李德文 季倩如 劉英 周文玲 吳嘉儀 趙雨森
摘 要:探討根際與非根際土壤氮素形態(tài)變化,以闡明農(nóng)田防護(hù)林地對土壤氮循環(huán)的影響,為農(nóng)田防護(hù)林的建設(shè)管理提供依據(jù)。該研究選取黑龍江省拜泉縣樟子松純林、落葉松純林、樟子松×落葉松混交林3種典型農(nóng)田防護(hù)林型的土壤,測定土壤理化指標(biāo)、氮素形態(tài)指標(biāo)及氮轉(zhuǎn)化功能基因拷貝數(shù)的變化。結(jié)果表明,混交林根際土壤的酸性程度高于純林,其中,樟子松純林根際土壤pH顯著高于其他林型,落葉松純林土壤電導(dǎo)率最高,其根際電導(dǎo)率值高達(dá)(53.33±2.54)μS/cm,混交林土壤容重顯著大于純林(P<0.05);混交林兩樹種的根際土壤全氮、銨態(tài)氮、硝態(tài)氮含量均顯著高于各自純林(P<0.05),表明混交林土壤氮素成分在3種林型中最優(yōu);與其他林型相比,樟子松純林根際土壤功能基因拷貝數(shù)(amoA-AOA、amoA-AOB、nirS、nosZ、narG、nifH)都處于較低的水平,表明其影響了土壤氮轉(zhuǎn)化速率,降低了土壤銨態(tài)氮、硝態(tài)氮的含量;冗余分析(RDA)結(jié)果表明,農(nóng)田防護(hù)林氮素形態(tài)變化與土壤理化指標(biāo)和氮轉(zhuǎn)化功能基因密切相關(guān),amoA-AOA基因與amoA-AOB基因分別為研究區(qū)根際與非根際土壤影響最大的因子,說明硝化作用在土壤氮轉(zhuǎn)化中占主導(dǎo)位置。綜上,防護(hù)林型的適宜建設(shè)程度由大到小為:混交林、落葉松純林、樟子松純林。
關(guān)鍵詞:拜泉縣;農(nóng)田防護(hù)林:林地類型;根際與非根際:理化指標(biāo);土壤氮;功能基因
中圖分類號:S76??? 文獻(xiàn)標(biāo)識碼:A?? 文章編號:1006-8023(2022)03-0008-08
Characteristics of Nitrogen Forms in Rhizosphere and Non-rhizosphere
Soil of Farmland Shelter Forests
LI Dewen1,2, JI Qianru1, LIU Ying1, ZHOU Wenling1, WU Jiayi1, ZHAO Yusen2*
(1.Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering
and Resource Utilization, Northeast Forestry University, Harbin 150040, China; 2.School of Forestry, Northeast
Forestry University, Harbin 150040, China)
Abstract:To explore the changes of soil nitrogen forms in rhizosphere and non rhizosphere, in order to clarify the impact of farmland shelter on soil nitrogen cycle, and to provide basis for the construction and management of farmland shelter, in this study, three types of shelter in Baiquan County of Heilongjiang Province were selected as the research objects, including pure forest of Pinus sylvestris var. mongholica Litv., pure forest of Larix gmelinii(Rupr.) Kuzen. and a mix of Pinus sylvestris var. mongholica Litv. and Larix gmelinii(Rupr.) Kuzen. The changes of soil physical and chemical indexes, nitrogen form indexes and copy number of nitrogen transformation functional genes were measured.The results showed that the acidity of rhizosphere soil of mixed forest was higher than that of pure forest. Among them, the pH value of rhizosphere soil of Pinus sylvestris pure forest was significantly higher than that of other forest types. The soil conductivity of Larix pure forest was the highest, and its rhizosphere conductivity value was as high as (53.33±2.54) μs/cm, the soil bulk density of mixed forest was significantly higher than that of pure forest (P<0.05). The contents of total nitrogen, ammonium nitrogen and nitrate nitrogen in rhizosphere soil of mixed forest were significantly higher than those of pure forest (P<0.05), indicating that the soil nitrogen of the mixed forest was the best among the three forest types. Compared with other forest types, the copy numbers of soil functional genes (amoA-AOA, amoA-AOB, nirS, nosZ, narG, nifH) in the rhizosphere of pure Pinus sylvestris stand were at a low level, indicating that it affected the transformation rate of soil nitrogen and reduced the content of soil ammonium nitrogen and nitrate nitrogen. The results of RDA showed that the changes of nitrogen forms in farmland shelter were closely related to soil physical and chemical indexes and nitrogen transformation functional genes. amoA-AOA gene and amoA-AOB gene were the largest influencing factors of rhizosphere and non rhizosphere soils in the study area, indicating that nitrification played a dominant role in soil nitrogen transformation.In conclusion, the suitable construction degree of shelter forest type from the most to the least was mixed forest、pure Larix forest、pure Pinus sylvestris forest.BF49E160-7A68-46CF-AAAF-2FABB8E47933
Keywords: Baiquan County; farmland shelter; woodland type; rhizosphere and non-rhizosphere: physical and chemical index; soil nitrogen; functional gene
0 引言
作為農(nóng)田生態(tài)系統(tǒng)的重要屏障,農(nóng)田防護(hù)林的健康狀況監(jiān)測與評估在我國北方農(nóng)田林網(wǎng)管理中尤為重要[1-2],適配的農(nóng)田防護(hù)林系統(tǒng)可以改善田間土壤水分含量[3]、防止溝壑侵蝕[4]等,對防護(hù)林土壤有著重要的調(diào)節(jié)作用。防護(hù)林樹種一般會選擇防護(hù)、用材兼用型樹種,曾以樹體高大、生長迅速的楊樹類樹種為主[5],但常會遭遇枝干病害[6-7]等問題。在對嫩江平原防護(hù)林針葉樹種蒸騰耗水量的觀測中發(fā)現(xiàn),樟子松純林的蒸騰速率最小[8],肖巍[9]研究表明,樟子松農(nóng)田防護(hù)林網(wǎng)內(nèi)表層土壤風(fēng)蝕量小于楊樹農(nóng)田防護(hù)林網(wǎng),由此可知,樟子松等針葉樹種作為防護(hù)林建設(shè)和更新的主栽樹種比重應(yīng)逐步提高。有研究顯示,胡桃楸與落葉松混交后胡桃楸根際營養(yǎng)狀況明顯優(yōu)于純林[10]、杉木混交林可以改善土壤質(zhì)量,尤其是化學(xué)性質(zhì)[11],但也有結(jié)果表明,油桐等純林種植優(yōu)于混交林[12],探討不同樹種間純林與混交林的差異,已成為近年來的研究重點。
氮是生態(tài)系統(tǒng)中重要的理化指標(biāo),可為植物生長提供不可或缺的物質(zhì)和能量[13]。而氮也是植物需求最多的礦質(zhì)營養(yǎng)元素[14],土壤中氮素含量的多少直接體現(xiàn)了土壤肥力的大小[15]。林地土壤中的有效氮主要以銨態(tài)氮和硝態(tài)氮形式存在,研究其動態(tài),對于了解林地生態(tài)系統(tǒng)的生產(chǎn)力和氮素循環(huán)具有重要意義[16]。土壤銨態(tài)氮作為以銨離子(NH+4)形態(tài)存在于土壤中,土壤中的NH+4,在微生物作用下氧化成為硝酸鹽的現(xiàn)象,就是硝化作用,這一過程可以為喜硝植物提供氮素,但也可能產(chǎn)生淋失現(xiàn)象,使土壤中營養(yǎng)元素大量損失,從而發(fā)生反硝化作用。目前,土壤氮循環(huán)涉及的功能基因類別廣泛,分別在土壤氮素轉(zhuǎn)化中起著不同的驅(qū)動作用,包括存在于氨氧化古菌(Ammonia-oxidizing archaea,AOA)和氨氧化細(xì)菌(Ammonia-oxidizing bacterial,AOB)中,在土壤里起硝化作用的amoA基因、起反硝化作用的nosZ、narG和nirS基因和研究土壤中固氮菌類群多樣性的nifH基因等,而這些基因的拷貝數(shù)變化均與土壤理化性質(zhì)改變密切相關(guān),如圖1所示。根際是植物根系與土壤、微生物等接觸最頻繁的區(qū)域,根際環(huán)境會直接影響土壤養(yǎng)分向根系的轉(zhuǎn)移和根系的吸收。與非根際相比,根際土壤對林木生長的影響明顯強(qiáng)于其他土體,根際土壤與土體其他部分養(yǎng)分含量也有很大差異[17]。農(nóng)田防護(hù)林的經(jīng)營行為響應(yīng)的影響因素及內(nèi)在機(jī)理已被大量研究,但是對于林木土壤氮轉(zhuǎn)化功能基因與理化指標(biāo)間的相關(guān)性研究較少。了解林地土壤成分結(jié)構(gòu),通過分析土壤養(yǎng)分循環(huán)基因的變化探討植物根際與非根際環(huán)境的差異,研究根際與非根際土壤養(yǎng)分含量及微生物的差異對于農(nóng)田防護(hù)林的建設(shè)具有重要意義。
基于此,本文通過研究拜泉縣3種林地類型下根際與非根際土壤理化性質(zhì)及氮轉(zhuǎn)化功能基因拷貝數(shù)差異,探討土壤理化指標(biāo)、氮轉(zhuǎn)化功能基因與氮素形態(tài)間的相關(guān)性,以期為今后防護(hù)林的合理經(jīng)營和土壤氮循環(huán)管理提供科學(xué)依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)設(shè)在黑龍江省拜泉縣(125°30′~126°31′E,47°20′~47°55′N), 地屬“北大荒”腹地,北與克山、克東縣接壤,東與海倫市隔河相望,南鄰明水縣,西鄰依安縣。研究區(qū)為中溫帶大陸性季風(fēng)氣候,年均積溫2 454.5 ℃,年均降水量490 mm,年日照時數(shù)2 730 h,無霜日122 d。土壤類型主要以黑土類為主,占該地整個土壤類型的67.9%[18],研究區(qū)屬典型的黑土類土壤類型。
1.2 樣品采集與制備
本研究于2021年4月在拜泉縣選取樟子松純林(Pinus sylvestris var. mongholica Litv.)、落葉松純林(Larix gmelinii (Rupr.) Kuzen.)、樟子松×落葉松混交林(a mix of Pinus sylvestris var. mongholica Litv. and Larix gmelinii (Rupr.) Kuzen.)3種農(nóng)田防護(hù)林林型,并布設(shè)土壤剖面,采集去除枯枝落葉層后的0~20 cm土層根際與非根際土壤樣品,其中根際土采用抖落法,非根際土采用“S”形采樣法,分別5點混合。將采集的樣品分為3部分,一部分放入鋁盒稱質(zhì)量,用于土壤含水率測定;另一部分裝入潔凈的布袋,去除植物殘體、大礫石等,在實驗室自然風(fēng)干,用于理化指標(biāo)及碳素形態(tài)的測定;第3部分用提前滅菌過的采樣裝置錫箔紙、藥勺等采集,放入液氮儲存,用于后續(xù)DNA的提取以及基因功能分析。
1.3 試驗方法
1.3.1 土壤理化性質(zhì)測定
參照土壤農(nóng)化分析方法[19]分別測定土壤 pH、電導(dǎo)率、容重和含水量等土壤基本理化指標(biāo)。采用半微量凱氏定氮法測定土壤全氮含量;采用堿解擴(kuò)散法測定土壤堿解氮含量;采用紫外分光光度法測定土壤硝態(tài)氮含量;采用靛酚藍(lán)比色法測定土壤銨態(tài)氮含量[20]。
1.3.2 土壤氮轉(zhuǎn)化功能基因拷貝數(shù)測定
使用 E.Z.N.A.Soil DNA Kit試劑盒(Omega公司)提取土壤DNA。根據(jù)試劑盒步驟進(jìn)行提取,獲得的DNA于 -20 ℃下保存,再用紫外分光光度計進(jìn)行DNA質(zhì)量濃度及純度的測定,同時進(jìn)行凝膠電泳檢測,得到優(yōu)質(zhì)DNA。隨后,以細(xì)菌16S基因為內(nèi)參,采用qPCR法測定根際及非根際土壤氮循環(huán)相關(guān)功能基因拷貝數(shù),表1為擴(kuò)增引物序列。
1.4 數(shù)據(jù)處理
數(shù)據(jù)結(jié)果均采用平均值±標(biāo)準(zhǔn)差的形式表示,采用SPSS 19.0統(tǒng)計分析軟件進(jìn)行多因素方差分析,采用Canoco 5.0軟件進(jìn)行冗余分析,采用TBtools軟件進(jìn)行熱圖繪制,采用WPS Excel軟件進(jìn)行圖表繪制。BF49E160-7A68-46CF-AAAF-2FABB8E47933
2 結(jié)果與分析
2.1 不同林型根際與非根際土壤理化性質(zhì)加權(quán)平均含量差異
2.1.1 土壤理化指標(biāo)含量差異
由表2方差分析表明,對于不同農(nóng)田防護(hù)林型的土壤而言,樟子松和落葉松純林的根際土壤pH顯著高于其混交林(P<0.05),非根際土壤間差異不顯著;與樟子松純林和樟子松-落葉松混交林相比,落葉松純林的土壤電導(dǎo)率最高,其根際電導(dǎo)率值達(dá)到(53.33±2.54) μS/cm;各林型間含水量無顯著差異,混交林土壤容重顯著大于純林(P<0.05)。
2.1.2 土壤氮素形態(tài)含量差異
對3種林型土壤氮素形態(tài)含量進(jìn)行差異分析,如圖2所示,結(jié)果表明,各林型樹種的根際土壤全氮含量高于非根際,混交林兩樹種的土壤全氮含量均高于各自純林;根際土壤混交林的銨態(tài)氮含量高于純林,且落葉松高于樟子松,在非根際土壤中,樟子松銨態(tài)氮的含量高于落葉松;樟子松純林根際硝態(tài)氮含量顯著低于非根際,而混交林兩樹種硝態(tài)氮含量均是根際顯著高于非根際,從林型來看,根際土壤混交林硝態(tài)氮含量高于純林,落葉松林硝態(tài)氮含量高于樟子松林(P<0.05);3種林型堿解氮含量均是根際低于非根際,且只有樟子松純林根際與非根際間有顯著的差異(P<0.05)。
ZPR為樟子松純林根際;ZPNR為樟子松純林非根際;LPR為落葉松純林根際;LPNR為落葉松純林非根際;MZPR為混交林樟子松根際;MZPNR為混交林樟子松非根際;MLPR為混交林落葉松根際;MLPNR為混交林落葉松非根際。
ZPR is pure forest rhizosphere of Pinus sylvestris, ZPNR is pure forest non-rhizosphere of Pinus sylvestris, LPR is pure forest rhizosphere of Larch sylvestris,? LPNR is pure forest non-rhizosphere of Larch sylvestris, MZPR is the rhizosphere of Pinus sylvestris mixed forest, MZPNR is the non-rhizosphere of Pinus sylvestris mixed forest, MLPR is the rhizosphere of larch in mixed forest, MLPNR is the non-rhizosphere of larch in mixed forest.
2.2 不同林型土壤氮轉(zhuǎn)化功能基因拷貝數(shù)差異分析
對根際土壤混交林及純林中的不同林木根際土壤功能基因拷貝數(shù)進(jìn)行綜合排序,如圖3(a)所示,除amoA-AOA基因外,其他基因都是落葉松表達(dá)量最高,且amoA-AOA基因落葉松純林的表達(dá)量也高于樟子松純林。樟子松純林6種土壤氮轉(zhuǎn)化功能基因拷貝數(shù)與其他林型相比均處于較低的位置,而落葉松純林各個基因的表達(dá)量都相對較高。在非根際土壤中,綜合排序與根際土壤結(jié)果相同,如圖3(b)所示,但樟子松林土壤amoA-AOA基因拷貝數(shù)顯著高于落葉松(P<0.05)。
2.3 不同林型土壤理化指標(biāo)、功能基因與氮素形態(tài)相關(guān)分析
對不同林型土壤理化指標(biāo)、氮轉(zhuǎn)化功能基因與氮素形態(tài)進(jìn)行冗余分析(Redundancy Analysis,RDA),由圖4(a)可知,amoA-AOA基因是3種林型中根際土壤影響最大的因子。此外, nosZ基因也對根際土壤影響顯著。土壤pH與全氮呈正相關(guān),各個功能基因與土壤電導(dǎo)率呈顯著正相關(guān),除nirS基因外,土壤pH與余下功能基因負(fù)相關(guān),土壤pH與土壤全氮、銨態(tài)氮、硝態(tài)氮也都呈負(fù)相關(guān)。RDA兩軸的累積貢獻(xiàn)率分別為43.14%和23.02%。
由圖4(b)非根際土壤的RDA結(jié)果表明,amoA -AOB基因是非根際土壤的最大影響因子。土壤電導(dǎo)率與全氮、硝態(tài)氮呈正相關(guān),pH與堿解氮呈正相關(guān),土壤銨態(tài)氮與硝態(tài)氮呈微弱正相關(guān),與全氮、pH等呈負(fù)相關(guān)。土壤全氮、pH與除amoA-AOA外的其他基因呈正相關(guān)。RDA兩軸的累積貢獻(xiàn)率分別為47.23%和29.01%。
3 討論
土壤理化指標(biāo)會影響植物對氮素形態(tài)的吸收[23]。作為反映土壤酸堿度的指標(biāo),土壤pH對土壤肥力狀況影響很大,本研究中,拜泉縣樟子松純林、落葉松純林、樟子松×落葉松混交林這3種林型的土壤都呈酸性,除落葉松純林外,其他林型樹種根際與非根際土壤pH均差異顯著(P<0.05),在純林中,樟子松非根際的酸性高于根際,但混交林樟子松和落葉松根際的酸性程度都高于各自的非根際,見表2。有研究表明,不同林齡華北落葉松[24]以及馬鈴薯[25]根際土壤pH顯著低于非根際(P<0.05),與本文混交林土壤pH結(jié)果一致。電導(dǎo)率是體現(xiàn)土壤含鹽量的重要指標(biāo),土壤電導(dǎo)率可以直接反映出土壤混合鹽的含量,從表2可知,落葉松純林根際的土壤電導(dǎo)率達(dá)到(53.33±2.54) μS/cm,遠(yuǎn)高于其他土壤類別,說明其根際土壤含鹽量很大,樟子松純林土壤含鹽量不高,而在混交林中,兩樹種根際的含鹽量相互中和,維持在一個相似的水平,孫瀚等[26]研究表明,土壤鹽分脅迫下其有機(jī)氮組成對黃河三角洲鹽漬土壤肥力的形成具有重要作用,說明落葉松純林土壤肥力受電導(dǎo)率的促進(jìn)作用。本研究中,各林型間含水量無顯著差異,這可能是由于本研究的取樣時間處于土壤層春耕前期,天氣較冷階段,土層水分比較一致。
土壤中不同氮素形態(tài)在整個氮循環(huán)中不斷進(jìn)行著硝化、反硝化和固氮等過程,組成了農(nóng)業(yè)生態(tài)系統(tǒng)的關(guān)鍵部分[27]。本研究中,樟子松純林根際土壤銨態(tài)氮和硝態(tài)氮在不同林型中含量最低(圖2),有試驗表明[28-30],土壤硝態(tài)氮、銨態(tài)氮和pH與起固氮作用的nifH基因顯著相關(guān)(P<0.05),土壤全氮和銨態(tài)氮含量與起反硝化作用的nosZ基因顯著相關(guān)(P<0.05),本研究中,樟子松純林根際的各項氮素形態(tài)都與其非根際有較大的差異,這可能是導(dǎo)致樟子松純林土壤功能基因表達(dá)量相對較低的原因。拜泉縣3種林型根際土壤中,混交林樟子松的全氮含量最高,與純林相比,混交林兩樹種土壤全氮和銨態(tài)氮的含量均高于純林土壤指標(biāo);非根際土壤的純林中樟子松的土壤硝態(tài)氮含量較高,落葉松的土壤硝態(tài)氮含量較低,在混交林中,兩樹種土壤硝態(tài)氮的含量與樟子松和落葉松純林相比分別呈下降和上升的變化,土壤堿解氮也有相似的變化趨勢。有試驗表明,適當(dāng)在純林中保留混生樹種對改善林分結(jié)構(gòu)、提高土壤肥力具有較好的促進(jìn)作用,且能夠提高林分質(zhì)量[31-32],還有研究表明,混種模式可顯著提升土壤的水分含量、銨態(tài)氮和硝態(tài)氮含量,降低土壤pH[33],這些都與本研究中混交林調(diào)控了各自樹種純林的土壤養(yǎng)分含量結(jié)果一致。BF49E160-7A68-46CF-AAAF-2FABB8E47933
土壤微生物分類結(jié)構(gòu)已在眾多研究中得到廣泛調(diào)查,而通過定量分析功能基因可以更有效地測定土壤的微生物功能結(jié)構(gòu)模式[34]。本研究RDA(圖4)結(jié)果表明,amoA-AOA基因與amoA-AOB基因分別為研究地根際與非根際土壤影響最大的因子。郭俊杰等[27]的研究表明,amoA-AOB基因是施肥影響下氮循環(huán)功能微生物群落豐度變異最重要的基因,即施肥促進(jìn)了硝化作用的產(chǎn)生,在研究地采樣時附近農(nóng)田已經(jīng)施加了農(nóng)家肥,這可能是這2種基因在林地里響應(yīng)最大的原因,而根際土壤混交林的硝態(tài)氮和銨態(tài)氮含量均顯著大于純林(圖2),也說明混交林根際土壤的硝化作用高于純林。除樟子松純林外,其他林型樹種根際土壤的功能基因表達(dá)量均顯著高于各自的非根際土壤(P<0.05)。在根際土壤中,樟子松純林的amoA-AOA基因表達(dá)量較低,混交林兩樹種的該基因表達(dá)量相似且都高于各自純林。無論根際、非根際土壤或不同林型,amoA-AOA表達(dá)量均顯著高于amoA-AOB,如圖3所示,在對青藏高原高寒濕地的研究中表明,AOB 和AOA 對硝化作用的相對貢獻(xiàn)存在明顯的季節(jié)差異,多數(shù)采樣點中冬季 AOA 在硝化作用中占主導(dǎo)地位[35],本次采樣時間溫度較低,不是植物生長季,這可能是amoA-AOA表達(dá)量較高的原因。有關(guān)研究表明,nifH基因可以促進(jìn)氮?dú)獾墓潭?,從而形成NH+4[36],土壤nifH基因表達(dá)量越大,其銨態(tài)氮含量也應(yīng)越高,及二者呈正相關(guān),這與本研究根際土壤(圖4(a))RDA分析結(jié)果一致。對6種基因拷貝數(shù)進(jìn)行比較,無論根際與非根際土壤,除amoA-AOA基因的非根際部分外,落葉松林其他基因的拷貝數(shù)均高于樟子松,可以看出純林中落葉松林的氮循環(huán)能力更強(qiáng)。
4 結(jié)論
(1)樟子松純林、落葉松純林、樟子松×落葉松混交林3種林型下各樹種的根際土壤全氮含量均高于非根際,說明根際土壤比非根際土壤氮含量更高,混交林根際土壤的銨態(tài)氮、硝態(tài)氮含量均高于純林,且落葉松高于樟子松,表明混交林會調(diào)控各自純林的土壤氮素形態(tài)含量。
(2)不同農(nóng)田防護(hù)林間土壤理化指標(biāo)和功能基因都存在著顯著差異,樟子松純林根際土壤pH顯著高于其他林型,落葉松純林土壤電導(dǎo)率最高,混交林土壤容重顯著大于純林(P<0.05)。RDA結(jié)果表明,amoA基因是研究區(qū)土壤影響最大的因子,說明該地區(qū)土壤氮循環(huán)硝化作用較強(qiáng)。不同林型下,落葉松土壤氮轉(zhuǎn)化功能基因拷貝數(shù)都較高,且落葉松林根際土壤的銨態(tài)氮硝態(tài)氮含量高于樟子松,說明樟子松純林土壤活性低于落葉松。綜上所述,拜泉縣農(nóng)田防護(hù)林型的適宜建設(shè)程度由大到小為:混交林、落葉松純林、樟子松純林。
【參 考 文 獻(xiàn)】
[1]王學(xué)文,趙慶展,韓峰,等.機(jī)載多光譜影像語義分割模型在農(nóng)田防護(hù)林提取中的應(yīng)用[J].地球信息科學(xué)學(xué)報,2020,22(8):1702-1713.
WANG X W, ZHAO Q Z, HAN F, et al. Application of airborne multispectral image semantic segmentation model in farmland shelterbelt extraction[J]. Journal of Geo-Information Science, 2020, 22(8): 1702-1713.
[2]溫寧,周慧,張紅麗.農(nóng)戶農(nóng)田防護(hù)林經(jīng)營行為響應(yīng)的影響因素研究:基于新疆1106份農(nóng)戶調(diào)查數(shù)據(jù)[J].林業(yè)經(jīng)濟(jì),2021,43(2):71-83.
WEN N, ZHOU H, ZHANG H L. Research on influencing factors of farmers farmland shelterbelt management behavior response-based on 1106 survey data of farmers in Xinjiang[J]. Forestry Economics, 2021, 43(2): 71-83.
[3]王棟,肖輝杰,辛智鳴,等.不同配置農(nóng)田防護(hù)林對田間土壤水分空間變異的影響[J].水土保持學(xué)報,2020,34(5):223-230.
WANG D, XIAO H J, XIN Z M, et al. Effects of different configurations of farmland shelterbelt system on spatital variation of soil moisture content[J]. Journal of Soil and Water Conservation, 2020, 34(5): 223-230.
[4]DENG R X, WANG W J, LI Y, et al. Analysis of changes in shelterbelt landscape in northeast China[J]. Applied Ecology and Environmental Research, 2019, 17(5): 11655-11668.
[5]高金輝,劉運(yùn)偉,韓家永,等.小興安嶺刺五加群落植物組成及區(qū)系分析[J].森林工程,2021,37(6):39-46.
GAO J H, LIU Y W, HAN J Y, et al. Plant Composition and floristic analysis of Eleutherococcus senticosus communities in Xiaoxinganling[J]. Forest Engineering, 2021, 37(6): 39-46.
[6]溫磊磊,王教河,任明,等.東北黑土區(qū)水土流失綜合治理成效[J].中國水土保持,2021(6):4-7.BF49E160-7A68-46CF-AAAF-2FABB8E47933
WEN L L, WANG J H, REN M, et al. Effect of comprehensive control of soil and water loss in black soil area of northeast China[J]. Soil and Water Conservation in China, 2021(6): 4-7.
[7]閻合.中國東北地區(qū)楊樹腐爛病時空流行特點與風(fēng)險分析[D].北京:北京林業(yè)大學(xué),2020.
YAN H. Spatio-temporal epidemic characteristics and risk analysis of poplar canker of Cytospora chrysosperma in northeast China[D]. Beijing: Beijing Forestry University, 2020.
[8]孫楠,張怡春,趙眉芳.長白落葉松人工林根系生物量及其垂直分布特征[J].森林工程,2021,37(6):17-24,67.
SUN N, ZHANG Y C, ZHAO M F. Root biomass and vertical distribution characteristicsof larch plantation[J]. Forest Engineering, 2021, 37(6): 17-24,67.
[9]肖巍.章古臺地區(qū)農(nóng)田防護(hù)林對風(fēng)蝕的影響[J].防護(hù)林科技,2020(7):12-13,27.
XIAO W. Effect of farmland shelterbelt on soil wind erosion in the Zhanggutai region[J]. Protection Forest Science and Technology, 2020(7): 12-13, 27.
[10]DIWAKAR S K, ZAIDI S, KUMAR S, et al. Effect of land use systems on soil health in eastern region of Uttar Pradesh[J]. Indian Journal of Agricultural Sciences, 2021, 91(2): 647-650.
[11]ZHOU L, SUN Y J, SAEED S, et al. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species[J]. Global Ecology and Conservation, 2020, 22: e01009.
[12]LIU L Y, ZHANG L, PAN J, et al. Soil C-N-P pools and stoichiometry as affected by intensive management of Camellia oleifera plantations[J]. PLoS One, 2020, 15(9): e0238227.
[13]胡曉婧,劉俊杰,于鎮(zhèn)華,等.東北黑土nirS型反硝化細(xì)菌群落和網(wǎng)絡(luò)結(jié)構(gòu)對長期施用化肥的響應(yīng)[J].植物營養(yǎng)與肥料學(xué)報,2020,26(1):1-9.
HU X J, LIU J J, YU Z H, et al. Response of nirS-type denitrifier community and network structures to long-term application of chemical fertilizers in a black soil of northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 1-9.
[14]劉增泰,趙學(xué)強(qiáng),王嘉林,等.鋁處理對不同耐鋁水稻品種吸收銨態(tài)氮和硝態(tài)氮以及相關(guān)基因表達(dá)的影響[J].江西農(nóng)業(yè)學(xué)報,2021,33(5):1-7.
LIU Z T, ZHAO X Q, WANG J L, et al. Effects of aluminum treatments on uptake of ammonium and nitrate and expression of related genes in different aluminum-tolerant rice varieties[J]. Acta Agriculturae Jiangxi, 2021, 33(5): 1-7.
[15]邵文山,李國旗.土壤酶功能及測定方法研究進(jìn)展[J].北方園藝,2016(9):188-193.
SHAO W S, LI G Q. Research progress of soil enzymes function and its determination method[J]. Northern Horticulture, 2016(9): 188-193.
[16]丁令智,滿秀玲,肖瑞晗.大興安嶺北部主要樹種生長季根際土壤氮素含量特征[J].中南林業(yè)科技大學(xué)學(xué)報,2019,39(2):65-71,92.
DING L Z, MAN X L, XIAO R H. Characteristics of nitrogen content in rhizosphere soil of main tree species in northern part of Daxinganling during growing seasons[J]. Journal of Central South University of Forestry & Technology, 2019, 39(2): 65-71, 92.BF49E160-7A68-46CF-AAAF-2FABB8E47933
[17]吳曉生.不同林齡杉木根際和非根際土壤碳氮磷化學(xué)計量特征[J].林業(yè)勘察設(shè)計,2020,40(4):8-12.
WU X S. Stoichiometric characteristics of carbon, nitrogen and phosphorus in rhizosphere and non-rhizosphere soil of Cunninghamia lanceolata at different ages[J]. Forestry Prospect and Design, 2020, 40(4): 8-12.
[18]張軍.黑土區(qū)防護(hù)林土壤質(zhì)量評價及其土壤細(xì)菌多樣性研究[D].哈爾濱:東北林業(yè)大學(xué),2020.
ZHANG J. Evaluation of the soil quality and study on soil bacterial diversity of shelterbelts in the black soil region[D]. Harbin: Northeast Forestry University, 2020.
[19]李忠意,楊劍虹,程永毅,等.“土壤農(nóng)化分析”實驗教學(xué)的改革與探索[J].西南師范大學(xué)學(xué)報(自然科學(xué)版),2019,44(1):144-149.
LI Z Y, YANG J H, CHENG Y Y, et al. The reform and exploration on teaching of soil agrochemistry analysis experiment[J]. Journal of Southwest China Normal University (Natural Science Edition), 2019, 44(1): 144-149.
[20]韓小美,黃則月,程飛,等.望天樹人工林根際土壤理化性質(zhì)及微生物群落特征[J].應(yīng)用生態(tài)學(xué)報,2020,31(10):3365-3375.
HAN X M, HUANG Z Y, CHENG F, et al. Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3365-3375.
[21]FFIEDL J, CCARDENAS L M, TIMOTHY J C, et al. Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils[J]. Current Opinion in Environmental Sustainability, 2020, 47: 61-71.
[22]方文生.土壤熏蒸對氮循環(huán)功能微生物及N2O生成的影響與機(jī)制[D].北京:中國農(nóng)業(yè)科學(xué)院,2019.
FANG W S. Effects and mechanisms of soil fumigation on nitrogen cycling microorganisms and N2O production[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[23]湯丹丹,劉美雅,張群峰,等.不同氮素形態(tài)、pH對茶樹元素吸收及有機(jī)酸含量影響[J].茶葉科學(xué),2019,39(2):159-170.
TANG D D, LIU M Y, ZHANG Q F, et al. Effects of nitrogen form and root-zone pH on nutrient uptake and concentrations of organic anions in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2019, 39(2): 159-170.
[24]郭輝,唐衛(wèi)平.不同林齡華北落葉松根際與非根際土壤酶和土壤微生物研究[J].生態(tài)環(huán)境學(xué)報,2020,29(11):2163-2170.
GUO H, TANG W P. Enzyme activity and microbial community diversity in rhizosphere and non-rhizosphere soil of Larix principis-rupprechtii[J]. Ecology and Environmental Sciences, 2020, 29(11): 2163-2170.
[25]葛應(yīng)蘭,孫廷.馬鈴薯根際與非根際土壤微生物群落結(jié)構(gòu)及多樣性特征[J].生態(tài)環(huán)境學(xué)報,2020,29(1):141-148.
GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148.
[26]孫瀚,屈杰,王曉雯,等.黃河三角洲鹽漬土有機(jī)氮組成及氮有效性對土壤含鹽量的響應(yīng)[J].中國生態(tài)農(nóng)業(yè)學(xué)報(中英文),2021,29(8):1397-1404.BF49E160-7A68-46CF-AAAF-2FABB8E47933
SUN H, QU J, WANG X W, et al. The response of soil organic nitrogen fractions and nitrogen availability to salinity in saline soils of the Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1397-1404.
[27]郭俊杰,朱晨,劉文波,等.不同施肥模式對土壤氮循環(huán)功能微生物的影響[J].植物營養(yǎng)與肥料學(xué)報,2021,27(5):751-759.
GUO J J, ZHU C, LIU W B, et al. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 751-759.
[28]陳秀波.不同林型紅松林土壤微生物群落組成和多樣性及與理化性質(zhì)關(guān)系[D].哈爾濱:東北林業(yè)大學(xué),2020.
CHEN X B. Community composition and diversity of soil microorganisms in different forest types of Pinus koraiensis forest and their relationship with physicochemical properties[D]. Harbin: Northeast Forestry University, 2020.
[29]梁文光.氮對樟子松幼苗生長及生理特性的影響[J].林業(yè)科技情報,2020,52(4):58-60.
LIANG W G. Effects of nitrogen on the growth and physiological characteristics of Pinus slyvestris var. mongolica seedlings[J]. Forestry Science and Technology Information, 2020, 52(4): 58-60.
[30]王志波,季蒙,李銀祥,等.氮添加與凋落物管理對華北落葉松人工林土壤化學(xué)性質(zhì)的影響[J].西部林業(yè)科學(xué),2021,50(4):26-32,40.
WANG Z B, JI M, LI Y X, et al. Effects of nitrogen addition and litter management on soil chemical properties of Larix principis-rupprechtii plantation[J]. Journal of West China Forestry Science, 2021, 50(4): 26-32, 40.
[31]陳才榜.毛竹純林與竹闊混交林生長量比較研究[J].農(nóng)村經(jīng)濟(jì)與科技,2020,31(21):71-72.
CHEN C B. Comparative study on growth of pure moso bamboo forest and mixed bamboo broad-leaved forest [J]. Rural Economy and Science-Technology, 2020, 31(21): 71-72.
[32]惠昊,關(guān)慶偉,王亞茹,等. 不同森林經(jīng)營模式對土壤氮含量及酶活性的影響[J]. 南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2021, 45(4): 151-158.
HUI H, GUAN Q W, WANG Y R, et al. Effects of different forest management modes on soil nitrogen content and enzyme activity[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 151-158.
[33]張玲玲,李青梅,賈夢圓,等.覆蓋作物對獼猴桃園土壤氨氧化微生物豐度和群落結(jié)構(gòu)的影響[J].植物營養(yǎng)與肥料學(xué)報,2021,27(3):417-428.
ZHANG L L, LI Q M, JIA M Y, et al. Effects of cover crops on gene abundance and community structure of soil ammonia-oxidizing microorganism in a kiwifruit orchard[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 417-428.
[34]CHENG J M, HAN Z J, CONG J, et al. Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests[J]. Science of the Total Environment, 2021, 773: 145630.
[35]羅晴,甄毓,彭宗波,等.三亞河紅樹林表層沉積物中好氧氨氧化微生物的分布特征及潛在硝化速率[J].環(huán)境科學(xué),2020,41(8):3787-3796.
LUO Q, ZHEN Y, PENG Z B, et al. Distribution and potential nitrification rates of aerobic ammonia-oxidizing microorganisms in surface sediments of mangrove in Sanya River[J]. Environmental Science, 2020, 41(8): 3787-3796.
[36]梁艷,明安剛,何友均,等.南亞熱帶馬尾松-紅椎混交林及其純林土壤細(xì)菌群落結(jié)構(gòu)與功能[J].應(yīng)用生態(tài)學(xué)報,2021,32(3):878-886.
LIANG Y, MING A G, HE Y J, et al. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 878-886.BF49E160-7A68-46CF-AAAF-2FABB8E47933