高連德 左效平
真題呈現(xiàn)
例 (2021·四川·涼山)如圖1,在四邊形ABCD中,∠ADC = ∠B = 90°,過點(diǎn)D作DE⊥AB于E,DE = BE.(1)求證:DA = DC;(2)連接AC交DE于點(diǎn)F,若∠ADE = 30°,AD = 6,求DF的長. (本文僅分析第一問)
學(xué)法指導(dǎo)
解法1:構(gòu)造正方形法
如圖2,過點(diǎn)D作DG⊥BC,交BC的延長線于點(diǎn)G,
∵DE⊥AB,∠B = 90°,DG⊥BC,
∴四邊形DEBG是矩形.
∵DE = BE,∴四邊形DEBG是正方形,
∴DG = DE,∠EDG = ∠G = 90°.
∵∠ADC = 90°,∴∠GDC = ∠EDA,∴△GDC≌△EDA(ASA),∴DA = DC.
解法2:勾股定理法
如圖3,過點(diǎn)C作CG⊥DE,垂足為點(diǎn)G,
設(shè)DA = a,DC = b,DE = EB = x,AE = m,BC = n.
∵DE⊥AB,∠B = 90°,CG⊥DE,∴四邊形BCGE是矩形,
∴CG = BE = x,GE = BC = n,DG = DE - GE = DE - BC = x - n.
∵∠ADC = 90°,∠B = 90°,∠DGC = 90°,∠DEA = 90°,
∴[a2+b2=n2+(x+m)2],[a2=x2+m2],[b2=x2+(x-n)2],
∴[a2+b2=2x2+m2+(x-n)2],∴[2x2+m2+(x-n)2] = [n2+(x+m)2],
∴[2x2+m2+x2-2xn+n2] = [n2+x2+2mx+m2],
∴[2x2-2xn] = [2mx],∴m = x - n,∴[m2=(x-n)2],
∴[a2=b2],∴a = b,即DA = DC.
解法3:全等三角形法
如圖3,過點(diǎn)C作CG⊥DE,垂足為點(diǎn)G,
∵DE⊥AB,∠B = 90°,CG⊥DE,∴四邊形BCGE是矩形,∴CG = BE = DE.
∵∠ADC = 90°,∠DGC = 90°,∴∠GCD = ∠EDA,∴△GCD≌△EDA(ASA),∴DA = DC.
變式演練
變式1:變換結(jié)論的表現(xiàn)形式.
如圖1,在四邊形ABCD中,∠ADC = ∠B = 90°,過點(diǎn)D作DE⊥AB于E,DE = BE.求證:∠DAC = 45°. (證明過程略)
變式2:變換已知和結(jié)論,展開新探索.
如圖1,在四邊形ABCD中,∠ADC = ∠B = 90°,過點(diǎn)D作DE⊥AB于E,若DA = DC. 求證:DE = BE.(證明過程略)
變式3:保持條件不變,探索面積型新結(jié)論.
如圖1,在四邊形ABCD中,∠ADC = ∠B = 90°,過點(diǎn)D作DE⊥AB于E,若DE = BE,則[S四邊形ABCD=DE2=BE2]. (證明過程略)
變式4:變化問題背景,探索結(jié)論的穩(wěn)定性.
如圖4,在正方形ABCD中,點(diǎn)E是CD邊上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)C,D不重合),連接AE,過點(diǎn)A作AE的垂線交CB的延長線于點(diǎn)F,連接EF. (1)依據(jù)題意,補(bǔ)全圖形;(2)求∠AEF的度數(shù);(3)連接AC,交EF于點(diǎn)H,若[FHEH=a],用含a的等式表示線段CF和CE之間的數(shù)量關(guān)系,并說明理由.
解析:(1)補(bǔ)全圖形,如圖5所示.
(2)易證△ABF≌△ADE,可知△AEF是等腰直角三角形,則∠AEF = 45°.
(3)數(shù)量關(guān)系為CF = aCE.
理由:如圖6,過H作HM⊥DC,垂足為M,
過H作HN⊥BC,垂足為N,易證四邊形MHNC是矩形,
由∠HCM = ∠HCN = 45°,易得∠HCM = ∠MHC,
∴HM = CM,
∴HM = HN,
∴[S△FHCS△EHC=12CF·HN12CE·HM=FCEC=FHEH=a],
∴CF = aCE.