国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

荷斯坦牛頭胎患隱性乳房炎次數(shù)和乳中體細(xì)胞評(píng)分對(duì)2胎體細(xì)胞評(píng)分的影響

2022-12-14 06:28夏予馨梁艷王海洋郭夢(mèng)玲周部代旭楊章平毛永江
關(guān)鍵詞:荷斯坦牛場(chǎng)體細(xì)胞

夏予馨,梁艷,王海洋,郭夢(mèng)玲,周部,代旭,楊章平,毛永江

荷斯坦牛頭胎患隱性乳房炎次數(shù)和乳中體細(xì)胞評(píng)分對(duì)2胎體細(xì)胞評(píng)分的影響

夏予馨,梁艷,王海洋,郭夢(mèng)玲,周部,代旭,楊章平,毛永江

揚(yáng)州大學(xué)動(dòng)物科學(xué)與技術(shù)學(xué)院/教育部農(nóng)業(yè)與農(nóng)產(chǎn)品安全國(guó)際合作聯(lián)合實(shí)驗(yàn)室,江蘇揚(yáng)州 225009

【目的】奶牛不同胎次間生理狀態(tài)具有關(guān)聯(lián)性。研究旨在探究荷斯坦牛頭胎患隱性乳房炎(subclinical mastitis, SCM)次數(shù)和乳中體細(xì)胞評(píng)分(somatic cell score, SCS)對(duì)2胎SCS的影響,為提高牧場(chǎng)奶牛2胎泌乳性能和原料乳品質(zhì)提供科學(xué)依據(jù)?!痉椒ā渴占K13個(gè)牛場(chǎng)2015—2020年荷斯坦牛同時(shí)具有1—2胎的DHI測(cè)定日記錄共162 509條,先用Excel 2019對(duì)測(cè)定日記錄進(jìn)行前期處理和篩選,采用SAS(Ver 9.4)的混合模型探究牛場(chǎng)規(guī)模、采樣年度、產(chǎn)犢季節(jié)、泌乳月、頭胎患SCM次數(shù)和頭胎各泌乳階段SCS(泌乳期平均、泌乳前期、泌乳中期和泌乳后期)對(duì)2胎荷斯坦牛乳中SCS的影響,同時(shí)分析了頭胎?;糞CM次數(shù)和各泌乳階段SCS與2胎各泌乳月SCS的相關(guān)性。【結(jié)果】牛場(chǎng)規(guī)模、采樣年度、產(chǎn)犢季節(jié)、泌乳月、頭胎患SCM次數(shù)和頭胎不同泌乳階段平均SCS均對(duì)荷斯坦牛2胎乳中SCS均有極顯著影響(<0.01)。其中,規(guī)模在5 000頭以上的牛場(chǎng)SCS顯著低于其他規(guī)模的牛場(chǎng)(<0.05);2020年荷斯坦牛SCS顯著高于其他采樣年度(<0.05);春夏季產(chǎn)犢的奶牛SCS顯著高于其他產(chǎn)犢季節(jié)(<0.05),冬季產(chǎn)犢的奶牛SCS顯著低于其他產(chǎn)犢季節(jié)(<0.05);第9、10泌乳月乳中SCS顯著高于其他泌乳月(<0.05),第2泌乳月乳中SCS顯著低于其他泌乳月(<0.05)。頭胎患SCM為2次及以下的奶牛,2胎各泌乳月SCS呈現(xiàn)先下降后上升的趨勢(shì);頭胎患3次及以上SCM的奶牛,2胎各泌乳月SCS波動(dòng)較大。頭胎牛泌乳期平均SCS、泌乳前期、泌乳中期、泌乳后期各為0、1、2、3時(shí),2胎各泌乳月呈現(xiàn)先下降后上升的趨勢(shì);頭胎泌乳期平均SCS大于3時(shí),2胎各泌乳月SCS波動(dòng)較大。整體來(lái)說(shuō),隨頭胎牛患SCM次數(shù)及各泌乳期平均SCS的增加,2胎牛各泌乳月SCS也逐漸升高。頭胎患SCM次數(shù)及各泌乳階段SCS與2胎各泌乳月SCS均呈極顯著正相關(guān)(<0.01),頭胎泌乳期平均SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最大(0.238),頭胎泌乳前期SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最?。?.104)。其中,頭胎患SCM次數(shù)與2胎第3泌乳月SCS相關(guān)系數(shù)最大,與第10泌乳月SCS相關(guān)系數(shù)最小;頭胎泌乳期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最?。活^胎泌乳前期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1、10泌乳月SCS相關(guān)系數(shù)最??;頭胎泌乳中期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最??;頭胎泌乳后期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最小。【結(jié)論】頭胎患SCM次數(shù)和不同泌乳階段平均SCS對(duì)荷斯坦牛2胎乳SCS均有極顯著影響,頭胎患SCM次數(shù)及各泌乳階段SCS與2胎牛各泌乳月SCS均呈極顯著正相關(guān)。該結(jié)果為今后提高牛場(chǎng)2胎荷斯坦牛原料乳質(zhì)量提供了參考。

隱性乳房炎;體細(xì)胞評(píng)分;荷斯坦牛;胎次

0 引言

【研究意義】奶牛隱性乳房炎(subclinical mastitis,SCM)是指乳汁無(wú)明顯肉眼可見(jiàn)的異常變化,但在理化性質(zhì)和細(xì)菌學(xué)等方面發(fā)生改變,其致病因子主要有外界環(huán)境、飼養(yǎng)管理水平、微生物等[1-2]。奶牛一旦患上SCM,不僅影響其泌乳性能,還極有可能會(huì)轉(zhuǎn)化為臨床乳房炎(clinical mastitis, CM),增加奶牛場(chǎng)淘汰牛的數(shù)量,降低奶牛場(chǎng)經(jīng)濟(jì)效益[3]。奶牛SCM診斷的主要方法有病原檢測(cè)法、乳汁電導(dǎo)率測(cè)定法、乳中體細(xì)胞數(shù)(somatic cell count,SCC)測(cè)定法、微量元素檢測(cè)法等[4]。SCC測(cè)定法因?yàn)槟膛H后w改良計(jì)劃(dairy herd improvement, DHI)的推廣,具有測(cè)定自動(dòng)化程度高、便于量化等優(yōu)點(diǎn),受到國(guó)內(nèi)外廣泛采用。一般而言,我國(guó)通常將SCC大于50萬(wàn)/mL作為判定SCM的標(biāo)準(zhǔn)[5],但國(guó)外部分地區(qū)把SCC大于20萬(wàn)/mL作為判定SCM的標(biāo)準(zhǔn)[6]。根據(jù)近年我國(guó)SCC分布實(shí)際情況,本文仍選擇SCC大于50萬(wàn)/mL作為判斷SCM的依據(jù)。江蘇省位于長(zhǎng)江三角洲地區(qū),屬于東亞季風(fēng)氣候,氣象災(zāi)害種類(lèi)較多,如春季低溫陰雨,初夏暴雨洪澇,盛夏溫度較高,且持續(xù)時(shí)間較長(zhǎng)[7],造成環(huán)境濕度較大,病原微生物大量滋生,奶牛極易誘發(fā)SCM,嚴(yán)重影響該地區(qū)奶牛的產(chǎn)量和質(zhì)量。據(jù)美國(guó)農(nóng)業(yè)部統(tǒng)計(jì),SCM每年給美國(guó)奶業(yè)造成的損失高達(dá)10—20億美元[8]。與CM相比,SCM的隱蔽性強(qiáng)、危害大、發(fā)病率高、傳染性強(qiáng),因此奶牛場(chǎng)要加強(qiáng)對(duì)SCM的監(jiān)測(cè)。張哲等[9]研究表明,我國(guó)奶牛SCM發(fā)病率雖然呈現(xiàn)下降趨勢(shì),但與國(guó)外一些牧場(chǎng)的SCM發(fā)病率相比,SCM的發(fā)病率還是維持在一個(gè)高水平。體細(xì)胞計(jì)數(shù)(somatic cell count, SCC)是指每毫升原奶中的細(xì)胞總數(shù),而體細(xì)胞評(píng)分(somatic cell score, SCS)是由SCC轉(zhuǎn)化而來(lái)的,與SCM有較高的遺傳相關(guān)(0.6—0.8),且SCS的遺傳力高于SCM的遺傳力[10]。因此,SCS是DHI測(cè)定體系中的主要測(cè)定項(xiàng)目之一。通過(guò)對(duì)SCS的分析和運(yùn)用,能夠有效控制奶牛SCM的發(fā)病率,有利于提高奶牛群體乳房炎抗性[11],將大大推動(dòng)乳房炎抗性育種的進(jìn)程?!厩叭搜芯窟M(jìn)展】影響荷斯坦牛乳中SCS的因素很多,包括胎次、年度、測(cè)定季節(jié)、產(chǎn)犢季節(jié)和泌乳階段等[12]。不同采樣年度對(duì)荷斯坦牛SCS的影響極顯著[13]。有研究表明,隨胎次的增加,SCS呈上升趨勢(shì)[14-15]。王若勇等[16]選取陜西某牛場(chǎng)1 948頭荷斯坦牛,按胎次劃分為3組,頭胎牛的SCS最低,二胎牛SCS最高。毛永江等[17]研究表明,由于我國(guó)南方特殊的地理位置和氣候條件,導(dǎo)致奶牛SCM發(fā)病率偏高?!颈狙芯壳腥朦c(diǎn)】國(guó)內(nèi)外多數(shù)研究?jī)H限于奶牛乳中SCC或SCS變化因素的報(bào)道,對(duì)奶牛不同胎次間特別是1、2胎間SCS關(guān)聯(lián)性的文獻(xiàn)并不多見(jiàn)?!緮M解決的關(guān)鍵問(wèn)題】收集2015—2020年江蘇省13個(gè)牛場(chǎng)荷斯坦牛同時(shí)具有1—2胎測(cè)定日記錄的DHI數(shù)據(jù),采用混合模型分析頭胎?;糞CM次數(shù)和乳中不同泌乳階段SCS對(duì)2胎SCS的影響,以期為今后提高牧場(chǎng)荷斯坦牛2胎泌乳性能和原料乳品質(zhì)提供科學(xué)依據(jù)。

1 材料與方法

1.1 數(shù)據(jù)來(lái)源

供試數(shù)據(jù)包括:牛號(hào)、牛場(chǎng)規(guī)模、胎次、SCC、采樣年度、測(cè)定季節(jié)、產(chǎn)犢季節(jié)和泌乳天數(shù)等,來(lái)自2015—2020年江蘇13個(gè)牛場(chǎng)荷斯坦牛同時(shí)具有1—2胎測(cè)定日記錄共173 732條。根據(jù)文獻(xiàn)及統(tǒng)計(jì)學(xué)知識(shí),使用Excel對(duì)DHI數(shù)據(jù)進(jìn)行了篩選,篩選標(biāo)準(zhǔn)如下:泌乳天數(shù)5—305 d,乳脂率1%—8%,乳蛋白1%—7%,產(chǎn)奶量3—80 kg,泌乳天數(shù)≤305,同一奶牛相鄰2次DHI測(cè)定時(shí)間≥25 d,頭胎牛DHI測(cè)定次數(shù)在5次及以上[12,18]。最后符合條件的記錄數(shù)為162 509條。

1.2 數(shù)據(jù)統(tǒng)計(jì)與分析

供試數(shù)據(jù)錄入Excel后,利用常規(guī)函數(shù)計(jì)算出頭胎奶?;糞CM次數(shù)和頭胎各泌乳階段SCS(泌乳期平均、泌乳前期、泌乳中期和泌乳后期)。乳中SCC≥50萬(wàn)/mL即判定為該奶?;糞CM。一胎奶牛SCM發(fā)生次數(shù)根據(jù)DHI報(bào)告中相同牛號(hào)在泌乳期內(nèi)SCC≥50萬(wàn)個(gè)/mL的次數(shù)來(lái)判斷。

用SAS(Ver 9.4)混合模型分析牛場(chǎng)規(guī)模、采樣年度、產(chǎn)犢季節(jié)、泌乳月、頭胎患SCM次數(shù)和不同泌乳階段平均SCS(泌乳期平均、泌乳前期、泌乳中期和泌乳后期)對(duì)荷斯坦奶牛2胎SCS的影響,模型如下:

Y= μ + F+Y+C +M + SCN+(SCN×M)+ An+ e

式中,Y為荷斯坦牛2胎各泌乳月SCS的觀察值,μ為總體均值,F為牛場(chǎng)規(guī)模的固定效應(yīng),Y為采樣年度的固定效應(yīng),C為產(chǎn)犢季節(jié)的固定效應(yīng),M為泌乳月的固定效應(yīng),SCN為頭胎患SCM次數(shù)的固定效應(yīng)(m=0,1,2,≥3),或頭胎不同泌乳階段平均SCS的固定效應(yīng)(泌乳期平均、泌乳前期、泌乳中期和泌乳后期)(m=0,1,2,3,4,5,≥6),(SCN×M)為頭胎患SCM次數(shù)或不同泌乳階段平均SCS與2胎泌乳月的交互效應(yīng),An為奶牛個(gè)體的隨機(jī)效應(yīng),e為隨機(jī)殘差。牛場(chǎng)規(guī)模劃分為4個(gè)水平:<1 000為小型牛場(chǎng),1 000—2 000為中小型牛場(chǎng),2 001 —5 000為大中型牛場(chǎng),>5 000為大型牛場(chǎng)。產(chǎn)犢季節(jié)根據(jù)江蘇地區(qū)的氣候特點(diǎn)進(jìn)行劃分春季(3—5月)、夏季(6—8月)、秋季(9—11月)、冬季(12月到次年2月)。泌乳階段和泌乳月根據(jù)泌乳天數(shù)劃分如下:5—105 d為泌乳前期,106—205 d為泌乳中期,206—305 d為泌乳后期,每30 d為一個(gè)泌乳月,共分為10個(gè)泌乳月。

各因素不同水平間多重比較使用Duncan's法。顯著性水平定義如下:<0.01為極顯著,<0.05為顯著,>0.05不顯著。所有數(shù)據(jù)均采用平均值±標(biāo)準(zhǔn)誤的形式。

2 結(jié)果

2.1 不同因素對(duì)荷斯坦牛2胎SCS的影響

不同因素對(duì)荷斯坦牛2胎SCS的影響,結(jié)果見(jiàn)表1。方差分析表明,牛場(chǎng)規(guī)模、采樣年度、產(chǎn)犢季節(jié)、泌乳月、頭胎患SCM次數(shù)和頭胎不同泌乳階段平均SCS對(duì)荷斯坦牛SCS均有極顯著影響(<0.01)。牛場(chǎng)規(guī)模在5000頭以上的SCS為2.24,顯著低于其他牛場(chǎng)規(guī)模(<0.05);2020年荷斯坦牛的SCS為2.84,顯著高于其他采樣年度(<0.05),2011和2014年SCS分別為1.68和1.90,顯著低于其他年度(<0.05);夏、春季產(chǎn)犢的SCS顯著高于其他產(chǎn)犢季節(jié)(<0.05),冬季產(chǎn)犢的奶牛SCS顯著低于其他產(chǎn)犢季節(jié)(<0.05);第10泌乳月的SCS為2.86,顯著高于其他泌乳月(<0.05),第2泌乳月的SCS為1.94,顯著低于其他泌乳月(<0.05)。

2.2 荷斯坦牛頭胎患SCM次數(shù)及不同泌乳階段平均SCS對(duì)2胎各泌乳月SCS的影響

頭胎患SCM次數(shù)及不同泌乳階段平均SCS對(duì)2胎荷斯坦牛各泌乳月SCS的影響,結(jié)果見(jiàn)圖1—5。

圖1 頭胎患SCM次數(shù)對(duì)2胎各泌乳月SCS的影響

圖2 頭胎泌乳期平均SCS對(duì)2胎各泌乳月SCS的影響

表1 不同因素對(duì)荷斯坦牛2胎SCS的影響

續(xù)表1 Continued table 1

同因素同列數(shù)據(jù)肩標(biāo)不同小寫(xiě)字母表示差異顯著(<0.05)。下同

The different lowercase letters on the shoulder label of the same factors indicate that the difference is significant (<0.05). The same as below

由圖1所示,頭胎患3次以下SCM的奶牛,2胎各泌乳月SCS呈現(xiàn)先下降后上升的趨勢(shì),其中從第1泌乳月開(kāi)始下降至第2泌乳月,隨后呈上升趨勢(shì)。頭胎患3次及以上SCM的奶牛,2胎各泌乳月SCS波動(dòng)較大。整體來(lái)說(shuō),隨著頭胎?;糞CM次數(shù)的增加,2胎各泌乳月SCS逐漸升高。

由圖2—5所示,頭胎牛泌乳期平均、泌乳前期、泌乳中期、泌乳后期SCS各為0、1、2、3時(shí),2胎各泌乳月SCS呈現(xiàn)先下降后上升的趨勢(shì),其中從第1泌乳月開(kāi)始下降至第2泌乳月,隨后呈上升趨勢(shì)。頭胎泌乳期平均、泌乳前期、泌乳中期、泌乳后期SCS大于3時(shí),2胎各泌乳月SCS波動(dòng)較大。總的來(lái)說(shuō),頭胎泌乳期平均、前期、中期和后期SCS為3及以下時(shí),隨著SCS增加,2胎奶牛各泌乳月SCS逐漸升高。

2.3 荷斯坦牛頭胎患SCM次數(shù)及各泌乳階段SCS與荷斯坦牛2胎各泌乳月SCS的相關(guān)性

結(jié)果如圖6所示,頭胎患SCM次數(shù)與荷斯坦牛2胎各泌乳月SCS均呈極顯著正相關(guān)(<0.01)。其中,頭胎患SCM次數(shù)與2胎第3泌乳月SCS相關(guān)系數(shù)最大,與第10泌乳月SCS相關(guān)系數(shù)最?。活^胎泌乳期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最??;頭胎泌乳前期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1、10泌乳月SCS相關(guān)系數(shù)最??;頭胎泌乳中期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最?。活^胎泌乳后期平均SCS與2胎第5泌乳月SCS相關(guān)系數(shù)最大,與2胎第1泌乳月SCS相關(guān)系數(shù)最小。另外,如圖7所示,頭胎泌乳期平均SCS與頭胎泌乳中期SCS的相關(guān)系數(shù)最大,頭胎泌乳后期SCS與頭胎泌乳前期SCS的相關(guān)系數(shù)最小。

圖3 頭胎泌乳前期SCS對(duì)2胎各泌乳月SCS的影響

圖4 頭胎泌乳中期SCS對(duì)2胎各泌乳月SCS的影響

圖5 頭胎泌乳后期SCS對(duì)2胎各泌乳月SCS的影響

整體而言,頭胎泌乳期平均SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最大,頭胎泌乳后期SCS與2胎各泌乳月SCS的相關(guān)系數(shù)次之,頭胎泌乳前期SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最小。

*P≤0.05, ** P≤0.01

*P≤0.05, ** P≤0.01

3 討論

3.1 不同因素對(duì)荷斯坦牛2胎SCS的影響

本研究發(fā)現(xiàn),不同牛場(chǎng)規(guī)模奶牛2胎的SCS存在顯著差異,與張美榮等[19]研究結(jié)果一致。牛場(chǎng)規(guī)模在5 000頭以上2胎的SCS最低,其原因可能是由于大型牛場(chǎng)機(jī)械化程度高,飼養(yǎng)管理完善,資源配置合理,具有科學(xué)嚴(yán)格的選育措施[5,20],能夠及時(shí)通過(guò)頭胎患SCM次數(shù)和不同泌乳階段平均SCS對(duì)2胎的SCS進(jìn)行檢測(cè),因此大型牛場(chǎng)2胎的SCS低于中小型牛場(chǎng)。荷斯坦牛2020年2胎的SCS數(shù)值顯著高于其他采樣年度,其原因可能是由于2020年江蘇地區(qū)夏季溫度達(dá)到歷史最高,且環(huán)境濕度過(guò)高[7]。過(guò)高的溫度和濕度造成奶牛更為嚴(yán)重的熱應(yīng)激反應(yīng)[21],抑制奶牛免疫功能,血液中白細(xì)胞數(shù)不斷上升,無(wú)論是1胎還是2胎奶牛乳中體細(xì)胞數(shù)均會(huì)增加[22-23],因此2020年荷斯坦牛2胎的SCS顯著高于其他采樣年度。建議奶牛場(chǎng)根據(jù)DHI報(bào)告中體細(xì)胞數(shù)進(jìn)行疾病檢查與治療,對(duì)患病嚴(yán)重的牛只及時(shí)淘汰。由于SCM致病菌多,部分細(xì)菌傳染性強(qiáng),應(yīng)加強(qiáng)傳染性乳房炎牛只的淘汰和好牛舍的消毒[24]。夏季產(chǎn)犢的奶牛2胎SCS顯著高于其他產(chǎn)犢季節(jié),其原因是奶牛在夏季熱應(yīng)激反應(yīng)較為嚴(yán)重[25],奶牛機(jī)體抵抗力較差,微生物極易入侵乳腺組織[26-27],造成2胎奶牛乳中SCS不斷上升。2胎奶牛第10泌乳月的SCS最高,其原因可能是奶牛處于泌乳后期,隨著泌乳階段的增加,奶牛乳房受損度增加,從而使病原微生物感染機(jī)率增加[28],進(jìn)而導(dǎo)致2胎奶牛在第10泌乳月的SCS升高。

3.2 荷斯坦牛頭胎患SCM次數(shù)及不同泌乳階段平均SCS對(duì)2胎牛各泌乳月SCS的影響

頭胎患3次以下SCM的奶牛及不同泌乳階段平均SCS為3及以下的奶牛,2胎各泌乳月SCS呈現(xiàn)先下降后上升的趨勢(shì),其中從第1泌乳月開(kāi)始下降至第2泌乳月,隨后呈上升趨勢(shì),到第10泌乳月達(dá)到最高。其原因可能為奶牛產(chǎn)犢早期時(shí)易發(fā)生炎癥,同時(shí)血清中由肝臟合成的結(jié)合珠蛋白(haptoglobin, HP)含量不斷升高[29-30],使病原微生物極易入侵奶牛乳腺組織,造成免疫機(jī)能受損,因此乳中SCS增加。除炎癥外,奶牛乳房水腫產(chǎn)生大量自由基,破壞乳腺上皮細(xì)胞,也導(dǎo)致乳中SCS上升[31];此外,子宮內(nèi)膜炎也會(huì)導(dǎo)致乳中SCS上升。到泌乳后期,特別是第10泌乳月SCS達(dá)到最高,可能是由于奶牛在泌乳后期產(chǎn)奶量下降,乳中脂肪、膽固醇、蛋白質(zhì)等干物質(zhì)濃度上升,產(chǎn)生濃縮效應(yīng),導(dǎo)致第10泌乳月SCS達(dá)到最高。

頭胎患3次及以上SCM及不同泌乳階段平均SCS為3以上的奶牛,2胎各泌乳月SCS波動(dòng)較大。可能是由于頭胎患SCM次數(shù)及不同時(shí)間段平均SCS的增多,導(dǎo)致乳房細(xì)胞的防御機(jī)能下降[32],炎癥區(qū)域中炎性因子過(guò)度釋放導(dǎo)致毛細(xì)血管內(nèi)皮的損害和通透性增加,乳腺組織中白細(xì)胞、巨噬細(xì)胞和中粒細(xì)胞的數(shù)量增多[33],從而導(dǎo)致2胎各泌乳月SCS波動(dòng)較大。另外,也有可能由于頭胎患SCM或乳中SCS較高,在2胎時(shí)淘汰的概率增加,造成2胎時(shí)各泌乳月SCS的樣本數(shù)相對(duì)減少,且牛只間生理狀態(tài)差異較大,從而造成2胎各泌乳月SCS波動(dòng)較大。

3.3 荷斯坦牛頭胎患SCM次數(shù)及各泌乳階段SCS與荷斯坦牛2胎各泌乳月SCS的相關(guān)性

本研究發(fā)現(xiàn)頭胎牛泌乳前期平均SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最小,主要原因是頭胎牛泌乳前期和2胎牛各泌乳月間隔時(shí)間最長(zhǎng),樣本量比頭胎泌乳期平均SCS要小得多。此外,頭胎牛在泌乳前期易產(chǎn)生能量負(fù)平衡(negative energy balance, NEB)[34]和氧化應(yīng)激反應(yīng)[35],體內(nèi)抗氧化酶如總超氧化物歧化酶(total super oxide dismutase, T-SOD)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase, GSH-Px)和硫氧還蛋白氧化還原酶(thioredoxin reductase, TrxR)活性降低[36]。隨著奶牛泌乳期的不斷增加,生理狀態(tài)變化較大,因此頭胎泌乳前SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最小。

本研究中,頭胎泌乳期平均SCS與2胎各泌乳月SCS的相關(guān)系數(shù)最大。有研究表明,奶牛泌乳期患SCM會(huì)導(dǎo)致下一泌乳月SCS的增加[37]。其主要原因是頭胎泌乳期平均SCS包括了頭胎各泌乳月所有SCS信息,相對(duì)于僅用泌乳前期平均、泌乳中期平均或泌乳后期平均SCS數(shù)據(jù)而言,更能客觀反映頭胎牛的健康狀態(tài),同時(shí)樣本量也比其中一個(gè)階段的要大得多。此外,對(duì)于頭胎泌乳期平均SCS較高的奶牛,由于炎區(qū)釋放較多的炎性因子導(dǎo)致微血管內(nèi)皮損傷、舒縮功能紊亂和通透性增加,可能會(huì)對(duì)2胎各泌乳月乳中SCS產(chǎn)生影響[38]。因此,可根據(jù)頭胎泌乳期平均SCS預(yù)測(cè)荷斯坦牛2胎各泌乳月SCS,對(duì)該牧場(chǎng)提高2胎荷斯坦牛原料乳質(zhì)量有重大意義。

此外,經(jīng)分析發(fā)現(xiàn),頭胎泌乳后期平均SCS與頭胎泌乳前期平均SCS的相關(guān)系數(shù)最小,其主要原因可能是泌乳前期和泌乳后期生理差異最大。有研究表明:奶牛泌乳前期與泌乳后期對(duì)飼糧中硒的需求量相差較大[39-40],泌乳后期飼糧中嚴(yán)重缺乏硒,而硒主要通過(guò)依賴(lài)GSH-Px、TrxR等硒酶發(fā)揮抗氧化作用,保護(hù)細(xì)胞膜免受自由基的攻擊,清除細(xì)胞內(nèi)過(guò)氧化物,進(jìn)而提高機(jī)體抗氧化能力。因此硒的缺乏可能造成奶牛泌乳后期乳中SCS較高[41-42],造成頭胎牛泌乳后期SCS與泌乳前期SCS的相關(guān)系數(shù)最小。

4 結(jié)論

牛場(chǎng)、采樣年度、產(chǎn)犢季節(jié)、泌乳月、頭胎患隱性乳房炎(SCM)次數(shù)和頭胎不同泌乳階段平均乳中體細(xì)胞數(shù)(SCS)對(duì)荷斯坦牛2胎乳中SCS均有極顯著影響。隨著頭胎患SCM次數(shù)和不同泌乳階段平均SCS的增加,2胎牛各泌乳月SCS逐漸增加。荷斯坦牛頭胎患SCM次數(shù)與2胎各泌乳月SCS均呈極顯著正相關(guān)。該結(jié)果對(duì)指導(dǎo)該地區(qū)奶牛場(chǎng)通過(guò)頭胎患SCM次數(shù)和乳中SCS預(yù)測(cè)2胎各泌乳月乳中SCS,并及時(shí)采取相關(guān)措施對(duì)SCM進(jìn)行防控和治療,提高牧場(chǎng)2胎奶牛泌乳性能和原料乳質(zhì)量等方面提供了科學(xué)依據(jù)。

[1] 武果桃, 任杰, 牛國(guó)慶. 中藥乳炎康防治奶牛隱性乳房炎的效果及安全性試驗(yàn). 中國(guó)獸醫(yī)雜志, 2021, 57(2): 53-57.

WU G T, REN J, NIU G Q. Prevention and treatment of recessive mastitis of dairy cow with ruyankang and safety test. Chinese Journal of Veterinary Medicine, 2021, 57(2): 53-57. (in Chinese)

[2] ROMAIN H T, ADESIYUN A A, WEBB L A, LAUCKNER F B. Study on risk factors and their association with subclinical mastitis in lactating dairy cows in Trinidad. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health, 2000, 47(4): 257-271. doi:10.1046/j.1439-0450.2000.00349.x.

[3] 劉康軍, 曹菲菲, 孫瑩慧, 李建基, 孟霞, 崔璐瑩, 王亨. 奶牛乳房炎金黃色葡萄球菌的分離鑒定及毒力基因檢測(cè). 中國(guó)獸醫(yī)學(xué)報(bào), 2019, 39(2): 323-327. doi:10.16303/j.cnki.1005-4545.2019.02.24.

LIU K J, CAO F F, SUN Y H, LI J J, MENG X, CUI L Y, WANG H. Identification and investigation on virulence determinants ofisolated from bovine mastitis. Chinese Journal of Veterinary Science, 2019, 39(2): 323-327. doi:10.16303/j.cnki. 1005-4545.2019.02.24. (in Chinese)

[4] 郝景鋒, 李靜姬, 張宇航, 尹柏雙, 付連軍, 曾榮榮, 李東賀, 要斌, 黃巖, 李心慰, 李小兵, 趙晨旭, 劉國(guó)文. 奶牛隱性乳房炎診斷技術(shù)研究新進(jìn)展. 黑龍江畜牧獸醫(yī), 2018(3): 63-65, 69. doi:10.13881/ j.cnki.hljxmsy.20171206.004.

HAO J F, LI J J, ZHANG Y H, YIN B S, FU L J, ZENG R R, LI D H, YAO B, HUANG Y, LI X W, LI X B, ZHAO C X, LIU G W. New progress of research on diagnosis technology in cow recessive mastitis. Heilongjiang Animal Science and Veterinary Medicine, 2018(3): 63-65, 69. doi:10.13881/j.cnki.hljxmsy.20171206.004. (in Chinese)

[5] 梁艷, 張強(qiáng), 高啟松, 王海洋, 郭夢(mèng)玲, 李明勛, 張慧敏, 楊章平, 陳志, 毛永江. 影響江蘇地區(qū)荷斯坦牛體細(xì)胞數(shù)變化模式的非遺傳因素分析. 畜牧獸醫(yī)學(xué)報(bào), 2020, 51(12): 3023-3032. doi:10.11843/ j.issn.0366-6964.2020.12.012.

LIANG Y, ZHANG Q, GAO Q S, WANG H Y, GUO M L, LI M X, ZHANG H M, YANG Z P, CHEN Z, MAO Y J. Analysis of non- genetic factors affecting SCC change pattern of Holstein cows in Jiangsu Province. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 3023-3032. doi:10.11843/j.issn.0366-6964.2020.12.012. (in Chinese)

[6] KOESS C, HAMANN J. Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. The Journal of Dairy Research, 2008, 75(2): 225-232. doi:10.1017/S0022029908003245.

[7] 蔣潔, 田思路, 劉曉源. 氣候變化與江蘇畜牧業(yè)發(fā)展的交互關(guān)系. 改革與開(kāi)放, 2014(19): 62-63. doi:10.16653/j.cnki.32-1034/f.2014.19. 001.

JIANG J, TIAN S L, LIU X Y. Interaction between climate change and animal husbandry development in Jiangsu province. Reform & Openning, 2014(19): 62-63. doi:10.16653/j.cnki.32-1034/f.2014.19. 001. (in Chinese)

[8] CHEN H, WEERSINK A, KELTON D, VON MASSOW M. Estimating milk loss based on somatic cell count at the cow and herd level. Journal of Dairy Science, 2021, 104(7): 7919-7931. doi:10. 3168/jds.2020-18517.

[9] 張哲, 李新圃, 楊峰, 羅金印, 劉龍海, 李宏勝. 奶牛隱性乳房炎綜合防制措施的研究與應(yīng)用. 中國(guó)獸醫(yī)學(xué)報(bào), 2018, 38(3): 598-601, 608. doi:10.16303/j.cnki.1005-4545.2018.03.29.

ZHANG Z, LI X P, YANG F, LUO J Y, LIU L H, LI H S. Research and application of comprehensive control measures against sub-clinical mastitis of dairy cows. Chinese Journal of Veterinary Science, 2018, 38(3): 598-601, 608. doi:10.16303/j.cnki.1005-4545. 2018.03.29. (in Chinese)

[10] 韓麗云, 金亞?wèn)|, 趙國(guó)麗, 李鵬, 史遠(yuǎn)剛. 體細(xì)胞數(shù)對(duì)牛奶品質(zhì)及產(chǎn)量的影響. 畜牧與獸醫(yī), 2017, 49(4): 6-11.

HAN L Y, JIN Y D, ZHAO G L, LI P, SHI Y G. Effects of somatic cell count on milk quality and milk yield in dairy cows. Animal Husbandry & Veterinary Medicine, 2017, 49(4): 6-11. (in Chinese)

[11] Daniel Z. Selection for clinical mastitis and somatic cell count. Dairy Updates, 2004, 6(13):1-6.

[12] 母童, 虎紅紅, 馮小芳, 顧亞玲, 田佳, 溫萬(wàn), 張娟, 王影. 寧夏地區(qū)荷斯坦牛乳成分及相關(guān)指標(biāo)的非遺傳因素、體細(xì)胞評(píng)分變化規(guī)律. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2021, 42(2): 34-43. doi:10.7671/j.issn.1001- 411X.202005023.

MU T, HU H H, FENG X F, GU Y L, TIAN J, WEN W, ZHANG J, WANG Y. Variation characteristics of non-genetic factors and somatic cell score for raw milk composition and related traits of Holstein in Ningxia region. Journal of South China Agricultural University, 2021, 42(2): 34-43. doi:10.7671/j.issn.1001-411X.202005023. (in Chinese)

[13] MILUN PETROVI? D, BOGDANOVI? V, MILAN PETROVI? M, BOGOSAVLJEVI?-BO?KOVI? S, ?OKOVI? R, ?EDOVI? R, RAKONJAC S. Effect of non-genetic factors on standard lactation milk performance traits in Simmental cows. Annals of Animal Science, 2015, 15(1): 211-220. doi:10.2478/aoas-2014-0073.

[14] 孔令旋, 雷放, 鄧銘, 魏建生, 肖帆, 陳海坡, 周陽(yáng), 劉德武, 李耀坤. 胎次和熱應(yīng)激程度對(duì)廣州地區(qū)奶牛產(chǎn)奶量和乳成分的影響. 畜牧與獸醫(yī), 2019, 51(1): 1-4.

KONG L X, LEI F, DENG M, WEI J S, XIAO F, CHEN H P, ZHOU Y, LIU D W, LI Y K. Effects of parity and heat stress on milk production and milk composition in dairy cows. Animal Husbandry & Veterinary Medicine, 2019, 51(1): 1-4. (in Chinese)

[15] 肖西山, 付靜濤, 雷莉輝, 龍燕, 張志峰. 奶牛胎次與日產(chǎn)奶量和體細(xì)胞數(shù)量的關(guān)系分析. 當(dāng)代畜牧, 2014(6): 42-43.

XIAO X S, FU J T, LEI L H, LONG Y, ZHANG Z F. Analysis of the relationship between milk cow parity and daily yield and somatic cells. Contemporary Animal Husbandry, 2014(6): 42-43. (in Chinese)

[16] 王若勇, 沙小飛, 毛宏偉, 辛亞平. 泌乳天數(shù)、胎次、乳成分與牛奶體細(xì)胞數(shù)關(guān)系分析. 中國(guó)牛業(yè)科學(xué), 2018, 44(6): 27-30.

WANG R Y, SHA X F, MAO H W, XIN Y P. Relationships between the number of lactation days, parity, milk composition and milk body cells. China Cattle Science, 2018, 44(6): 27-30. (in Chinese)

[17] 毛永江, 楊章平. 南方地區(qū)中國(guó)荷斯坦牛乳中體細(xì)胞數(shù)變化規(guī)律的研究. 中國(guó)牛業(yè)科學(xué), 2007, 33(5): 1-3. doi:10.3969/j.issn.1001- 9111.2007.05.001.

MAO Y J, YANG Z P. Study on variability of somatic cell counts in the milk of Chinese Holstein cattle in South China. China Cattle Science, 2007, 33(5): 1-3. doi:10.3969/j.issn.1001-9111.2007.05.001. (in Chinese)

[18] 楊文靜, 王曄, 閆青霞, 麻柱, 劉劍鋒, 張勝利. 應(yīng)用隨機(jī)回歸模型對(duì)北京地區(qū)荷斯坦牛產(chǎn)奶性狀的遺傳分析. 中國(guó)畜牧雜志, 2021, 57(6): 141-145. doi:10.19556/j.0258-7033.20200706-07.

YANG W J, WANG Y, YAN Q X, MA Z, LIU J F, ZHANG S L. Genetic analysis of milk producing traits of Holstein cattle in Beijing area by random regression model. Chinese Journal of Animal Science, 2021, 57(6): 141-145. doi:10.19556/j.0258-7033.20200706-07. (in Chinese)

[19] 張美榮, 廖想想, 陳丹, 許兆君, 毛永江, 劉坤, 陳亮, 王杏龍, 楊章平, 楊利國(guó). 產(chǎn)犢季節(jié)、胎次及牛場(chǎng)對(duì)荷斯坦牛泌乳性能的影響. 中國(guó)牛業(yè)科學(xué), 2012, 38(4): 6-9. doi:10.3969/j.issn.1001-9111.2012. 04.002.

ZHANG M R, LIAO X X, CHEN D, XU Z J, MAO Y J, LIU K, CHEN L, WANG X L, YANG Z P, YANG L G. The influence of different calving seasons, parity and cattle farm on reproductive performances of Holstein cow. China Cattle Science, 2012, 38(4): 6-9. doi:10.3969/j.issn.1001-9111.2012.04.002. (in Chinese)

[20] HADRICH J C, WOLF C A, LOMBARD J, DOLAK T M. Estimating milk yield and value losses from increased somatic cell count on US dairy farms. Journal of Dairy Science, 2018, 101(4): 3588-3596. doi:10.3168/jds.2017-13840.

[21] Je? G, Ostojic M, Reli? R. Effect of season and farm size on quality and yield of collected milk. Proceeding of Research Papers, 2011,17:3-4.

[22] MARINS T N, GAO J, YANG Q, BINDA R M, PESSOA C M B, ORELLANA RIVAS R M, GARRICK M, MELO V H L R, CHEN Y C, BERNARD J K, GARCIA M, CHAPMAN J D, KIRK D J, TAO S. Impact of heat stress and a feed supplement on hormonal and inflammatory responses of dairy cows. Journal of Dairy Science, 2021, 104(7): 8276-8289. doi:10.3168/jds.2021-20162.

[23] RAVAGNOLO O, MISZTAL I, HOOGENBOOM G. Genetic component of heat stress in dairy cattle, development of heat index function. Journal of Dairy Science, 2000, 83(9): 2120-2125. doi:10. 3168/jds.S0022-0302(00)75094-6.

[24] 李曉鋒, 索效軍, 熊琪, 熊海謙, 毛丹, 楊前平, 陶虎, 陳明新. 黃岡地區(qū)某奶牛場(chǎng)乳體細(xì)胞數(shù)變化規(guī)律研究. 中國(guó)奶牛, 2016(8): 22-24. doi:10.19305/j.cnki.11-3009/s.2016.08.006.

LI X F, SUO X J, XIONG Q, XIONG H Q, MAO D, YANG Q P, TAO H, CHEN M X. Study on the variation of milk SCS in a dairy farm in Huanggang district. China Dairy Cattle, 2016(8): 22-24. doi:10.19305/ j.cnki.11-3009/s.2016.08.006. (in Chinese)

[25] 韓佳良, 劉建新, 劉紅云. 熱應(yīng)激對(duì)奶牛泌乳性能的影響及其機(jī)制. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(16): 3162-3170. doi:10.3864/j.issn.0578- 1752.2018.16.012.

HAN J L, LIU J X, LIU H Y. Effect of heat stress on lactation performance in dairy cows. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170. doi:10.3864/j.issn.0578-1752.2018.16.012. (in Chinese)

[26] 郭夢(mèng)玲, 王海洋, 梁艷, 李明勛, 楊章平, 毛永江. 荷斯坦牛日產(chǎn)奶量和體細(xì)胞評(píng)分變化原因分析. 家畜生態(tài)學(xué)報(bào), 2020, 41(11): 42-47. doi:10.3969/j.issn.1673-1182.2020.11.008.

GUO M L, WANG H Y, LIANG Y, LI M X, YANG Z P, MAO Y J. Factors affecting the milk yield and somatic cell score of Holstein cows. Acta Ecologae Animalis Domastici, 2020, 41(11): 42-47. doi:10.3969/j.issn.1673-1182.2020.11.008. (in Chinese)

[27] OLDE RIEKERINK R G M, BARKEMA H W, STRYHN H. The effect of season on somatic cell count and the incidence of clinical mastitis. Journal of Dairy Science, 2007, 90(4): 1704-1715. doi:10. 3168/jds.2006-567.

[28] 高樹(shù)新, 王國(guó)富, 邵志文, 劉明玉, 馬云, 吳慧光, 趙靜雯. 泌乳月份及部分乳成分與牛乳中體細(xì)胞數(shù)關(guān)系的相關(guān)性研究. 中國(guó)乳品工業(yè), 2007, 35(12): 7-9. doi:10.3969/j.issn.1001-2230.2007.12.002.

GAO S X, WANG G F, SHAO Z W, LIU M Y, MA Y, WU H G, ZHAO J W. Study on the correlation between lactation month, the portion of milk components and bovine milk somatic cell count. China Dairy Industry, 2007, 35(12): 7-9. doi:10.3969/j.issn.1001-2230.2007. 12.002. (in Chinese)

[29] DINGWELL R T, KELTON D F, LESLIE K E. Management of the dry cow in control of peripartum disease and mastitis. The Veterinary Clinics of North America Food Animal Practice, 2003, 19(1): 235-265. doi:10.1016/s0749-0720(02)00072-5.

[30] SAREMI B, AL-DAWOOD A, WINAND S, MüLLER U, PAPPRITZ J, VON SOOSTEN D, REHAGE J, D?NICKE S, H?USSLER S, MIELENZ M, SAUERWEIN H. Bovine haptoglobin as an adipokine: serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation. Veterinary Immunology and Immunopathology, 2012, 146(3/4): 201-211. doi:10. 1016/j.vetimm.2012.03.011.

[31] SIES H. Oxidative stress: a concept in redox biology and medicine. Redox Biology, 2015, 4: 180-183. doi:10.1016/j.redox.2015.01.002.

[32] 趙楠. 奶牛隱性乳房炎的病因、臨床特征、診斷方法與防治. 現(xiàn)代畜牧科技, 2021(2): 115-116. doi:10.19369/j.cnki.2095-9737.2021. 02.061.

ZHAO N. Cause, clinical features, diagnostic methods and prevention of dairy cow subclinical mastitis. Modern Animal Husbandry Science & Technology, 2021(2): 115-116. doi:10.19369/j.cnki.2095-9737.2021. 02.061. (in Chinese)

[33] 范開(kāi), 孫艷爭(zhēng), 趙德明. 奶牛臨床型乳房炎與炎區(qū)微循環(huán)障礙關(guān)系探討. 中國(guó)獸醫(yī)雜志, 2005, 41(11): 60-61. doi:10.3969/j.issn.0529- 6005.2005.11.041.

FAN K, SUN Y Z, ZHAO D M. Discussion on the relationship between microcirculation dysfunction of cow clinical mastitis and inflammatory zone. Chinese Journal of Veterinary Medicine, 2005, 41(11): 60-61. doi:10.3969/j.issn.0529-6005.2005.11.041. (in Chinese)

[34] 張帆, 咼于明, 熊本海. 圍產(chǎn)期奶牛能量負(fù)平衡營(yíng)養(yǎng)調(diào)控研究進(jìn)展. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2020, 32(7): 2966-2974. doi:10.3969/j.issn.1006- 267x.2020.07.004.

ZHANG F, GUO Y M, XIONG B H. Research progress on nutritional regulation of negative energy balance in dairy cows during transition period. Chinese Journal of Animal Nutrition, 2020, 32(7): 2966-2974. doi:10.3969/j.issn.1006-267x.2020.07.004. (in Chinese)

[35] SPEARS J W, WEISS W P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 2008, 176(1): 70-76. doi:10.1016/j.tvjl.2007.12.015.

[36] CASTILLO C, HERNANDEZ J, BRAVO A, LOPEZ-ALONSO M, PEREIRA V, BENEDITO J L. Oxidative status during late pregnancy and early lactation in dairy cows. The Veterinary Journal, 2005, 169(2): 286-292. doi:10.1016/j.tvjl.2004.02.001.

[37] 孫光野, 張翠羽, 楊威, 夏成, 張洪友, 徐闖. 圍產(chǎn)期奶牛氧化應(yīng)激初步預(yù)警體系的建立. 中國(guó)獸醫(yī)學(xué)報(bào), 2019, 39(3): 529-534, 540. doi:10.16303/j.cnki.1005-4545.2019.03.26.

SUN G Y, ZHANG C Y, YANG W, XIA C, ZHANG H Y, XU C. Establishment of early warning system for oxidative stress in perinatal mums. Chinese Journal of Veterinary Science, 2019, 39(3): 529-534, 540. doi:10.16303/j.cnki.1005-4545.2019.03.26. (in Chinese)

[38] 梁艷, 王海洋, 郭夢(mèng)玲, 張強(qiáng), 高啟松, 李明勛, 張慧敏, 楊章平, 毛永江. 荷斯坦牛產(chǎn)后前60 d患隱性乳房炎次數(shù)對(duì)各泌乳月SCS的影響. 畜牧獸醫(yī)學(xué)報(bào), 2021, 52(2): 352-363. doi:10.11843/j. issn.0366-6964.2021.02.008.

LIANG Y, WANG H Y, GUO M L, ZHANG Q, GAO Q S, LI M X, ZHANG H M, YANG Z P, MAO Y J. Effects of the number of subclinical mastitis infection during first 60 days after calving on SCS of lactation months of Holstein cows. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 352-363. doi:10.11843/j.issn.0366-6964.2021. 02.008. (in Chinese)

[39] 孫玲玲, 王坤, 高勝濤, 劉士杰, 卜登攀. 短期試驗(yàn)條件下不同硒源對(duì)泌乳奶牛血漿和乳中硒含量及血清抗氧化能力的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2018, 30(2): 589-596. doi:10.3969/j.issn.1006-267x.2018. 02.023.

SUN L L, WANG K, GAO S T, LIU S J, BU D P. Effects of different selenium sources on selenium content in plasma and milk, and serum antioxidant capacity of lactating dairy cows under short-term trial conditions. Chinese Journal of Animal Nutrition, 2018, 30(2): 589-596. doi:10.3969/j.issn.1006-267x.2018.02.023. (in Chinese)

[40] SALMAN S, KHOL-PARISINI A, SCHAFFT H, LAHRSSEN- WIEDERHOLT M, HULAN H W, DINSE D, ZENTEK J. The role of dietary selenium in bovine mammary gland health and immune function. Animal Health Research Reviews, 2009, 10(1): 21-34. doi:10.1017/S1466252308001588.

[41] CHUNG S, ZHOU R H, WEBSTER T J. Green synthesized BSA- coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth. International Journal of Nanomedicine, 2020, 15: 115-124. doi:10.2147/IJN.S193886.

[42] 李萬(wàn)棟, 張曉衛(wèi), 馮宇哲, 崔占鴻. 微量元素硒在反芻動(dòng)物中的應(yīng)用研究進(jìn)展. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2020, 32(4): 1499-1507.

LI W D, ZHANG X W, FENG Y Z, CUI Z H. Research advances on application of trace element selenium in ruminants. Chinese Journal of Animal Nutrition, 2020, 32(4): 1499-1507. (in Chinese)

Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2

XIA YuXin, LIANG Yan, WANG HaiYang, GUO MengLing, ZHOU Bu, DAI Xu, YANG ZhangPing, MAO YongJiang

College of Animal Science and Technology/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou 225009, Jiangsu

【Objective】There was correlation between physiological status of different parities of cows. The objective of this research was to explore the effect of the number of subclinical mastitis (SCM) and somatic cell score (SCS) in milk of parity 1 on SCS of Holstein cows for parity 2. 【Method】This study collected 162 509 DHI records of Holstein cows with parity 1 and 2 from 2015 to 2020 in 13 farms in Jiangsu Province. Excel 2019 was used to pre-process and filter DHI records firstly. The mixed model of SAS (Ver 9.4) was used to explore the effects of farm size, sampling year, calving season, lactation month, the number of SCM on parity 1 and each average lactation stage of SCS on parity 1 on SCS of parity 2. At the same, the correlation coefficients between the number of SCM and the SCS for each lactation stage of parity 1 with SCS in each lactation month for parity 2 of Holstein cows were calculated.【Result】The farm size, sampling year, calving season, lactation month, the number of SCM on parity 1 and average SCS on parity 1 in different periods had extremely significant effects on the SCS of parity 2 (<0.01). Among them, SCS with farm size over 5 000 was lower than other farm size (<0.05). SCS in 2020 was higher than other sampling year (<0.05). SCS of cows calving in summer and spring was higher than other calving season (<0.05), while SCS of cows calving in winter was lower than other calving season (<0.05). SCS in the 9th and 10th lactation month was higher than other lactation months (<0.05), while SCS in the second lactation month was lower than other lactation months (<0.05). The SCS in each lactation month of parity 2 showed downward firstly and then upward trend for the cows with the number of SCM less than 2 for parity 1. The SCS for parity 2 in each lactation month fluctuated greatly for the cow with the number of SCM with 3 or more than in parity 1. When the average lactation of SCS, early lactation of SCS, mid lactation of SCS, and late lactation of SCS for the cows in parity 1 were 0, 1, 2, and 3, respectively, the SCS for each lactation month in parity 2 showed downward firstly and then upward trend. When the average lactation of SCS for the cow in parity 1 was more than 3, the SCS in parity 2 in each lactation fluctuated greatly. Overall, the number of SCM and the SCS for each lactation stage of cows in parity 1 increased, and the SCS in each lactation month for parity 2 gradually also increased. There was an extremely significant positive correlation between the number of SCM on parity 1 and SCS on parity 2 in each lactation month (<0.01). The correlation coefficient of average SCS in the lactation for parity 1 with the SCS in parity 2 lactation month was the maximum (0.238). The correlation coefficient of average SCS in the early lactation for parity 1 and the SCS in parity 2 in each lactation month was the minimum (0.104). Among them, the correlation coefficient of the number of SCM for parity 1 with the SCS for parity 2 in the 3rd lactation month was the maximum. The correlation coefficient of the number of SCM for parity 1 with the SCS for parity 2 in the 10th lactation month was the minimum. The correlation coefficient of average SCS in the lactation for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum. The correlation coefficient of average SCS in the lactation for parity 1 with the SCS for parity 2 in the 5th lactation month was the minimum. The correlation coefficient of early lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, however, the SCS for parity 2 in the 1st and 10th lactation month was the minimum. The correlation coefficient of mid-lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, while the SCS for parity 2 in the 1st lactation month was the minimum. The correlation coefficient of late lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, while the SCS for parity 2 in the 1st lactation month was the minimum. 【Conclusion】The number of SCM and each average lactation stage of SCS for parity 1 had extremely significant effects on SCS in lactation for the cows of parity 2. There was an extremely significant positive correlation between the numbers of SCM for parity 1 with the SCS for parity 2 in each lactation month. The results provided references for improving quality of raw milk of Holstein cows in parity 2 in the future.

subclinical mastitis (SCM); somatic cell score (SCS); Holstein cows; parity

10.3864/j.issn.0578-1752.2022.20.015

2021-08-16;

2022-02-19

國(guó)家自然科學(xué)基金(31972555)、江蘇省高等學(xué)校自然科學(xué)研究項(xiàng)目(18KJA230003)、江蘇省“六大人才高峰”項(xiàng)目(NY-093)、江蘇現(xiàn)代農(nóng)業(yè)(奶牛)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(JATS[2018]300)

夏予馨,E-mail:2205395829@qq.com。通信作者毛永江,E-mail:cattle@yzu.edu.cn

(責(zé)任編輯 林鑒非)

猜你喜歡
荷斯坦牛場(chǎng)體細(xì)胞
洛絨牛場(chǎng)
洛絨牛場(chǎng)
星星·詩(shī)歌原創(chuàng)(2021年10期)2021-11-04
肉牛舍自走式牛場(chǎng)清糞車(chē)的研究
DHI報(bào)告部分名詞釋義
浙江:誕生首批體細(xì)胞克隆豬
荷斯坦奶牛雜交育種新進(jìn)展
荷斯坦奶牛雜交育種新進(jìn)展(2020.9.9農(nóng)科智庫(kù))
發(fā)酵床牛舍與散放式牛舍對(duì)荷斯坦牛泌乳性能的影響
江蘇省中型牧場(chǎng)荷斯坦牛產(chǎn)犢間隔的影響因素分析