王樹新,孟曉偉,胡振璇
基于梯形槽結(jié)構(gòu)的連續(xù)體手術(shù)器械彈性關(guān)節(jié)建模、仿真和實(shí)驗(yàn)驗(yàn)證
王樹新,孟曉偉,胡振璇
(天津大學(xué)機(jī)械工程學(xué)院,天津 300072)
面向經(jīng)自然腔道內(nèi)鏡手術(shù)(natural orifice transluminal endoscopic surgery,NOTES),根據(jù)手術(shù)器械的彎曲性和剛度需求,設(shè)計(jì)了具有梯形槽結(jié)構(gòu)的連續(xù)體手術(shù)器械彈性關(guān)節(jié),并提出了連續(xù)體彈性關(guān)節(jié)的結(jié)構(gòu)特征參數(shù).為消除結(jié)構(gòu)參數(shù)原始單位及其數(shù)值數(shù)量級(jí)的影響,便于確定參數(shù)的取值區(qū)間,以特征長(zhǎng)度為單位將連續(xù)體彈性關(guān)節(jié)的結(jié)構(gòu)特征抽象為4個(gè)無量綱的結(jié)構(gòu)參數(shù).由于連續(xù)體彈性關(guān)節(jié)的結(jié)構(gòu)沿軸線方向是循環(huán)重復(fù)的,切槽部分的變形相同,所以首先提取一節(jié)彈性關(guān)節(jié)進(jìn)行靜力學(xué)分析,然后通過疊加獲得連續(xù)體彈性關(guān)節(jié)考慮其形狀特征的靜力學(xué)模型.為驗(yàn)證連續(xù)體彈性關(guān)節(jié)力學(xué)性能,基于有限元分析軟件ABAQUS進(jìn)行仿真.一方面,基于正交實(shí)驗(yàn)設(shè)計(jì)方法,驗(yàn)證各結(jié)構(gòu)參數(shù)對(duì)力學(xué)性能影響的變化趨勢(shì)以及顯著性,不涉及對(duì)具體數(shù)值的驗(yàn)證;另一方面,基于控制變量法,驗(yàn)證結(jié)構(gòu)參數(shù)對(duì)力學(xué)性能的影響,并根據(jù)仿真結(jié)果校正了靜力學(xué)模型.同時(shí),基于控制變量法,通過實(shí)驗(yàn)驗(yàn)證結(jié)構(gòu)參數(shù)對(duì)剛度系數(shù)的影響.結(jié)果表明該模型可以有效描述彈性關(guān)節(jié)的彎曲性能和抗壓性能,為彈性關(guān)節(jié)設(shè)計(jì)提供指導(dǎo).
經(jīng)自然腔道內(nèi)鏡手術(shù);梯形槽結(jié)構(gòu);連續(xù)體;正交實(shí)驗(yàn);靜力學(xué)模型
經(jīng)自然腔道內(nèi)鏡手術(shù)(natural orifice translu-minal endoscopic surgery,NOTES),具有創(chuàng)傷小、恢復(fù)快等優(yōu)點(diǎn),正在逐漸成為腹腔鏡手術(shù)的發(fā)展趨勢(shì)[1].由于NOTES器械需要經(jīng)過人體彎曲多變的路徑到達(dá)病灶部位,手術(shù)器械必須采用柔性結(jié)構(gòu),而連續(xù)體結(jié)構(gòu)是最常用的柔性手術(shù)器械關(guān)節(jié)之一.
連續(xù)體結(jié)構(gòu)是一種具有連續(xù)切向量形態(tài)曲線的可驅(qū)動(dòng)結(jié)構(gòu),其靈感來自生物的軀干、觸手等.由于其可以順應(yīng)空間的曲線路徑以及在復(fù)雜曲路中操控對(duì)象,所以該結(jié)構(gòu)有著很強(qiáng)的空間適應(yīng)能力,且通過設(shè)計(jì)容易實(shí)現(xiàn)小型化[2].因此,連續(xù)體結(jié)構(gòu)廣泛用于神經(jīng)外科[3-4]、耳鼻喉科[5-6]、心臟外科[7-8]等醫(yī)療領(lǐng)域.
在NOTES中,要求手術(shù)工具有足夠的支撐力而能夠完成提拉、縫合等手術(shù)操作;同時(shí)要求其具有良好的柔順性從而順應(yīng)空間的曲線路徑并安全順暢抵達(dá)目標(biāo)位置.應(yīng)用于手術(shù)器械的連續(xù)體結(jié)構(gòu)通常采用金屬材料,其剛度較大,有很好的抗壓、抗彎性能,為手術(shù)提供穩(wěn)定支撐和足夠操作力.但是,大剛度金屬連續(xù)體彎曲性能差,不利于操作變形,影響連續(xù)體結(jié)構(gòu)的空間適應(yīng)能力和操作靈活性.因此,常通過將金屬進(jìn)行切槽的方法提高連續(xù)體結(jié)構(gòu)的彎曲性能.日本東北大學(xué)的Yoichi等[9]通過激光加工方式獲得具有螺旋狀切槽結(jié)構(gòu)的連續(xù)體,進(jìn)而得到一種用于血管內(nèi)微創(chuàng)診斷和治療的小直徑主動(dòng)彎曲導(dǎo)管.美國約翰霍普金斯大學(xué)的Michael等[10]和Sean等[11]進(jìn)行間隔180°的單自由度切槽,設(shè)計(jì)一種具有大開放腔的新型繩索驅(qū)動(dòng)機(jī)械手用于微創(chuàng)骨溶解治療.加拿大Seok等[12]分析連續(xù)體彈性關(guān)節(jié)扭轉(zhuǎn)剛度和彎曲剛度比,減少同心管機(jī)器人的不穩(wěn)定性.韓國首爾國立大學(xué)的Philip等[13]和Peter等[14]將同心管機(jī)器人進(jìn)行切槽,利用等效彈簧的方式建立其力學(xué)模型,分析其各向異性減少同心管機(jī)器人的不穩(wěn)定性.美國斯坦福大學(xué)Hamidreza等[15]將圓管進(jìn)行單側(cè)切槽,用于其設(shè)計(jì)的一種光控可兼容核磁共振的主動(dòng)針.美國范德堡大學(xué)的Kim等[16]和Lee等[17]進(jìn)行單側(cè)的直口切槽,設(shè)計(jì)了一種針頭尺度的外科手術(shù)工具用手腕.
當(dāng)前關(guān)于連續(xù)體彈性關(guān)節(jié)力學(xué)模型只關(guān)注單一形狀切槽,分析其分布、大小與彎曲、抗壓性能的關(guān)系,忽略了形狀特征對(duì)連續(xù)體結(jié)構(gòu)力學(xué)性能的影響.該模型不能描述切槽形狀改變導(dǎo)致的彎曲、抗壓性能的變化.本文旨在探究包含切槽分布、大小和形狀在內(nèi)的結(jié)構(gòu)特征對(duì)連續(xù)體彈性關(guān)節(jié)力學(xué)性能的綜合影響.為此,本文針對(duì)具有梯形槽結(jié)構(gòu)的連續(xù)體手術(shù)器械彈性關(guān)節(jié)提出了表征切槽分布、大小和形狀特征的結(jié)構(gòu)參數(shù),基于有限元方法建立了靜力學(xué)模型,并進(jìn)行了仿真與實(shí)驗(yàn)驗(yàn)證.
本文研制的連續(xù)體彈性關(guān)節(jié)用于自然腔道手術(shù)器械末端.如圖1所示,器械末端由外層彈性骨架與內(nèi)層槽紋彈性關(guān)節(jié)組成.所述彈性骨架有很好的彎曲性能但是抗壓性能差,導(dǎo)致負(fù)載能力低、精度低.
圖1 器械末端結(jié)構(gòu)及其受力變形
所以必須要有內(nèi)層彈性關(guān)節(jié)作為抗壓元件,為器械末端提供支撐,且不影響彈性骨架彎曲性能.
圖2 連續(xù)體彈性關(guān)節(jié)模型及參數(shù)說明
通過增大切除部分面積可以使得可彎曲角度更大,同時(shí)其拉壓剛度系數(shù)變小,但是器械彈性關(guān)節(jié)需要較大的可彎曲角度和較大的拉壓剛度系數(shù),二者是矛盾的.因此需要建立靜力學(xué)模型描述彈性關(guān)節(jié)力學(xué)性能隨結(jié)構(gòu)參數(shù)的變化關(guān)系以指導(dǎo)參數(shù)設(shè)計(jì),使二者同時(shí)滿足需求.本文通過對(duì)連續(xù)體彈性關(guān)節(jié)進(jìn)行受力分析,建立受力和變形的關(guān)系,分別得出連續(xù)體彈性關(guān)節(jié)的最大可彎曲角度和剛度系數(shù).
為了簡(jiǎn)化分析最大可彎曲角度以及剛度系數(shù)與連續(xù)體彈性關(guān)節(jié)的結(jié)構(gòu)參數(shù)之間的關(guān)系,建立以下假設(shè):①忽略未切槽部分的微小變形;②各節(jié)切槽部分的變形相同;③橫截面在變形后仍然是平面.
圖3 切槽的展開結(jié)構(gòu)和受力情況
連續(xù)體彈性關(guān)節(jié)只受彎矩而沒有剪力作用,處于純彎曲狀態(tài),則彎矩引起的轉(zhuǎn)角由式(1)[18]確定.
由式(1)可知,最大可彎曲角度對(duì)應(yīng)連續(xù)體彈性關(guān)節(jié)可承受的最大彎矩,即許用彎矩.許用彎矩在材料達(dá)到許用應(yīng)力時(shí)取得.對(duì)純彎曲梁,它的應(yīng)力由式(5)確定.
由式(2)、式(5)得到許用彎矩和許用應(yīng)力的關(guān)系.
可承受的最大彎矩應(yīng)該對(duì)任意位置不超過許用彎矩,即許用彎矩由式(7)確定.
由式(3)、式(4)、式(7)解得許用彎矩的值.
將式(2)、式(3)、式(4)、式(8)代入式(1)得到單節(jié)連續(xù)體彈性關(guān)節(jié)的最大可彎曲角度,如式(9)所示.
其中,需要保證梯形槽的存在,于是有
單節(jié)連續(xù)體彈性關(guān)節(jié)剛度系數(shù)的表達(dá)式為
由式(3)、式(4)、式(12)、式(13)、式(14)可以得到單節(jié)連續(xù)體彈性關(guān)節(jié)剛度系數(shù),如式(15)所示.
觀察建立的連續(xù)體彈性關(guān)節(jié)的最大可彎曲角度模型和剛度系數(shù)模型,二者都是材料參數(shù)因式與結(jié)構(gòu)參數(shù)因式組成的,即連續(xù)體彈性關(guān)節(jié)的力學(xué)性能與材料性能和結(jié)構(gòu)參數(shù)有關(guān).
于是由式(11)、式(16)可以得到式(17)、式(18).
以上為連續(xù)體彈性關(guān)節(jié)靜力學(xué)模型,本文所給出的靜力學(xué)模型能夠建立連續(xù)體彈性關(guān)節(jié)的最大可彎曲角度以及剛度系數(shù)與連續(xù)體彈性關(guān)節(jié)材料以及結(jié)構(gòu)參數(shù)的關(guān)系.
圖4 可彎曲角度和結(jié)構(gòu)參數(shù)的關(guān)系
圖5 剛度系數(shù)和結(jié)構(gòu)參數(shù)的關(guān)系
連續(xù)體彈性關(guān)節(jié)力學(xué)性能-結(jié)構(gòu)參數(shù)的等值線圖,可以分析性能-參數(shù)的變化規(guī)律,也可以根據(jù)所需性能從圖中找對(duì)應(yīng)的結(jié)構(gòu)參數(shù)的組合,進(jìn)而可以為設(shè)計(jì)或優(yōu)化連續(xù)體彈性關(guān)節(jié)參數(shù)提供依據(jù).
表1 結(jié)構(gòu)參數(shù)對(duì)性能的影響
(a)l3=0.01(b)l3=0.20(c)l3=0.35(d)l3=0.50
為了驗(yàn)證所建立靜力學(xué)模型的有效性,進(jìn)行仿真和實(shí)驗(yàn)驗(yàn)證.選用樹脂材料進(jìn)行驗(yàn)證,結(jié)構(gòu)尺寸為外徑10mm,內(nèi)徑8mm,切槽部分長(zhǎng)度75mm.考慮加工工藝,連續(xù)體彈性關(guān)節(jié)梁寬不應(yīng)小于1mm.
為驗(yàn)證連續(xù)體彈性關(guān)節(jié)力學(xué)性能,基于有限元分析軟件ABAQUS進(jìn)行仿真.一方面使用正交實(shí)驗(yàn)設(shè)計(jì)方法,驗(yàn)證各結(jié)構(gòu)參數(shù)對(duì)力學(xué)性能影響的變化趨勢(shì)以及顯著性,不涉及對(duì)具體數(shù)值的驗(yàn)證;另一方面使用控制變量法,驗(yàn)證結(jié)構(gòu)參數(shù)對(duì)力學(xué)性能的影響,包括趨勢(shì)以及具體數(shù)值的準(zhǔn)確性.
表2 實(shí)驗(yàn)方案及實(shí)驗(yàn)結(jié)果
圖7 仿真結(jié)果
表3 極差分析
圖8 力學(xué)性能指標(biāo)與結(jié)構(gòu)參數(shù)因素的關(guān)系
圖9 力學(xué)性能指標(biāo)與結(jié)構(gòu)參數(shù)的關(guān)系
由于所做假設(shè)的原因,靜力學(xué)模型與實(shí)際結(jié)果存在微小誤差.雖然進(jìn)一步細(xì)化模型可以讓計(jì)算結(jié)果更加接近真實(shí)值,但計(jì)算更加耗時(shí)且精度提升并不明顯.由于靜力學(xué)模型對(duì)于參數(shù)影響力學(xué)性能指標(biāo)的趨勢(shì)是準(zhǔn)確的,所以在實(shí)際對(duì)連續(xù)體彈性關(guān)節(jié)的設(shè)計(jì)中,可以先使用靜力學(xué)模型快速逼近,然后使用有限元手段進(jìn)一步細(xì)化.
圖10 模型校正后力學(xué)性能指標(biāo)與結(jié)構(gòu)參數(shù)的關(guān)系
由圖12可知,模型校正結(jié)果、仿真結(jié)果、實(shí)驗(yàn)結(jié)果一致,進(jìn)一步確定了靜力學(xué)模型對(duì)于參數(shù)影響力學(xué)性能指標(biāo)的趨勢(shì)是準(zhǔn)確的.
圖11 拉伸實(shí)驗(yàn)(Instron 5982)
表4 模型計(jì)算、仿真和實(shí)驗(yàn)的力學(xué)性能結(jié)果
圖12 模型校正、仿真和實(shí)驗(yàn)的剛度系數(shù)
圖13 剛度系數(shù)與結(jié)構(gòu)參數(shù)的關(guān)系
由于靜力學(xué)模型對(duì)于參數(shù)影響力學(xué)性能指標(biāo)的趨勢(shì)是準(zhǔn)確的,所以在實(shí)際對(duì)連續(xù)體彈性關(guān)節(jié)的設(shè)計(jì)中,可以先使用靜力學(xué)模型快速逼近,然后使用有限元手段進(jìn)一步細(xì)化.可以根據(jù)所需性能從模型中找對(duì)應(yīng)的結(jié)構(gòu)參數(shù)組合,進(jìn)而可以為設(shè)計(jì)或優(yōu)化連續(xù)體彈性關(guān)節(jié)參數(shù)提供依據(jù).
[1] Gifari M W,Hamid N,Stefano S,et al. A review on recent advances in soft surgical robots for endoscopic applications[J]. International Journal of Medical Robotics and Computer Assisted Surgery,2019,15(5):e2010.
[2] Jessica B,Rucker D C,Choset H. Continuum robots for medical applications:A survey[J]. IEEE Transactions on Robotics,2015,31(6):1261-1280.
[3] Johnathan A E,Davneet S M,Douglas K,et al. Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles[J]. Neurosurgery,2010,67(4):1117-1122.
[4] Abolhassani N,Rajni P,Mehrdad M. Needle insertion into soft tissue:A survey[J]. Medical Engineering & Physics,2007,29(4):413-431.
[5] Stammberger H,Posawetz W. Functional endoscopic sinus surgery-concept,indications and results of the messerklinger technique[J]. European Archives of Oto-Rhino-Laryngology,1990,247(2):63-76.
[6] Jessica B,Rucker D C,Hunter B G,et al. A telerobotic system for transnasal surgery[C]// IEEE/ASME Transactions on Mechatronics. Piscataway,USA,2014:996-1006.
[7] Nikolay V,Andrew H G,Evan B,et al. Percutaneous steerable robotic tool delivery platform and metal microelectromechanical systems device for tissue manipulation and approximation:Closure of patent foramen ovale in an animal model[J]. Circulation-Cardiovascular Interventions,2013,6(4):468-475.
[8] Nikolay V,Andrew H G,Arun V,et al. Tissue removal inside the beating heart using a robotically delivered metal MEMS tool[J]. International Journal of Robotics Research,2015,34(2):236-247.
[9] Yoichi H,Yuta M,Shoji G,et al. Development of minimally invasive medical tools using laser processing on cylindrical substrates[J]. Electrical Engineering in Japan,2011,176(1):65-74.
[10] Michael D K,Sean M S,Christopher Y B,et al. Design of a new cable-driven manipulator with a large open lumen:Preliminary applications in the minimally-invasive removal of osteolysis[C]// IEEE International Conference on Robotics and Automation. Shanghai,China,2011:2913-2920.
[11] Sean M S,Michael D K,Ryan M,et al. Cable length estimation for a compliant surgical manipulator[C]// IEEE International Conference on Robotics and Automation. St Paul,UK,2012:701-708.
[12] Seok C R,Zhan F Q,Koh J S,et al. Design of an optically controlled MR-compatible active needle[J]. IEEE Transactions on Robotics,2015,31(1):1-11.
[13] Philip J S,Peter A Y,Hunter B G,et al. Design,fabrication,and testing of a needle-sized wrist for surgical instruments[J]. Journal of Medical Devices,2017,11:014501.
[14] Peter A Y,Philip J S,Hunter B G,et al. A wrist for needle-sized surgical robots[C]// IEEE International Conference on Robotics and Automation. Seatle,USA,2015:1776-1781.
[15] Hamidreza A,Peter F,Thomas L,et al. Structurally-redesigned concentric-tube manipulators with improved stability[C]// IEEE International Conference on Intelligent Robots and Systems. Chicago,USA,2014:2030-2035.
[16] Kim J S,Lee D Y,Kim K,et al. Toward a solution to the snapping problem in a concentric-tube continuum robot:Grooved tubes with anisotropy[C]// IEEE International Conference on Robotics and Automation. Hong Kong,China,2014:5871-5876.
[17] Lee Y,Kim J,Kim J S,et al. Anisotropic patterning to reduce instability of concentric-tube robots[J]. IEEE Transactions on Robotics,2015,31(6):1311-1323.
[18] 孫訓(xùn)方,方孝淑,關(guān)來泰. 材料力學(xué)[M]. 北京:高等教育出版社,2019.
Sun Xunfang,F(xiàn)ang Xiaoshu,Guan Laitai. Mechanics of Materials[M]. Beijing:Higher Education Press,2019(in Chinese).
[19] 深圳市未來工場(chǎng)科技有限公司產(chǎn)品材料參數(shù)[EB/OL]. http://www. wenext. cn,2020-11-11.
Material parameters of Shenzhen Future Works Technology Co.,Ltd.[EB/OL]. http://www.wenext.cn,2020-11-11(in Chinese).
[20] 葉慈南,曹偉麗. 應(yīng)用數(shù)理統(tǒng)計(jì)[M]. 北京:機(jī)械工業(yè)出版社,2004.
Ye Cinan,Cao Weili. Applied Mathematical Statistics[M]. Beijing:China Machine Press,2004(in Chinese).
Modeling,Simulation,and Experimental Verification of a Continuum Elastic Joint of Surgical Instruments Using a Trapezoidal Cutting Groove
Wang Shuxin,Meng Xiaowei,Hu Zhenxuan
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
For natural orifice transluminal endoscopic surgery(NOTES),a continuum surgical instrument elastic joint with a trapezoidal groove structure was designed according to the flexural and stiffness requirements of the surgical instrument. The structural characteristic parameters of continuum elastic joints are proposed. To eliminate the influence of the original units and their numerical orders of magnitude on the structural parameters and facilitate the determination of the parameter value range,the structural characteristics of the continuum elastic joints were abstracted into four dimensionless structural parameters based on the characteristic length unit. As the structure of the continuum elastic joint is cyclic and repeated along the axis and the deformation of the groove part is the same,one elastic joint was extracted first for statics analysis and then the statics model of the continuum elastic joint,considering that its shape characteristics were obtained by superposition. To verify the mechanical properties of continuum elastic joints,finite element analysis software ABAQUS was used for simulation. On the one hand,based on the orthogonal experimental design method,the variation trend and significance of the influence of various structural parameters on mechanical properties were verified. This process did not involve the verification of specific values. On the other hand,based on the control variable method,the influence of structural parameters on mechanical properties was verified,and the static model was corrected according to the simulation results. The influence of structural parameters on the stiffness coefficient was verified by the experiments based on the control variable method. The results show that the model can effectively describe the flexural and compressive properties of elastic joints and provide guidance for designing elastic joints.
natural orifice transluminal endoscopic surgery;trapezoidal cutting groove;continuum structure;orthogonal experiment;statics model
TH122
A
0493-2137(2022)10-0997-11
10.11784/tdxbz202106015
2021-06-10;
2021-09-13.
王樹新(1966— ),男,博士,教授,shuxinw@tju.edu.cn.
孟曉偉,mengxiaowei@tju.edu.cn.
國家科技支撐計(jì)劃資助項(xiàng)目(2017YFC0110401);國家自然科學(xué)基金資助項(xiàng)目(51875390).
the National Key Research and Development Program of China(No. 2017YFC0110401),the National Natural Science Foundation of China(No. 51875390).
(責(zé)任編輯:王曉燕)