張娟 李雪 蔣浩 黃曉萍
【摘要】目的 觀(guān)察竹節(jié)香附素A(RDA)對(duì)人宮頸癌HeLa細(xì)胞增殖和凋亡的影響,并探討其作用機(jī)制。方法 分別使用0、5、10、20及40μmol/L的RDA干預(yù)HeLa細(xì)胞48 h,CCK-8實(shí)驗(yàn)測(cè)定細(xì)胞增殖率,計(jì)算半抑制濃度(IC50),確定藥物濃度。流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡,蛋白免疫印跡法檢測(cè)細(xì)胞中B細(xì)胞淋巴瘤2家族蛋白(Bcl-2)、Bcl-2相關(guān)x蛋白(Bax)、活化胱天蛋白酶-3(Cleaved-caspase-3)、磷酸化磷脂酰肌醇3激酶(p-PI3K)、磷酸化蛋白激酶B(p-Akt)、磷酸化哺乳動(dòng)物雷帕霉素靶蛋白(p-mTOR)的蛋白表達(dá)水平。將HeLa細(xì)胞分為4組,即空白對(duì)照組、胰島素樣生長(zhǎng)因子-1(IGF-1)組、RDA組和聯(lián)合用藥組,檢測(cè)及比較各組細(xì)胞增殖率、凋亡率和p-PI3K、p-Akt和p-mTOR蛋白相對(duì)表達(dá)量。結(jié)果 隨著RDA濃度的增加,HeLa細(xì)胞的增殖率降低、凋亡率升高(P均< 0.05),Bax、Cleaved-caspase-3蛋白相對(duì)表達(dá)量升高(P均< 0.05),Bcl-2、p-PI3K、p-Akt、p-mTOR蛋白相對(duì)表達(dá)量降低(P均< 0.05);IGF-1激活PI3K/Akt/mTOR信號(hào)通路后,RDA仍然能抑制HeLa細(xì)胞增殖(P均< 0.05),降低p-PI3K、p-Akt、p-mTOR蛋白相對(duì)表達(dá)量(P均< 0.05)。結(jié)論 RDA可能通過(guò)抑制PI3K/Akt/mTOR信號(hào)通路對(duì)人宮頸癌HeLa細(xì)胞產(chǎn)生抑制增殖與促進(jìn)凋亡的效果。
【關(guān)鍵詞】竹節(jié)香附素A;HeLa細(xì)胞;宮頸癌;細(xì)胞凋亡;PI3K/Akt/mTOR信號(hào)通路
【Abstract】Objective To investigate the effect of Raddeanin A (RDA) on the proliferation and apoptosis of cervical cancer HeLa cells and to explore the possible mechanism. Methods HeLa cells were cultured in vitro and treated with RDA at a concentration of 0, 5, 10, 20, and 40 μmol/L for 48 h. Cell proliferation rate was determined by CCK-8. The half-maximal inhibitory concentration (IC50) was calculated to determine the drug concentration. Flow cytometry was used to detect cell apoptosis, and western blot was employed to detect the expression levels of Bcl-2, Bax, Cleaved-caspase-3, p-PI3K, p-Akt, and p-mTOR proteins. Hela cells were divided into four groups: control group, IGF-1 group, RDA group and combined treatment group. The proliferation rate, apoptosis rate, relative expression levels of p-PI3K, p-Akt and p-mTOR proteins were detected and compared among different groups. Results The proliferation rate of HeLa cells was significantly declined, whereas the apoptosis rate was significantly elevated with the increasing concentration of RDA (both P < 0.05), the relative expression levels of Bax and Cleaved-caspase-3 proteins were significantly up-regulated (both P < 0.05), whereas those of Bcl-2, p-PI3K, p-Akt and p-mTOR proteins were significantly down-regulated (all P < 0.05). After the activation of PI3K/Akt/mTOR signaling pathway by IGF-1, RDA could still inhibit the proliferation of HeLa cells and down-regulate the relative expression levels of p-PI3K, p-Akt and p-mTOR proteins (all P < 0.05). Conclusion RDA can inhibit the proliferation and promote the apoptosis of cervical cancer HeLa cells by suppressing the PI3K/Akt/mTOR signaling pathway.
【Key words】Raddeanin A; HeLa cell; Cervical cancer; Apoptosis; PI3K/Akt/mTOR signaling pathway
宮頸癌在全球女性常見(jiàn)惡性腫瘤中居第四位,在發(fā)展中國(guó)家常見(jiàn)惡性腫瘤中居第二位[1]。當(dāng)前的治療策略包括手術(shù)切除、化學(xué)治療和放射治療,但療效均有限[2]。如何預(yù)防與治療宮頸癌是全球醫(yī)學(xué)工作者們共同關(guān)注的課題。竹節(jié)香附素A(RDA)是從常用的傳統(tǒng)中草藥??刑崛〉囊环N活躍三萜皂苷,通過(guò)抑制腫瘤細(xì)胞增殖和血管生成產(chǎn)生抗腫瘤活性,同時(shí)能誘導(dǎo)多種腫瘤細(xì)胞凋亡,如大腸癌細(xì)胞、胃癌細(xì)胞和肝癌細(xì)胞[3]。磷脂酰肌醇3激酶/蛋白激酶B/ 哺乳動(dòng)物雷帕霉素靶蛋白(PI3K/Akt/mTOR)信號(hào)通路是一條常見(jiàn)的細(xì)胞信號(hào)通路,由于mTOR能調(diào)節(jié)細(xì)胞代謝活動(dòng),因此被作為抑制腫瘤細(xì)胞生長(zhǎng)的靶點(diǎn)。有研究者發(fā)現(xiàn),RDA可能通過(guò)激活p38MAPK通路和抑制mTOR活化誘導(dǎo)胃癌細(xì)胞凋亡[4]。RDA在宮頸癌中未有相關(guān)報(bào)道。因此,本研究探究RDA對(duì)人宮頸癌HeLa細(xì)胞增殖和凋亡的影響,并初步探討其可能的作用機(jī)制。
材料與方法
一、主要材料
人宮頸癌HeLa細(xì)胞,購(gòu)自中國(guó)科學(xué)院典型培養(yǎng)物保藏委員會(huì)細(xì)胞庫(kù)。RDA,純度≥98%,購(gòu)自上海源葉生物科技有限公司,批號(hào)20190203;胰島素樣生長(zhǎng)因子-1(IGF-1),純度≥98%,貨號(hào)PHG0078,購(gòu)自美國(guó)Gibco公司。
二、主要試劑和儀器
高糖DMEM培養(yǎng)基、胎牛血清,均購(gòu)自美國(guó)Gibco公司;B細(xì)胞淋巴瘤2家族蛋白(Bcl-2)抗體、β-actin抗體、Bcl-2相關(guān)X蛋白(Bax)抗體、活化胱天蛋白酶-3(Cleaved-caspase-3)抗體、mTOR抗體、PI3K抗體、Akt抗體、羊抗兔二抗均購(gòu)自艾博抗(上海)貿(mào)易有限公司。
BA400Digital數(shù)碼三目攝像顯微鏡為麥克奧迪實(shí)業(yè)集團(tuán)有限公司產(chǎn)品,Image-Pro Plus 6.0圖像分析軟件為美國(guó)Media Cybernetics公司產(chǎn)品,SpectraMAX Plus384酶標(biāo)儀為美谷分子儀器有限公司產(chǎn)品,Cytoflex流式細(xì)胞儀為美國(guó)貝克曼庫(kù)爾特公司產(chǎn)品。
三、方 法
1.細(xì)胞培養(yǎng)
將已經(jīng)凍存HeLa細(xì)胞株快速在37 ℃下解凍后,加入適量高糖DMEM完全培養(yǎng)基(10%胎牛血清+0.5%青鏈霉素雙抗),調(diào)整細(xì)胞密度為1×106/mL,在37 ℃、5%CO2的培養(yǎng)箱中連續(xù)培養(yǎng)72 h,中途更換完全培養(yǎng)基2~3次,然后進(jìn)行傳代備用。
2.實(shí)驗(yàn)分組
濃度篩選試驗(yàn):將細(xì)胞分成5組(0、5、10、20和40 μmol/L),藥物干預(yù)48 h。機(jī)制檢測(cè)試驗(yàn):將細(xì)胞分為空白對(duì)照組、IGF-1組(100 ng/L)、RDA組(20 μmol/L)與聯(lián)合用藥組(IGF-1 100 ng/L+RDA 20 μmol/L),各組藥物均干預(yù)48 h。
3. CCK-8法檢測(cè)細(xì)胞增殖率
待HeLa細(xì)胞培養(yǎng)至生長(zhǎng)對(duì)數(shù)期,加入胰蛋白酶進(jìn)行消化,使用完全培養(yǎng)基制成單細(xì)胞懸液,將細(xì)胞密度調(diào)整為5×104/L,每孔取100 μL細(xì)胞懸液加入到96孔細(xì)胞培養(yǎng)板中,每孔加入100 μL完全培養(yǎng)基,置于37 ℃、5%CO2的培養(yǎng)箱中培養(yǎng)24 h。待細(xì)胞完全生長(zhǎng)貼壁后棄去培養(yǎng)基,使用磷酸鹽緩沖液清洗2次。將RDA溶于完全培養(yǎng)基,調(diào)整終濃度為0、5、10、20和40 μmol/L,每孔加入200 μL含RDA培養(yǎng)基,置于37 ℃、5%CO2的培養(yǎng)箱中培養(yǎng)48 h。藥物干預(yù)48 h后,每孔加入10 μL CCK-8溶液,繼續(xù)在培養(yǎng)箱培養(yǎng)2 h,然后使用酶標(biāo)儀測(cè)定在450 nm波長(zhǎng)下的吸光度值(A),以0 μmol/L濃度的吸光度為對(duì)照值,根據(jù)公式計(jì)算培養(yǎng)48 h的細(xì)胞增殖率,并計(jì)算半抑制濃度(IC50),每組3個(gè)復(fù)孔,結(jié)果取平均值。
細(xì)胞增殖率(%)=×100%
4.流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡
將處于生長(zhǎng)對(duì)數(shù)期的HeLa細(xì)胞用完全培養(yǎng)基制成1×106/mL的細(xì)胞懸液,每孔取1 mL細(xì)胞懸液加入6孔板中,37 ℃、5%CO2條件下培養(yǎng)24 h使細(xì)胞生長(zhǎng)貼壁,分別按照前述步驟分組培養(yǎng)HeLa細(xì)胞48 h,使用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡情況。每組3個(gè)復(fù)孔,凋亡結(jié)果取平均值。
5.蛋白免疫印跡法檢測(cè)各蛋白表達(dá)水平
分別按照前述步驟分組培養(yǎng)HeLa細(xì)胞48 h,然后收集細(xì)胞行蛋白免疫印跡法檢測(cè)細(xì)胞中Bcl-2、Bax、Cleaved-caspase-3、磷酸化-PI3K(p-PI3K)、p-Akt、p-mTOR蛋白的表達(dá)量,并計(jì)算蛋白相對(duì)表達(dá)量。每組3個(gè)復(fù)孔,蛋白表達(dá)結(jié)果取平均值。
四、統(tǒng)計(jì)學(xué)處理
使用SPSS 25.0分析數(shù)據(jù)。統(tǒng)計(jì)數(shù)據(jù)使用 表示,多組間均數(shù)比較采用單因素方差分析,多重比較采用Dunnett-t檢驗(yàn);析因設(shè)計(jì)資料組間比較采用析因設(shè)計(jì)方差分析,交互效應(yīng)有統(tǒng)計(jì)學(xué)意義時(shí)采用LSD-t檢驗(yàn)分析單獨(dú)效應(yīng),P < 0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、不同濃度RDA對(duì)HeLa細(xì)胞凋亡的影響
CCK-8結(jié)果顯示,與0 μmol/L組相比,5 μmol/L 濃度以上RDA對(duì)HeLa細(xì)胞有抑制作用(P < 0.05),抑制程度與RDA濃度呈正相關(guān),IC50為20.90 μmol/L;細(xì)胞凋亡結(jié)果顯示,5 μmol/L濃度以上RDA對(duì)HeLa有促進(jìn)凋亡的作用(P 0.05),凋亡程度與RDA濃度呈正相關(guān),見(jiàn)圖1、表1。
二、不同濃度RDA對(duì)HeLa細(xì)胞凋亡相關(guān)蛋白的影響
蛋白免疫印跡檢測(cè)顯示,與0 μmol/L組相比,20、40 μmol/L組中Bax和Cleaved-caspase-3的表達(dá)量均升高,Bcl-2的表達(dá)降低(P均< 0.05),0、5 μmol/L RDA對(duì)HeLa中Bcl-2、Bax、Cleaved-caspase-3凋亡蛋白表達(dá)無(wú)明顯影響,10 μmol/L RDA對(duì)Cleaved-caspase-3蛋白表達(dá)無(wú)明顯影響(P均> 0.05),見(jiàn)圖2、表2。
三、RDA對(duì)HeLa細(xì)胞PI3K/Akt/mTOR信號(hào)通路的影響
蛋白免疫印跡檢測(cè)顯示,與0 μmol/L組相比,10、20和40 μmol/L組3種蛋白磷酸化表達(dá)量均降低(P均< 0.05)。5 μmol/L組3種蛋白磷酸化表達(dá)量有降低趨勢(shì),但p-Akt和p-mTOR與0 μmol/L組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均> 0.05),見(jiàn)圖2、表3。綜合前述結(jié)果,采用40 μmol/L的RDA進(jìn)行后續(xù)實(shí)驗(yàn)。
四、激活PI3K/Akt/mTOR通路后RDA對(duì)HeLa細(xì)胞的影響
檢測(cè)與析因分析結(jié)果顯示,IGF-1和RDA對(duì)細(xì)胞增殖率與凋亡率的主效應(yīng)均有統(tǒng)計(jì)學(xué)意義,兩者的交互作用對(duì)細(xì)胞增殖率(F = 11.028,P = 0.006)與凋亡率(F = 48.494,P < 0.001)有影響;估算邊際平均值后發(fā)現(xiàn)RDA對(duì)細(xì)胞增殖率與凋亡率影響明顯,見(jiàn)表4。
與空白對(duì)照組相比,IGF-1組細(xì)胞增殖率與凋亡率無(wú)明顯變化(P > 0.05),RDA組與聯(lián)合用藥組細(xì)胞的增殖率下降,凋亡率上升(P < 0.05);與IGF-1組相比,RDA組與聯(lián)合用藥組細(xì)胞的增殖率下降,凋亡率上升(P < 0.05),RDA組抑制Hela細(xì)胞增殖與促進(jìn)凋亡的效果比聯(lián)合用藥組更明顯(P < 0.05),見(jiàn)表5、圖3。
五、激活PI3K/Akt/mTOR信號(hào)通路后RDA對(duì)HeLa細(xì)胞中該信號(hào)通路蛋白表達(dá)的影響
析因分析結(jié)果顯示,IGF-1和RDA對(duì)p-PI3K(F = 72.804,P < 0.001;F = 23.819,P = 0.001)、 p-Akt(F = 36.510,P < 0.001;F = 5.317,P < 0.001)、p-mTOR(F = 45.504,P < 0.001;F = 11.982,P = 0.009)的主效應(yīng)均有統(tǒng)計(jì)學(xué)意義,兩者的交互效應(yīng)對(duì)p-PI3K、p-Akt、p-mTOR無(wú)影響(F = 0.272,P = 0.616;F = 1.291,P = 0.289;F = 0.013,P = 0.912),估算平均邊際值后發(fā)現(xiàn)RDA對(duì)p-PI3K、p-Akt、p-mTOR影響明顯,見(jiàn)表6。故主要解析各因素的主效應(yīng)作用,其中IGF-1與RDA對(duì)HeLa細(xì)胞的PI3K/Akt/mTOR信號(hào)通路影響均有統(tǒng)計(jì)學(xué)意義,IGF-1對(duì)PI3K/Akt/mTOR信號(hào)通路為激活效應(yīng),而RDA對(duì)PI3K/Akt/mTOR信號(hào)通路表現(xiàn)抑制效應(yīng),見(jiàn)表7、圖4。
討論
研究表明,RDA可在體外抑制多種腫瘤細(xì)胞的生長(zhǎng),如肝癌、乳腺癌、胃癌及卵巢癌等,說(shuō)明RDA有著強(qiáng)大的抗腫瘤活性[5]。由此推測(cè)RDA對(duì)宮頸癌可能有一定的抗癌作用。本研究采用人宮頸癌HeLa細(xì)胞進(jìn)行體外試驗(yàn),從細(xì)胞凋亡率和PI3K/Akt/mTOR信號(hào)通路等方面探討RDA對(duì)人宮頸癌細(xì)胞的抑制作用。研究結(jié)果顯示,5~40 μmol/L的RDA對(duì)HeLa細(xì)胞均有抑制作用,且抑制效果與RDA濃度呈正相關(guān),初步顯示RDA對(duì)HeLa細(xì)胞具有明顯的抑制效果。
Caspase是一組在細(xì)胞凋亡過(guò)程起關(guān)鍵作用的酶,而B(niǎo)cl家族在抑制Bcl-2或促進(jìn)Bax導(dǎo)致細(xì)胞死亡的途徑中也起著關(guān)鍵作用[6-7]。本研究顯示,5~40 μmol/L的RDA能對(duì)HeLa細(xì)胞產(chǎn)生促凋亡作用,且作用隨RDA濃度的升高而增強(qiáng),同時(shí),20~40 μmol/L的RDA能使HeLa細(xì)胞中的Bcl-2蛋白表達(dá)降低,Bax和Cleaved-caspase-3蛋白表達(dá)升高,這說(shuō)明RDA不僅對(duì)HeLa細(xì)胞既有抑制增殖作用,也有促進(jìn)凋亡作用。
PI3K/Akt/mTOR信號(hào)通路廣泛存在于多種細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路中,是目前惡性腫瘤研究的熱點(diǎn)之一[8]。該通路在腫瘤細(xì)胞的能量代謝、細(xì)胞增殖、侵襲能力、細(xì)胞凋亡和細(xì)胞周期等生理活動(dòng)中發(fā)揮重要作用[9-10]。PI3K/Akt/mTOR信號(hào)通路在許多人類(lèi)惡性腫瘤(包括宮頸癌)中異常激活[11]。p-Akt和p-mTOR蛋白在50%~53%的宮頸腺癌中均有表達(dá),說(shuō)明這2種蛋白磷酸化過(guò)表達(dá)可能是導(dǎo)致宮頸癌的原因之一[12-13]。本研究顯示,使用RDA干預(yù)HeLa細(xì)胞后,p-PI3K、p-Akt和p-mTOR這3種蛋白的相對(duì)表達(dá)量均降低,且抑制作用隨RDA濃度的升高而增強(qiáng)。由此說(shuō)明,RDA能通過(guò)抑制PI3K/AKT/mTOR信號(hào)通路,降低HeLa細(xì)胞增殖率。
IGF-1通過(guò)活化Akt激活下游信號(hào)通路,是胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)和PI3K/Akt通路的強(qiáng)效刺激因子[14-15]。有研究者發(fā)現(xiàn),IGF-1促進(jìn)多種腫瘤細(xì)胞的有絲分裂、轉(zhuǎn)移和抗凋亡,有助于腫瘤細(xì)胞的維持和促進(jìn)腫瘤的進(jìn)展[16]。因此本研究探討在PI3K/Akt/mTOR信號(hào)通路激活的環(huán)境下,RDA是否能發(fā)揮同樣的抗癌效果。結(jié)果顯示,IGF-1和RDA存在交互作用,RDA的單獨(dú)效應(yīng)隨IGF-1變化,說(shuō)明RDA可能對(duì)IGF-1誘導(dǎo)細(xì)胞增殖與抑制細(xì)胞凋亡的效果有抑制作用。與IGF-1組相比,聯(lián)合用藥組能明顯降低細(xì)胞增殖率且提高細(xì)胞凋亡率,但效果不如單用RDA,說(shuō)明在IGF-1的干預(yù)下,RDA仍然能發(fā)揮抑制腫瘤細(xì)胞生存的效果。進(jìn)一步研究發(fā)現(xiàn),IGF-1和RDA的交互作用并沒(méi)有對(duì)p-PI3K、p-Akt和p-mTOR蛋白相對(duì)表達(dá)量產(chǎn)生影響,說(shuō)明IGF-1此時(shí)的作用只是單純的PI3K/Akt/mTOR信號(hào)通路激動(dòng)劑,并未對(duì)RDA產(chǎn)生直接影響。與空白對(duì)照組相比,IGF-1組的p-PI3K、p-Akt和p-mTOR蛋白相對(duì)表達(dá)量升高,說(shuō)明IGF-1激活了HeLa細(xì)胞中的PI3K/Akt/mTOR信號(hào)通路。而RDA能降低IGF-1干預(yù)后p-PI3K、p-Akt和p-mTOR蛋白相對(duì)表達(dá)量,說(shuō)明無(wú)論P(yáng)I3K/Akt/mTOR信號(hào)通路是處于正常狀態(tài)還是異常激活狀態(tài),RDA都能抑制HeLa細(xì)胞中PI3K/Akt/mTOR信號(hào)通路中PI3K、Akt和mTOR蛋白的磷酸化,從而誘導(dǎo)HeLa細(xì)胞死亡,阻止腫瘤細(xì)胞的增殖。
綜上所述,RDA能對(duì)人宮頸癌HeLa細(xì)胞產(chǎn)生抑制增殖與促進(jìn)凋亡的作用,其作用機(jī)制是通過(guò)抑制PI3K/Akt/mTOR信號(hào)通路,降低p-PI3K、? p-Akt和p-mTOR蛋白的表達(dá),產(chǎn)生抗癌的效果。
參 考 文 獻(xiàn)
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6):394-424.
[2] Wang L, Liu Y, Zhou Y, et al. Zoledronic acid inhibits the growth of cancer stem cell derived from cervical cancer cell by attenuating their stemness phenotype and inducing apoptosis and cell cycle arrest through the Erk1/2 and Akt pathways. J Exp Clin Cancer Res, 2019, 38(1): 93.
[3] Wang Z, Shen J, Sun W, et al. Antitumor activity of Raddeanin A is mediated by Jun amino-terminal kinase activation and signal transducer and activator of transcription 3 inhibition in human osteosarcoma. Cancer Sci, 2019, 110(5): 1746-1759.
[4] Teng Y H, Li J P, Liu S L,et al. Autophagy protects from raddeanin A-induced apoptosis in SGC-7901 human gastric cancer cells. Evid Based Complement Alternat Med, 2016, 2016: 9406758.
[5] Meng C, Teng Y, Jiang X. Raddeanin A induces apoptosis and cycle arrest in human HCT116 cells through PI3K/AKT pathway regulation in vitro and in vivo. Evid Based Complement Alternat Med, 2019, 2019: 7457105.
[6] Xue G, Zou X, Zhou J Y, et al. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro. Biochem Biophys Res Commun, 2013, 439(2): 196-202.
[7] 邱杰洪, 張昌林, 李田. 間充質(zhì)干細(xì)胞條件培養(yǎng)基對(duì)HPV18型陽(yáng)性人子宮頸癌HeLa細(xì)胞凋亡的影響. 新醫(yī)學(xué), 2021, 52(4): 278-282.
[8] 陳鳳霞. 宮頸癌病情進(jìn)展過(guò)程中PI3K/AKT/mTOR信號(hào)通路的變化及靶基因的探究. 海南醫(yī)學(xué)院學(xué)報(bào), 2018, 24(19): 1757-1761.
[9] Sechler M, Cizmic A D, Avasarala S, et al. Non-small-cell lung cancer: molecular targeted therapy and personalized medicine-
drug resistance, mechanisms, and strategies. Pharmgenomics Pers Med, 2013, 6: 25-36.
[10] Asati V, Mahapatra D K, Bharti S K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem, 2016, 109: 314-341.
[11] Dong P, Hao F, Dai S, et al. Combination therapy Eve and Pac to induce apoptosis in cervical cancer cells by targeting PI3K/AKT/mTOR pathways. J Recept Signal Transduct Res, 2018, 38(1): 83-88.
[12] Gao Y, Ma C, Feng X, et al. BF12, a novel benzofuran, exhibits antitumor activity by inhibiting microtubules and the PI3K/Akt/mTOR signaling pathway in human cervical cancer cells. Chem Biodivers, 2020, 17(3): e1900622.
[13] 張艷, 劉耀基, 侯桂琴, 等. mTOR通路增強(qiáng)宮頸癌紫杉醇耐藥細(xì)胞株HeLa/PTX對(duì)紫杉醇的敏感性. 沈陽(yáng)藥科大學(xué)學(xué)報(bào), 2019, 36(3): 254-260.
[14] Renna M, Bento C F, Fleming A, et al. IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet, 2013, 22(22): 4528-4544.
[15] Tang W, Feng X, Zhang S, et al. Caveolin-1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway. Cell Physiol Biochem, 2015, 36(3): 1223-1236.
[16] Teng J A, Wu S G, Chen J X, et al. The activation of ERK1/2 and JNK MAPK signaling by insulin/IGF-1 is responsible for the development of colon cancer with type 2 diabetes mellitus. PLoS One, 2016, 11(2): e0149822.
(收稿日期:2021-05-10)
(本文編輯:林燕薇)