程蘭
一、探索圖形面積
例1 (2021·廣西·梧州)如圖1,直線l的函數(shù)表達(dá)式為y = x - 1,在直線l上順次取點(diǎn)A1(2,1),A2(3,2),A3(4,3),A4(5,4),…,An(n + 1,n),構(gòu)成形如“┐”的圖形的陰影部分面積分別表示為S1,S2,S3,…,Sn,則S2021 = .
解析:∵A1(2,1),A2(3,2),A3(4,3),A4(5,4),…,An(n + 1,n),
∴S1 = [12] × (1 + 2) × 1 + [12] × (2 + 3) × 1 =? 4 = 2 × 1 + 2,
S2 = [12] × (2 + 3) × 1 + [12] × (3 + 4) × 1 = 6 = 2 × 2 + 2,
S3 = [12] × (3 + 4) × 1 + [12] × (4 + 5) × 1 = 8 = 2 × 3 + 2,
…
Sn = 2n + 2,
∴當(dāng)n = 2021時(shí),S2021 = 2 × 2021 + 2 = 4044. 故應(yīng)填4044.
二、探索點(diǎn)坐標(biāo)
例2 (2021·貴州·畢節(jié))如圖2,點(diǎn)N1(1,1)在直線l:y = x上,過點(diǎn)N1作N1M1⊥l,交x軸于點(diǎn)M1;過點(diǎn)M1作M1N2⊥x軸,交直線l于N2;過點(diǎn)N2作N2M2⊥l,交x軸于點(diǎn)M2;過點(diǎn)M2作M2N3⊥x軸,交直線l于點(diǎn)N3;……,按此作法進(jìn)行下去,則點(diǎn)M2021的坐標(biāo)為 .
解析:如圖3,過N1作N1E⊥x軸于E,N1F⊥y軸于F,
∵N1(1,1),∴N1E = N1F = 1,∴∠N1OM1 = 45°,
∴∠N1OM1 = ∠N1M1O = 45°,
∴△N1OM1是等腰直角三角形,∴N1F = OF = EM1 = 1,
∴OM1 = 2,∴M1(2,0).
同理,△M2ON2是等腰直角三角形,∴OM2 = 2OM1 = 4,∴M2(4,0),
同理,OM3 = 2OM2 = 22OM1 = 23,∴M3(23,0),∴OM4 = 2OM3 = 24,∴M4(24,0),…
依次類推,則M2021(22021,0).故應(yīng)填(22021,0).
初中生學(xué)習(xí)指導(dǎo)·提升版2022年7期