張 瑜,尹月鵬,唐金勇,曹 熙,劉晶京,張 雯,3*
天然紅土與苦草聯(lián)合控制沉積物中磷釋放
張 瑜1,2,尹月鵬1,2,唐金勇1,2,曹 熙1,2,劉晶京1,2,張 雯1,2,3*
(1.成都理工大學(xué)生態(tài)環(huán)境學(xué)院,四川 成都 610059;2.國家環(huán)境保護(hù)水土污染協(xié)同控制與聯(lián)合修復(fù)重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059;3.地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059)
運(yùn)用天然紅土和苦草(RS +VS)的原位聯(lián)合修復(fù)技術(shù),探究單一及聯(lián)合修復(fù)對污染底泥磷去除的影響.結(jié)果表明,RS與VS聯(lián)合對沉積物P的去除能力高于兩者單一修復(fù),在37d的批量實(shí)驗(yàn)中,覆蓋RS+VS組沉積物釋放到上覆水中的磷被抑制了91%,與無覆蓋RS+VS組的底泥釋放磷相比,上覆水中溶解態(tài)活性磷(SRP)從1.41mg/L降至0.12mg/L. RS+VS聯(lián)合修復(fù)對沉積物磷的固定作用顯著,將不穩(wěn)定的亞鐵磷(Fe(II)-P)和鐵鋁結(jié)合磷(CDB-P)轉(zhuǎn)變成惰性的鈣磷(Ca-P),沉積物中的Ca-P含量增加了51%,Fe(II)-P ,CDB-P分別降低了1%和24%,有效降低了底泥磷釋放到上覆水的風(fēng)險(xiǎn).綜上,RS+VS聯(lián)合可以應(yīng)用于處理富營養(yǎng)化水域的內(nèi)部磷負(fù)荷,實(shí)現(xiàn)兩者協(xié)同去除沉積物磷,同時(shí)RS和VS兩者價(jià)廉且廣泛分布可作為一種潛在高效益的磷酸鹽吸附劑應(yīng)用于實(shí)際工程中.
黑臭底泥;紅土;苦草;磷形態(tài);沉積物;影響因素
水體營養(yǎng)化是由于養(yǎng)分的過量輸入而引起的全球性問題[1-3].沉積物被認(rèn)為是養(yǎng)分的匯集地,在富營養(yǎng)化中起著至關(guān)重要的作用[4-6].磷在上覆水體和沉積物之間(即內(nèi)部磷負(fù)荷)進(jìn)行著持續(xù)循環(huán),當(dāng)外源磷輸入得到一定控制后,沉積物中的內(nèi)源磷釋放仍然將可能維持?jǐn)?shù)十年,延緩了受損水生態(tài)系統(tǒng)的恢復(fù)[7-10].因此通過抑制水體內(nèi)源負(fù)荷的釋放,降低水體中磷的濃度,對于防止水體富營養(yǎng)化的發(fā)生具有重要意義.
近年來,為控制富營養(yǎng)化開發(fā)了許多修復(fù)的技術(shù)和策略,這些包括減少外部污染源如:攔截點(diǎn)源污染、建設(shè)污水處理廠[11]、面源控制[12]、濕地處理技術(shù)[13]流域綜合管理.內(nèi)部負(fù)荷控制如:沉積物疏浚[14]、曝氣、原位覆蓋[15-17]、生物技術(shù)[18];生態(tài)修復(fù)如水生植物修復(fù)技術(shù)[19-21]生物操縱[22]等.由于底泥疏浚成本高[23],使用化學(xué)產(chǎn)品可能造成生態(tài)風(fēng)險(xiǎn)[24],原位覆蓋和生態(tài)修復(fù)是應(yīng)用最廣泛的兩個(gè)緩解策略.原位覆蓋的吸附劑使用天然材料包括沸石[17]、凹凸棒土[25]、方解石[26]、紅土[27-30]、膨潤土[31]等,其中紅土富含鋁和鐵的氧化物,而鐵在磷酸鹽吸附中有著關(guān)鍵作用.氧化鐵具有低晶體尺寸的顆粒,會形成強(qiáng)鍵位點(diǎn),用于磷酸鹽物質(zhì)的表面絡(luò)合[32],使得紅土的吸收能力高于其他天然礦物的吸收能力[29].且紅土是一種價(jià)廉分布廣泛的土壤[30],無生物毒性,能為沉水植物提供更好的生長環(huán)境.另一方面,沉水植物在減少沉積物再懸浮和控制內(nèi)源磷的釋放方面有著關(guān)鍵作用[20,33-34].苦草是一種一年或半年生的植物,具有大量根[35-36],它可以通過根部從沉積物中吸收大量養(yǎng)分[37],然后通過吸收養(yǎng)分、穩(wěn)定沉積物、庇護(hù)過濾藻類的浮游動(dòng)物以及與浮游植物競爭光和養(yǎng)分等方式來改善水質(zhì)[38-39].但沉水植物對沉積物磷的處理效果往往受到生長周期和周圍環(huán)境的限制,單一的修復(fù)技術(shù)不能有效和普遍的使用,迫切需要一種組合技術(shù)來處理沉積物磷.
基于此,為進(jìn)一步增強(qiáng)沉水植物對沉積物磷的修復(fù)效果,彌補(bǔ)應(yīng)用單一技術(shù)的不足,本研究開發(fā)了原位覆蓋與沉水植物相結(jié)合的技術(shù),采用天然紅土和苦草聯(lián)合修復(fù)作為一種生態(tài)環(huán)境材料,具有廣泛的推廣價(jià)值和應(yīng)用前景[28],且原位覆蓋和生物修復(fù)的聯(lián)合作用[33,40-41]可能是下一代緩解富營養(yǎng)化商業(yè)產(chǎn)品的重要方向.
表1 沉積物上覆水的理化性質(zhì)
實(shí)驗(yàn)所用紅土來自四川省龍泉驛區(qū)(30.55658°N,104.27462°E).先去除其中較大顆粒植物殘?jiān)?再將天然紅土自然風(fēng)干,粉碎機(jī)粉碎到顆粒直徑為3~5mm.沉水植物苦草采自湖北荊州,采集的苦草長勢好并且新鮮,將苦草沖洗干凈,移除無脊椎食草動(dòng)物,并在實(shí)驗(yàn)室里培育7d,均剪到20cm長以符合實(shí)驗(yàn)要求的高度.采集了四川省成都市一條典型的城市黑臭水體十陵河的沉積物和上覆水,同時(shí)進(jìn)行相關(guān)理化性質(zhì)分析,分析結(jié)果見表1.
1.2.1 吸附實(shí)驗(yàn) 研究紅土劑量、反應(yīng)溫度和pH值對磷釋放的影響以探究紅土覆蓋的最佳條件.在錐形瓶中進(jìn)行動(dòng)態(tài)吸附實(shí)驗(yàn),其中裝有150mL,0.02mol/L氯化鉀溶液,10g沉積物樣品和不同劑量(0.5,2,4,5,7,9g)的RS .恒溫調(diào)節(jié)pH值(5,6,7,8,9,10),不同溫度(10,20,30,40,50℃),加入兩滴0.1%氯仿抑制細(xì)菌活性的條件下進(jìn)行實(shí)驗(yàn)研究.控制振動(dòng)速率為200r/min下振蕩24h后離心,測量上覆水的溶解態(tài)活性磷(SRP)濃度.每個(gè)處理由3個(gè)重復(fù)組成,數(shù)據(jù)均表示為平均值.
1.2.2 RS和VS對底泥磷釋放的影響 放置10cm厚的沉積物到實(shí)驗(yàn)桶(聚丙烯材質(zhì)的塑料收納桶,長70.5cm、寬52cm、高43cm),桶壁上設(shè)有取樣小孔.設(shè)置4組大桶作為實(shí)驗(yàn)室單元,每組包括3個(gè)平行容器.空白組S:無覆蓋紅土的沉積物10cm; RS:在沉積物上覆蓋厚5cm的紅土; VS:沉積物上移植16株苦草; RS+VS:沉積物上覆蓋厚度為5cm紅土,并移植16株苦草.實(shí)驗(yàn)進(jìn)行37d,在試驗(yàn)期間,不包含沉積物和紅土的高度保持水位為30cm,沉積物及上覆水來自于成都大學(xué)十陵河,在實(shí)驗(yàn)過程中從不同反應(yīng)器中收集15mL上覆水,測定上覆水SRP濃度.同樣,每次取樣后將等量的河水加入反應(yīng)器.
圖1 SEDEX法提取沉積物各形態(tài)磷示意
1.2.3 RS+VS聯(lián)合對沉積物中磷形態(tài)的影響 實(shí)驗(yàn)進(jìn)行37d后收取表層沉積物(0~2cm),覆蓋前后沉積物中磷形態(tài)提取按照革新的SEDEX方法[40]進(jìn)行,沉積物磷形態(tài)分別為:松散結(jié)合態(tài)磷Loosely-bound P,亞鐵磷Fe(II)-P,鐵/鋁結(jié)合態(tài)磷 CDB-P,鈣結(jié)合態(tài)磷Ca-P和有機(jī)磷O-P,具體提取方法如(圖1).金屬氧化物結(jié)合CDB-P和Fe(II)-P通常被認(rèn)為具有潛在的移動(dòng)性和生物可利用性,碳酸鈣沉淀的Ca-P具有很高的化學(xué)和生物穩(wěn)定性[42-43].根據(jù)所分類進(jìn)行分析檢測,測定每個(gè)實(shí)驗(yàn)組沉積物磷形態(tài)的含量,所有分析均基于3個(gè)重復(fù),未添加天然紅土的沉積物為空白組.
用掃描電子顯微鏡(SEM,JSM-5610LV,日本)表征觀察RS+VS覆蓋前后的表面形貌特征及微觀結(jié)構(gòu),使用便捷參數(shù)式水質(zhì)檢測儀(Hach Senstion1,Colorado,USA)對水體pH值、溫度和氧化還原電位進(jìn)行現(xiàn)場測定;使用電極法測沉積物的氧化還原電位,上覆水用0.45μm濾膜過濾后測SRP濃度,使用過硫酸鉀進(jìn)行消解測TP,通過紫外-可見分光光度計(jì)(UV-2102PCS;上海的Unico儀器有限公司,中國)測定沉積物磷形態(tài)的含量,所有分析均基于3個(gè)重復(fù). RS、VS和RS+VS對P的去除量()和去除效率()由方程式計(jì)算:
式中:0為溶液中初始磷濃度,mg/L,e為天后溶液中的磷濃度,mg/L.每個(gè)樣本重復(fù)3份測量,結(jié)果為平均值.使用Origin Pro 8.0 (Origin Lab Corp.)處理數(shù)據(jù),使用SPSS 18.0(SPSS軟件,IBM,美國)進(jìn)行統(tǒng)計(jì)分析.
2.1.1 RS劑量 如表2所示,覆蓋5g天然紅土的上覆水平均SRP濃度(1.12mg/L)顯著低于空白組(2.65mg/L),其最大的去除效率為58%.并且隨著RS的劑量增加,上覆水中平均SRP濃度減少并趨于穩(wěn)定,這可能是由于RS上吸附位點(diǎn)的飽和以及顆粒聚集、干擾或相互排斥,降低了天然紅土的吸附作用,進(jìn)而導(dǎo)致了去除率的降低.可以看出天然紅土的覆蓋顯著減少了沉積物向上覆水釋放的磷,因此根據(jù)去除效果和經(jīng)濟(jì)成本選擇劑量,在最佳的用量底泥:天然紅土質(zhì)量比為2:1時(shí),探討其他影響因素的實(shí)驗(yàn).
表2 不同的RS劑量對上覆水平均SRP濃度(mg/L)的影響
2.1.2 pH值和溫度的影響 如圖2所示,總體來看上覆水SRP濃度隨pH值增加呈現(xiàn)“U”型趨勢.當(dāng)pH值從5增加到7時(shí),水體沉積物向上覆水釋放量減少了1.07mg/L,隨后上覆水SRP濃度又隨pH值增加而增加,達(dá)到了1.56mg/L,相對酸性和堿性條件下,水體中性條件下紅土抑制沉積物向上覆水釋放磷更佳,去除效率為78%.而沉積物磷的釋放發(fā)生在酸性和堿性條件下,這可能是由于OH-電荷和磷酸鹽陰離子的競爭效應(yīng).
紅土覆蓋修復(fù)實(shí)驗(yàn)中沉積物向上覆水平均SRP釋放量隨溫度升高而增加,但溫度為20℃時(shí),水體SRP的釋放量是最低的,為0.89mg/L,抑制效果最佳去除效率為66%,相對于低溫10℃(1.01mg /L)和高溫50℃(1.64mg/L)的平均SRP釋放量有所降低,去除效率分別降低了4%和28%.溫度較高時(shí)沉積物中磷的釋放增加,可能是由于生物活動(dòng)增加而產(chǎn)生了間接影響,高溫下水體底部形成厭氧區(qū)域?qū)е履承┭趸€原控制磷的釋放.
2.2.1 RS和VS單一修復(fù)對沉積物中磷釋放的影響 如圖3所示,20d上覆水SRP濃度與空白組相比(1.56mg/L),VS和RS分別降低了0.81和0.84mg/L,去除效率分別為52%和54%.實(shí)驗(yàn)結(jié)束后S中上覆水SRP濃度變化趨于穩(wěn)定,且37天RS去除效率(68 %)相比VS(32%)有增加.VS去除效率逐漸降低可能是由于植物修復(fù)對沉積物磷的處理能力往往受到植物生長周期和周圍環(huán)境的限制,在修復(fù)后期植物苦草可能會由于水底缺氧,透明度降低等因素逐漸腐爛而成為水體沉積物的源,因此實(shí)際應(yīng)用應(yīng)注意定期收割,以防根部腐爛使得底泥環(huán)境成為厭氧環(huán)境,減弱抑制的效果.而RS對于沉積物磷釋放仍處于抑制狀態(tài),上覆水SRP濃度逐漸減低達(dá)到了0.45mg/L,去除效率為68%.在兩者修復(fù)實(shí)驗(yàn)中RS對磷釋放的抑制效果是高于VS的,兩者最大去除量相差0.51mg/L.
2.2.2 RS和VS聯(lián)合修復(fù)對沉積物中磷釋放的影響 如圖4所示,在37d時(shí),VS,RS和RS+VS聯(lián)合組都顯著降低上覆水中平均SRP的濃度,對比S組(1.41mg/L)苦草VS,天然紅土RS和RS+VS聯(lián)合組去除量分別為0.45,0.96,1.29mg/L,去除效率分別為32%、68%、91%.RS+VS中觀察到明顯的磷濃度降低,上覆水中平均SRP的濃度從初始濃度1.01mg/L降低到0.12mg/L,上覆水平均SRP去除效率分別從單一VS和RS組的32%、68%達(dá)到RS+VS組的91%,去除效率增幅分別為59%,23%.
圖3 RS和VS單一修復(fù)對上覆水中SRP的去除效果
圖4 不同覆蓋方式對上覆水中SRP的去除效果
原沉積物中的磷形態(tài)以CDB-P(53%)為主(圖5),活躍態(tài)的磷(loosely-P、Fe(II)-P、CDB-P和O-P的總和)占TP的74%,易從沉積物中釋放[27],活躍態(tài)的磷也是水體中SRP的主要來源[31].表明沉積物內(nèi)部磷負(fù)荷不穩(wěn)定,從而增加了磷釋放的潛在風(fēng)險(xiǎn).
RS+VS覆蓋后RS(圖6)中的CDB-P含量減少了265.44mg/kg(減少了66%),而Ca-P卻增加了87.60mg/kg(增加了55%),這意味著天然紅土與苦草聯(lián)合覆蓋后沉積物磷形態(tài)從不穩(wěn)定的CDB-P轉(zhuǎn)化為了惰性Ca-P,從而降低了磷沉積物向上覆水中釋放,降低了藻華爆發(fā)的風(fēng)險(xiǎn).
此外,早期紅土對loosely-P和Fe(II)-P增加起主導(dǎo)作用,紅土中l(wèi)oosely-P從8.88mg/kg增加到13.55mg/kg及Fe(II)-P從34.09mg/kg增加到82.80mg/kg,植物可以吸收這些生物可利用的磷作為養(yǎng)分,導(dǎo)致loosely-P和Fe(II)-P逐漸下降,在15天時(shí)分別下降到6.14mg/kg (去除效率55%)和19.81mg/kg (去除效率76%),這表明紅土中生物可利用的磷增加不會增大沉積物釋放磷的風(fēng)險(xiǎn),反而為后期植物的生長創(chuàng)造了有利的營養(yǎng)條件.
圖5 單一及聯(lián)合修復(fù)對沉積物各形態(tài)磷的影響
圖6 RS+VS聯(lián)合修復(fù)對RS中各形態(tài)磷的影響
如圖5所示,空白組實(shí)驗(yàn)中Ca-P的含量為170.48mg/kg,占沉積物中磷總量的26%.在RS+VS聯(lián)合修復(fù)下Ca-P含量有所增加,最大含量為280.28mg/kg,是空白組S的1.9倍,占了沉積物總磷的一半多(51%). RS+VS的沉積物中Ca-P濃度(280.28mg/kg)明顯高于VS組(213.51mg/kg)和RS組(245.30mg/kg),相比之下沉積物中Ca-P的增幅分別達(dá)到了14%,9%.
對比空白組(S)Loosely-bound P占沉積物總磷1%,RS+VS聯(lián)合覆蓋后沉積物中Loosely-bound P減少從9.47mg/kg到7.08mg/kg,對比空白組(S)低了2.39mg/kg.沉積物中Fe(Ⅱ)-P濃度有所減少,在空白組中Fe(Ⅱ)-P的濃度為50.74mg/kg,占總磷的7%.在RS+VS覆蓋下Fe(Ⅱ)-P的濃度下降到39.62mg/kg,占沉積物中總磷的6%.沉積物中CDB-P和O-P有下降,在沉積物總磷中的占比分別從53%和12%降低到29%和7%,RS-VS聯(lián)合修復(fù)下,沉積物樣品中的Ca-P的濃度有所增加,Fe(Ⅱ)-P、CDB-P和O-P均有下降,活躍態(tài)磷量顯著低于空白組.
可以看出天然紅土可以吸附一部分底泥中的P,并將不穩(wěn)定的Fe(II)-P,CDB-P轉(zhuǎn)化為穩(wěn)定的Ca-P,從而減少沉積物向上覆水中的釋放.同時(shí)植物可以將一部分沉積物中磷(Ex-P)轉(zhuǎn)化為生物利用磷或攝取Ex-P和Fe(II)-P.沉積物中的微生物可礦化和降解OP,并消耗孔隙水中的溶解氧,從而導(dǎo)致較低的氧化還原電勢,并將Fe(III)還原為Fe(II),從而導(dǎo)致Fe(II)-P釋放,該生物可利用磷的增加促進(jìn)了天然紅土對沉積物P的吸附過程和植物的生長,從而進(jìn)一步提高了植物和紅土對磷的利用.最后沉積物內(nèi)部的P可以固定在天然紅土中,并且可以通過植物收獲將部分沉積物P從系統(tǒng)中去除,從而降低沉積物P的濃度.
天然紅土的主要成分為氧化鐵,氧化鋁和石英等,如圖7所示,RS+VS表面更粗糙,獲得了更多的孔隙,RS覆蓋前后和RS+VS聯(lián)合的表面形態(tài)之間的差異顯著,天然紅土表面有微小的顆粒,并具有粗糙的表面,而大量的較大顆粒出現(xiàn)在覆蓋后的天然紅土表面.RS+VS聯(lián)合覆蓋后,天然紅土的顆粒比表面積增大,形成大量片狀薄片,顆粒之間間隙更緊密. 由表3可知,原始天然紅土比表面積26.26m2/g.這種粗糙度有助于天然紅土的比表面積和孔體積的增加,活性位點(diǎn)較多而增強(qiáng)沉積物對磷的吸附,從而增強(qiáng)RS+VS對沉積物磷的吸附能力,使得沉積物磷傾向于在紅土顆粒上吸附成為一個(gè)匯,而不是釋放到上覆水成為源.
圖7 覆蓋前后天然紅土的SEM圖像
a-S,b-VS,c-RS,d-RS+VS
表3 天然紅土的理化性質(zhì)
在實(shí)際工程中紅土和苦草兩種修復(fù)材料成本低,易于培養(yǎng)且見效快,是很好的沉積物原位修復(fù)材料.采取RS+VS聯(lián)合修復(fù)對污染水體的修復(fù)比單獨(dú)的RS或VS修復(fù)更佳. 如圖8所示,沉水植物的種植可以穩(wěn)定沉積物再懸浮,另外根部能從沉積物進(jìn)一步吸收磷,植物根際分泌營養(yǎng)激素來刺激微生物活動(dòng).此外,根系釋放有機(jī)酸有利于提高沉水植物苦草對磷的吸收[44],還避免RS被沉積物淹埋失去吸附能力,天然紅土的覆蓋可以改善植物生長環(huán)境,將易釋放磷轉(zhuǎn)變成穩(wěn)定性磷(Ca-P增加了174.26mg/kg,52%),加大對底泥磷的固定能力.盡管在實(shí)驗(yàn)初期,RS的覆蓋對VS的修復(fù)產(chǎn)生了一定的脅迫作用,但長期觀察紅土能為苦草提供有利的生存環(huán)境并促進(jìn)整個(gè)生態(tài)系統(tǒng)的構(gòu)建.
圖8 RS+VS聯(lián)合技術(shù)控制沉積物磷示意
RS+VS聯(lián)合技術(shù)中,天然紅土可以有效控制磷的釋放且有較好的吸附效果,并且能為沉水植物創(chuàng)造良好的生長環(huán)境.而沉水植物苦草也能在水體富營養(yǎng)化恢復(fù)過程中發(fā)揮巨大作用[45],提高了水體生產(chǎn)力,減輕沉積物再懸浮和釋放磷.因此,將RS+VS聯(lián)合技術(shù)應(yīng)用于表層污染沉積物的治理是一種相對經(jīng)濟(jì)和效果最大化的方法,能抑制沉積物磷釋放,可以為富營養(yǎng)化水體的原位修復(fù)提供一個(gè)新的思路和方法.
圖9 RS+VS控制沉積物磷釋放的工程應(yīng)用示意
進(jìn)行實(shí)地應(yīng)用可設(shè)計(jì)一種三層墊子生態(tài)一體箱(圖9),該設(shè)備被投放在淺湖的底部.生態(tài)一體箱上層用于植物的生長,中間層用于種植沉水植物,而下層用于填充修復(fù)材料天然紅土,網(wǎng)格層孔徑小于天然紅土粒度,各層之間安裝有穿孔的管道,以使水流通過.網(wǎng)格層的主要作用:1)將沉水植物苦草固定在網(wǎng)中,并使苦草根層種植在天然紅土中以吸收養(yǎng)分;2)封蓋的天然紅土接觸底泥以固定磷,上層的植物可防止沉積物重懸浮并吸收沉淀物或天然紅土吸附的磷,且避免了天然紅土層被掩埋;3)方便設(shè)備從湖中取出進(jìn)行苦草收割,避免植物腐爛成為污染的源.
然而,實(shí)際應(yīng)用RS與VS聯(lián)合技術(shù)治理某一區(qū)域污染水體時(shí),實(shí)際條件往往很難滿足實(shí)驗(yàn)室設(shè)計(jì)的最佳控制條件,考慮到自然水體中更復(fù)雜(水體波動(dòng)大、污染物復(fù)雜、水生動(dòng)植物活動(dòng)等)可能難以實(shí)現(xiàn)預(yù)期的聯(lián)合效果,因此選用工程設(shè)計(jì)將苦草種植在紅土上培育一段時(shí)間,再定點(diǎn)投放紅土-苦草聯(lián)合生態(tài)一體箱,有利于苦草生長同時(shí)減少受到的環(huán)境干擾.其次,沉水植物生長周期也是一個(gè)不可忽略的問題,即苦草隨著衰敗腐爛釋放磷并重新進(jìn)入上覆水體,因此在紅土-苦草聯(lián)合生態(tài)一體箱中應(yīng)定期收割苦草,但對苦草實(shí)際的收割周期不確定,有可能讓苦草成為水體營養(yǎng)物的來源,后期在進(jìn)行實(shí)際工程應(yīng)用時(shí)應(yīng)觀察苦草生長周期,以確定最佳收割時(shí)間,從而降低二次污染的風(fēng)險(xiǎn).在保證預(yù)期治理效果前提下,原位覆蓋和植物修復(fù)聯(lián)合技術(shù)在未來一段時(shí)間可能是主要治理手段,除此之外,基于長期修復(fù)過程的經(jīng)濟(jì)考慮,建議后續(xù)研究可以將天然紅土進(jìn)行改性,增加其顆粒的比表面積以加大磷的吸附,改性材料的應(yīng)用還需進(jìn)一步研究并探討覆蓋材料的回收,能多次使用覆蓋材料也是后期研究的重點(diǎn)方向之一.
3.1 RS的添加對沉積物中磷的固定作用顯著,在靜態(tài)吸附實(shí)驗(yàn)中RS劑量,pH值,溫度等是影響RS對河道底泥P吸附效果的主要因素.
3.2 VS、RS及RS+VS修復(fù)均對沉積物磷釋放有明顯的抑制作用,去除效率分別為32%、68%、91%. RS+VS聯(lián)合修復(fù)下沉積物中CDB-P、Fe(II)-P、OP向穩(wěn)定態(tài)Ca-P轉(zhuǎn)化,Ca-P的比例增加了52%,意味著RS+VS聯(lián)合后沉積物中惰性磷比例升高從而降低了內(nèi)源磷釋放的風(fēng)險(xiǎn).
[1] Colborne S F,Maguire T J,Mayer B,et al. Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes [J]. Science of the Total Environment,2019,647:1594-1603.
[2] Ulen B,Bechmann M,Folster J,et al. Agriculture as a phosphorus source for eutrophication in the north-west European countries,Norway,Sweden,United Kingdom and Ireland: a review [J]. Soil Use and Management,2007,23:5-15.
[3] Ding S,Chen M,Gong M,et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms [J]. Science of the Total Environment,2018,625:872-884.
[4] Wu Z,Liu Y,Liang Z,et al. Internal cycling,not external loading,decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference [J]. Water Res,2017,116:231-240.
[5] Horppila J. Sediment nutrients,ecological status and restoration of lakes [J]. Water Research,2019,160:206-208.
[6] Horppila J,Holmroos H,Niemisto J,et al. Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40years of different management efforts [J]. Ecological Engineering,2017,103:264-274.
[7] 萬 杰,袁旭音,葉宏萌,等.洪澤湖不同入湖河流沉積物磷形態(tài)特征及生物有效性 [J]. 中國環(huán)境科學(xué),2020,40(10):4568-4579.
Wan J,Yuan X,Ye H,et al. Characteristics and bioavailability of different forms of phosphorus in sediments of rivers flowing into Hongze Lake [J]. China Environmental Science,2020,40(10):4568-4579.
[8] Huang J,Zhang Y,Arhonditsis G B,et al. How successful are the restoration efforts of China's lakes and reservoirs? [J]. Environment International,2019,123:96-103.
[9] Paytan A,Roberts K,Watson S,et al. Internal loading of phosphate in Lake Erie Central Basin [J]. Science of the Total Environment,2017,579:1356-1365.
[10] Lurling M,Mackay E,Reitzel K,et al. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes [J]. Water Research,2016,97:1-10.
[11] Wilfert P,Mandalidis A,Dugulan A I,et al. Vivianite as an important iron phosphate precipitate in sewage treatment plants [J]. Water Research,2016,104:449-460.
[12] Yuan Z,Jiang S,Sheng H,et al. Human perturbation of the global phosphorus cycle: Changes and consequences [J]. Environmental Science & Technology,2018,52(5):2438-2450.
[13] Pineyro M,Chalar G,Quintans F. Constructed wetland scale model: organic matter and nutrients removal from the effluent of a fish processing plant [J]. International Journal of Environmental Science and Technology,2019,16(8):4181-4192.
[14] Yu J,Ding S,Zhong J,et al. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface [J]. Science of the Total Environment,2017,592:662-673.
[15] Yin H,Yang C,Yang P,et al. Contrasting effects and mode of dredging and in situ adsorbent amendment for the control of sediment internal phosphorus loading in eutrophic lakes [J]. Water Research,2021,189(17):116.
[16] Xu D,Ding S,Sun Q,et al. Evaluation of in situ capping with clean soils to control phosphate release from sediments [J]. Science of the Total Environment,2012,438:334-341.
[17] Xiong C,Wang D,Tam N F,et al. Enhancement of active thin-layer capping with natural zeolite to simultaneously inhibit nutrient and heavy metal release from sediments [J]. Ecological Engineering,2018,119:64-72.
[18] Luo P,Liu F,Zhang S,et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management [J]. Bioresource Technology,2018,258:247-254.
[19] 孔祥龍,葉 春,李春華,等.苦草對水-底泥-沉水植物系統(tǒng)中氮素遷移轉(zhuǎn)化的影響 [J]. 中國環(huán)境科學(xué),2015,35(2):539-549.
Kong X,Ye C,Li C,et al. Effect on nitrogen transfer and migration by Vallisneria nutans (Lour.) Hara in water-sediment-submerged macrophytes system [J]. China Environmental Science,2015,35(2):539-549.
[20] Human L R D,Snow G C,Adams J B,et al. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach [J]. Estuarine Coastal and Shelf Science,2015,154:169-178.
[21] Wang L,Sun J,Zheng W,et al. Effects of a combined biological restoration technology on nitrogen and phosphorus removal from eutrophic water [J]. Polish Journal of Environmental Studies,2018,27(5):2293-2301.
[22] Liu Z,Hu J,Zhong P,et al. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded [J]. Water Research,2018,146:88-97.
[23] Yenilmez F,Aksoy A. Comparison of phosphorus reduction alternatives in control of nutrient concentrations in Lake Uluabat (Bursa,Turkey): Partial versus full sediment dredging [J]. Limnologica,2013,43(1):1-9.
[24] Huser B J,Egemose S,Harper H,et al. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality [J]. Water Research,2016,97:122-132.
[25] Yin H,Zhu J. In situ remediation of metal contaminated lake sediment using naturally occurring,calcium-rich clay mineral-based low-cost amendment [J]. Chemical Engineering Journal,2016,285:112-120.
[26] Lin J,Zhan Y,Zhu Z. Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release [J]. Science of the Total Environment,2011,409(3):638-646.
[27] Zhang L,Hong S,He J,et al. Adsorption characteristic studies of phosphorus onto laterite [J]. Desalination and Water Treatment,2011,25(1-3):98-105.
[28] Kpannieu D E,Mallet M,Coulibaly L,et al. Phosphate removal from water by naturally occurring shale,sandstone,and laterite: The role of iron oxides and of soluble species [J]. Comptes Rendus Geoscience,2019,351(1):37-47.
[29] Sarkar M,Banerjee A,Pramanick P P,et al. Use of laterite for the removal of fluoride from contaminated drinking water [J]. Journal of Colloid and Interface Science,2006,302(2):432-441.
[30] Coulibaly L S,Akpo S K,Yvon J,et al. Fourier transform infra-red (FTIR) spectroscopy investigation,dose effect,kinetics and adsorption capacity of phosphate from aqueous solution onto laterite and sandstone [J]. Journal of Environmental Management,2016,183:1032-1040.
[31] Gu B-W,Hong S-H,Lee C-G,et al. The feasibility of using bentonite,illite,and zeolite as capping materials to stabilize nutrients and interrupt their release from contaminated lake sediments [J]. Chemosphere,2019,219:217-226.
[32] Ajmal Z,Muhmood A,Usman M,et al. Phosphate removal from aqueous solution using iron oxides: Adsorption,desorption and regeneration characteristics [J]. Journal of Colloid and Interface Science,2018,528:145-155.
[33] Zhu T,Cao T,Ni L,et al. Improvement of water quality by sediment capping and re-vegetation with Vallisneria natans L.: A short-term investigation using an in situ enclosure experiment in Lake Erhai,China [J]. Ecological Engineering,2016,86:113-119.
[34] Rezania S,Taib S M,Din M F M,et al. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater [J]. Journal of Hazardous Materials,2016,318:587-599.
[35] Li Y,Wang L G,Chao C X,et al. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading [J]. Environmental Pollution,2021,268:115.
[36] Soana E,Naldi M,Bartoli M. Effects of increasing organic matter loads on pore water features of vegetated (Vallisneria spiralis L.) and plant-free sediments [J]. Ecological Engineering,2012,47:141-145.
[37] Sand-Jensen K,Bruun H H,Baastrup-Spohr L. Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900-2015 [J]. Journal of Ecology,2017,105(3):690-700.
[38] Horppila J,Nurminen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland) [J]. Water Research,2003,37(18):4468-4474.
[39] Xie Y H,An S Q,Wu B F. Resource allocation in the submerged plant Vallisneria natans related to sediment type,rather than water-column nutrients [J]. Freshwater Biology,2005,50(3):391-402.
[40] Gu S,Qian Y,Jiao Y,et al. An innovative approach for sequential extraction of phosphorus in sediments: Ferrous iron P as an independent P fraction [J]. Water Research,2016,103:352-361.
[41] 劉子森,張 義,王 川,等.改性膨潤土和沉水植物聯(lián)合作用處理沉積物磷 [J]. 中國環(huán)境科學(xué),2018,38(2):665-674.
Liu Z,Zhang Y,Wang C,et al. Synergistic removal of sediment P by combining the modified bentonite and Vallisneria spiralis [J]. China Environmental Science,2018,38(2):665-674.
[42] Tu L,Jarosch K A,Schneider T,et al. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano,Switzerland) since 1959 [J]. Science of the Total Environment,2019,685:806-817.
[43] 黎 睿,王圣瑞,肖尚斌,等.長江中下游與云南高原湖泊沉積物磷形態(tài)及內(nèi)源磷負(fù)荷 [J]. 中國環(huán)境科學(xué),2015,35(6):1831-1839.
Li R,Wang S,Xiao S,et al. Sediments phosphorus forms and loading in the lakes of the mid-lower reaches of the Yangtze River and Yunnan Plateau,China [J]. China Environmental Science,2015,35(6):1831-1839.
[44] Xing X,Ding S,Liu L,et al. Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: A case study on Vallisneria natans [J]. Science of the Total Environment,2018,616:386-396.
[45] Zeng W,Ren X,Shen L,et al. Effects of consecutive culture of Penaeus vannamei on phosphorus transformation and microbial community in sediment [J]. Environmental Science and Pollution Research,2021,28(39):55716-55724.
Combined control of phosphorus release from sediment by red soil and.
ZHANG Yu1,2,YIN Yue-peng1,2,TANG Jin-yong1,2,CAO Xi1,2,LIU Jing-jing1,2,ZHANG Wen1,2,3*
(1.College of Environment and Ecology,Chengdu University of Technology,Chengdu 610059,China;2.National Key Laboratory for Coordinated Control and Remediation of Water and Soil Pollution in Environmental Protection (SEKL-SW),Chengdu 610059,China;3.State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection,Chengdu 610059,China).,2022,42(8):3728~3735
The effect of single and combined remediation on phosphorus removal from polluted sediment was studied by using the in situ combined remediation technology of red soil and(RS +VS). The results showed that the removal capacity of sediment P by RS and VS combined remediation was higher than that by single remediation. In the 37d batch experiment,the phosphorus released from sediment in the RS+VS group was inhibited by 91%. Compared with the phosphorus released from sediment in the RS+VS group without coverage,the dissolved active phosphorus (SRP) in the overlying water decreased from 1.41mg/L to 0.12mg/L. RS+VS combined remediation had a significant effect on the fixation of sediment phosphorus,The unstable ferrous phosphorus (Fe(II)-P) and iron aluminum bound phosphorus (CDB-P) were transformed into inert calcium phosphorus (Ca-P). The content of Ca-P in sediment increased by 51%,while Fe(II)-P and CDB-P decreased by 1% and 24% respectively,effectively reducing the risk of phosphorus release from sediment to overlying water. In conclusion,RS+VS combination can be applied to treat the internal phosphorus load in eutrophic waters to realize the coordinated removal of sediment phosphorus. At the same time,RS and VS are cheap and widely distributed,and can be used as a potential high-benefit phosphate adsorbent in practical projects.
black odorous sediment;red soil;v;phosphorus form;sediment;influencing factors
X52
A
1000-6923(2022)08-3728-08
2022-01-04
國家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(42007148)
* 責(zé)任作者,教授,zhangwen2014@cdut.edu.cn
張 瑜(1997-),女,貴州銅仁人,成都理工大學(xué)碩士研究生,主要從事湖泊水庫底泥污染物釋放研究.發(fā)表論文1篇.