinese)
[100] 國(guó)務(wù)院. 國(guó)務(wù)院關(guān)于印發(fā)土壤污染防治行動(dòng)計(jì)劃的通知. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm, 2016-5-31.
The State Council. The State Council on the issuance of soil pollution prevention and control action plan notice. http://www.gov.cn/zhengce/ content/2016-05/31/content_5078377.htm, 2016-5-31. (in Chinese)
[101] 張斌, 金書秦, 王莉. 生產(chǎn)者責(zé)任延伸機(jī)制在農(nóng)膜回收中的可行性探討. 經(jīng)濟(jì)研究參考, 2018(33): 23-33. doi:10.16110/j.cnki. issn2095- 3151.2018.33.005.
ZHANG B, JIN S Q, WANG L. Applicability discussion of extended producer responsibility mechanism on agricultural films recycling. Review of Economic Research, 2018(33): 23-33. doi:10.16110/j. cnki.issn2095-3151.2018.33.005. (in Chinese)
[102] 胡鈺, 劉代麗, 王莉, 萬(wàn)小春. 發(fā)達(dá)國(guó)家農(nóng)膜使用情況及回收經(jīng)驗(yàn). 世界農(nóng)業(yè), 2019(2): 89-94. doi:10.13856/j.cn11-1097/s.2019.02.015
HU Y, LIU D L, WANG L, WAN X C. Agricultural film use situation and recycling experience in developed countries. World Agriculture, 2019(2): 89-94. doi:10.13856/j.cn11-1097/s.2019.02.015. (in Chinese)
[103] 杜歡政, 靳敏. 生產(chǎn)者責(zé)任延伸制度的中國(guó)實(shí)踐. 北京: 科學(xué)出版社, 2017.
DU H Z, JIN M. Practice extended producer responsibility system in China. Beijing: Science Press, 2017. (in Chinese)
2023年全國(guó)畜牧獸醫(yī)期刊征訂目錄
序號(hào)期刊名稱郵發(fā)代號(hào)刊期年定價(jià)/元聯(lián)系人電話地址郵編E-mail 30內(nèi)蒙古畜牧業(yè)(蒙古文)16-50雙月刊42.00 春 梅0471-3826106內(nèi)蒙古呼和浩特市玉泉區(qū)昭君路22號(hào)內(nèi)蒙古自治區(qū)農(nóng)牧業(yè)科學(xué)院010030nmgxmy@sohu.com 31當(dāng)代畜禽養(yǎng)殖業(yè)16-49雙月刊60.00 菅瑞珍0471-3826106內(nèi)蒙古呼和浩特市玉泉區(qū)昭君路22號(hào)內(nèi)蒙古自治區(qū)農(nóng)牧業(yè)科學(xué)院010031nmgxmy2008@sina.com 32四川畜牧獸醫(yī)62-43月刊180.00 胡 麗 028-85571780四川省成都市武侯祠大街4號(hào)省農(nóng)業(yè)農(nóng)村廳內(nèi)610041scxmsy@sina.com 33中國(guó)動(dòng)物檢疫24-112月刊240.00 倪志娟0532-85622559山東省青島市南京路369號(hào)266032zgdwjy2016@cahec.cn 34中國(guó)畜禽種業(yè)80-222月刊312.00 張躍武010-82106255北京市中關(guān)村南大街12號(hào)中國(guó)農(nóng)科院中國(guó)畜禽種業(yè)編輯部100081xqzy@caas.cn 35家禽科學(xué)24-146月刊120.00 孫 凱0531-85990243山東省濟(jì)南市歷城區(qū)工業(yè)北路23788號(hào)250100jqkxzz@163.com 36青海畜牧獸醫(yī)雜志56-10雙月刊30.00 李 威0971-5318387青海省西寧市生物園區(qū)緯二路1號(hào)青海省牧科院810016qhxmsyzz@163.com 37草業(yè)學(xué)報(bào)54-84月刊300.00 裴世芳0931-8913494甘肅省蘭州市城關(guān)區(qū)蘭州大學(xué)一分部730020cyxb@lzu.edu.cn 38草原與草坪54-13雙月刊60.00 靳奇峰0931-7631885甘肅省蘭州市安寧區(qū)迎門村1號(hào)甘肅農(nóng)業(yè)大學(xué)730070cyycp@gsau.edu.cn 39貴州畜牧獸醫(yī)66-58雙月刊72.00 劉 輝0851-85400593貴州省貴陽(yáng)市南明區(qū)小碧鄉(xiāng)老里坡550005gzxmsy@163.com 40浙江畜牧獸醫(yī)自辦發(fā)行雙月刊42.00 徐寧迎/黃利權(quán)0571-86971701杭州市西湖區(qū)余杭塘路866號(hào),浙江大學(xué)紫金港校區(qū)310058zjxmsy@zju.edu.cn 41福建畜牧獸醫(yī)34-81雙月刊48.00 謝新東0591-87807454福建省福州市鼓屏路183號(hào)350003fjxmsy@163.com 42草業(yè)科學(xué)54-51月刊240.00 張 瑾0931-8912486甘肅省蘭州市嘉峪關(guān)西路768號(hào)730020cykx@lzu.edu.cn 43中國(guó)預(yù)防獸醫(yī)學(xué)報(bào)14-70月刊180.00 彭永剛0451-51051812黑龍江省哈爾濱市香坊區(qū)哈平路678號(hào)150069zgyfsyxbhvri@vip.163.com
Influence of Plastic Film on Agricultural Production and Its Pollution Control
1Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China;2Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;3School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK;4College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, China;5State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China;6Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
Plastic film has been widely used in the farmland all over the world especially in arid and semi-arid areas because of its remarkable agricultural benefits, such as increasing soil temperature and moisture, reducing weed and pest damage, extending crop-growing areas, and consequently improving crop yield and quality. However, the degradation rate of plastic film is extremely slow, and the recovery of plastic film is also relatively backward in China, which lead to a large number of plastic debris in the farmland, causing plastic residues and microplastics pollution in the soil environment. Based on literature, investigation and statistical data, this research reviewed and prospects the impact of plastic film on agricultural production and pollution control in China. Plastic residues and microplastics have been reported to change the physical and chemical properties of soil, restrict soil water and nutrient transport, do harm to the growth, development and reproduction of soil animals and plants, change the abundance and community structure of soil microorganisms, and damage the soil health. In the long-term, plastic residues and microplastics pollution will cause a decline in crop yield and quality. Microplastics had the potential to be absorbed by plants, enter the human body through the food chain and pose a threat to human health. In addition, the large specific surface area of microplastics enabled them to become carriers of other pollutants (e.g. heavy metals, pesticides and antibiotics), causing combined pollution to the soil ecological environment. The standard of plastic film production and use in China was gradually being improved, however, there was still a certain gap compared with developed countries and regions. In addition, a sustainable recycling system of plastic film and the policy of preventing plastic residue and microplastics pollution have not been well formed in China, and the study of microplastics pollution in Chinese farmland soil was still very limited. Therefore, it is critical to solve the problem of plastic residues and microplastics pollution in the soil by evaluating the present situation of plastic residues and microplastics pollution in soils, quantifying the effects of microplastics on the soil environment, and evaluating risks of microplastics to the soil ecosystems, as well as exploring the measures of controlling soil plastic residues and microplastics pollution, and formulating relevant policies and regulations of preventing these pollution.
plastic film mulching; agricultural benefit; plastic residues and microplastics pollution; environmental effect; pollution control
10.3864/j.issn.0578-1752.2022.20.010
2021-09-02;
2021-11-10
中英等六國(guó)GCRF項(xiàng)目“農(nóng)業(yè)微塑料對(duì)糧食安全與可持續(xù)發(fā)展影響”(NE/V005871/1)
張金瑞,E-mail:13244306496@163.com。通信作者劉學(xué)軍,E-mail:liu310@cau.edu.cn
(責(zé)任編輯 李云霞)