王鳳霞 張姍姍 張軒銘 王利振 張夢(mèng)啟 李培海 李曉彬,2 劉可春 邢 澍
山東4種常見(jiàn)蝦蝦頭品質(zhì)分析與評(píng)價(jià)*
王鳳霞1張姍姍1張軒銘1王利振1張夢(mèng)啟1李培海1李曉彬1,2①劉可春1①邢 澍3
(1. 齊魯工業(yè)大學(xué)(山東省科學(xué)院) 山東省科學(xué)院生物研究所 山東省人類疾病斑馬魚模型與藥物篩選工程技術(shù)研究中心 山東 濟(jì)南 250103;2. 山東省生物工程技術(shù)創(chuàng)新中心 山東 菏澤 274000;3. 齊魯工業(yè)大學(xué)(山東省科學(xué)院) 化學(xué)與制藥學(xué)院 山東 濟(jì)南 250353)
為了充分利用蝦頭廢棄物資源,本研究以山東4種常見(jiàn)蝦——克氏原鰲蝦()、日本對(duì)蝦()、中國(guó)對(duì)蝦()及凡納濱對(duì)蝦()鮮蝦頭為原料,測(cè)定了不同來(lái)源蝦頭的蛋白質(zhì)、氨基酸、磷脂、蝦青素和甲殼素含量,從而對(duì)這4種蝦頭品質(zhì)進(jìn)行營(yíng)養(yǎng)成分分析及品質(zhì)評(píng)價(jià)。結(jié)果顯示,4種蝦頭副產(chǎn)物所占比例較高,其中,日本對(duì)蝦、中國(guó)對(duì)蝦和凡納濱對(duì)蝦3種對(duì)蝦蝦頭占比達(dá)到40%左右,克氏原鰲蝦蝦頭占比甚至達(dá)到85.52%;4種蝦頭蛋白質(zhì)含量豐富,約占鮮蝦頭質(zhì)量的12.47%~14.91%;4種蝦頭蛋白中人體必需氨基酸含量達(dá)到40%以上,且鮮、甜味氨基酸含量較高;日本對(duì)蝦、中國(guó)對(duì)蝦及凡納濱對(duì)蝦3種對(duì)蝦蝦頭中磷脂含量遠(yuǎn)高于克氏原鰲蝦,達(dá)到12.38~15.00 mg/g,而克氏原螯蝦僅為3.39 mg/g;蝦青素含量以凡納濱對(duì)蝦和日本對(duì)蝦蝦頭中含量較高,分別達(dá)到68.46和61.62 μg/g,中國(guó)對(duì)蝦為41.42 μg/g,克氏原鰲蝦則為30.71 μg/g;而克氏原鰲蝦蝦頭的甲殼素含量約為3種對(duì)蝦蝦頭的3倍,達(dá)到4.67%左右。由此可見(jiàn),4種蝦頭中含有豐富的蛋白質(zhì)和氨基酸,而不同品種蝦頭中磷脂、蝦青素及甲殼素等成分含量差異較大,可針對(duì)不同來(lái)源的蝦頭進(jìn)行有針對(duì)性的高附加值成分的開發(fā)利用。
蝦頭;成分分析;品質(zhì)評(píng)價(jià)
蝦頭是冷凍蝦仁加工過(guò)程中最主要的廢棄物,約占整個(gè)蝦體質(zhì)量的35%~45% (Cao, 2014)。據(jù)《中國(guó)漁業(yè)統(tǒng)計(jì)年鑒2020》(農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 2020)報(bào)道,2019年我國(guó)海蝦和淡水蝦養(yǎng)殖和捕撈產(chǎn)量達(dá)600萬(wàn)t以上,其中,約有48.7萬(wàn)t的對(duì)蝦和50.99萬(wàn)t的克氏原螯蝦()被加工成去頭、殼的蝦仁,由此產(chǎn)生的蝦頭廢棄物在 30萬(wàn)t以上。近年來(lái),對(duì)蝦頭廢棄物的研究較為熱門,主要原因有2個(gè):一是蝦頭廢棄物極容易腐敗變質(zhì),造成嚴(yán)重的環(huán)境污染(Hossain, 2018);二是蝦頭中富含蛋白質(zhì)/肽(Guo, 2019; Jiang, 2020; Prameela, 2017)、氨基酸(Suparmi, 2020)、甲殼素(Guo, 2019; Tan, 2020)、類胡蘿卜素(尤其是蝦青素) (Gómez-Guillén, 2018; Prameela, 2017; Nú?ez-Gastélum, 2016)和磷脂(Li, 2018; 崔益瑋等, 2018; 李曉彬等, 2018)等營(yíng)養(yǎng)成分及生物活性物質(zhì)。蛋白質(zhì)及其水解產(chǎn)物氨基酸等是人體最重要的營(yíng)養(yǎng)素之一,磷脂和蝦青素因具有天然抗氧化活性而備受青睞,而甲殼素則被人們稱為人體必需的“第六生命要素”。目前,蝦頭廢棄物多被用作動(dòng)物飼料、肥料或生產(chǎn)蝦頭醬等調(diào)味品,產(chǎn)品附加值不高,如能充分利用這些蝦頭廢棄物生產(chǎn)蛋白/肽、磷脂、蝦青素和甲殼素等高附加值產(chǎn)物,既可以減少環(huán)境污染,還能產(chǎn)生非常可觀的經(jīng)濟(jì)效益,可謂一舉兩得。
據(jù)《中國(guó)漁業(yè)統(tǒng)計(jì)年鑒2020》報(bào)道,克氏原螯蝦是全國(guó)養(yǎng)殖面積最大的淡水蝦,而凡納濱對(duì)蝦()、日本對(duì)蝦()和中國(guó)對(duì)蝦()占全國(guó)蝦類海水養(yǎng)殖面積的87%以上,也是山東養(yǎng)殖規(guī)模最大的4種蝦 (姜燕等, 2019)。目前,尚未有對(duì)這4種蝦頭原料品質(zhì)進(jìn)行評(píng)價(jià)的報(bào)道。為了充分利用蝦頭資源,本研究對(duì)山東這4種代表性蝦的新鮮蝦頭進(jìn)行蛋白質(zhì)、氨基酸、磷脂、蝦青素以及甲殼素等營(yíng)養(yǎng)成分分析,并通過(guò)對(duì)其營(yíng)養(yǎng)品質(zhì)的評(píng)價(jià)來(lái)評(píng)估各類蝦頭的開發(fā)利用價(jià)值。同時(shí),通過(guò)比較各類蝦頭中的營(yíng)養(yǎng)成分差異,為不同品種蝦頭資源開展有針對(duì)性的高值化利用提供理論依據(jù),以期進(jìn)一步促進(jìn)蝦類養(yǎng)殖、加工產(chǎn)業(yè)的發(fā)展。
1.1.1 材料 蝦頭原料:4種鮮蝦原料2019年10月中旬購(gòu)于山東省濟(jì)南海鮮大市場(chǎng):克氏原螯蝦產(chǎn)自山東省濟(jì)寧市魚臺(tái)縣;日本對(duì)蝦、中國(guó)對(duì)蝦和凡納濱對(duì)蝦均產(chǎn)自山東日照。清洗后切取蝦頭,于–18℃冰箱冷凍保存?zhèn)溆谩?/p>
牛血清γ-球蛋白:上海源葉生物科技有限公司;蝦青素標(biāo)準(zhǔn)品:Carote Nature公司,瑞士;抗壞血酸、考馬斯亮藍(lán)G250:北京索萊寶科技有限公司;其他試劑均為國(guó)產(chǎn)分析純。
1.1.2 儀器設(shè)備 DS-200電動(dòng)高速組織搗碎機(jī), 江蘇江陰科研儀器廠;TS-100C臺(tái)式恒溫?fù)u床,江蘇常州市金壇高科儀器廠;Allegra 64R高速冷凍離心機(jī),BECKMAN公司,美國(guó);TD6M臺(tái)式低速離心機(jī), 湖南湘立科學(xué)儀器有限公司;UV-2100紫外可見(jiàn)分光光度計(jì),UNICO公司,美國(guó);LGJ-10實(shí)驗(yàn)型真空冷凍干燥機(jī),北京松源華興生物技術(shù)有限公司;SPD-20A高效液相色譜儀,島津儀器(蘇州)有限公司;DHG-9070A鼓風(fēng)干燥箱,上海精宏實(shí)驗(yàn)設(shè)備有限公司;高速多功能粉碎機(jī),上海緣沃工貿(mào)有限公司; 海爾BCD-455WLDPC冰箱,青島海爾;Sartorius BS224S電子天平,北京賽多利斯儀器系統(tǒng)有限公司。
1.2.1 蝦頭占全蝦質(zhì)量比測(cè)定 4種蝦分別隨機(jī)選取5只,在切取蝦頭前后分別稱量全蝦質(zhì)量及其蝦頭質(zhì)量,計(jì)算每種蝦的蝦頭占全蝦質(zhì)量比。
1.2.2 粗蛋白提取及含量測(cè)定 從冰箱取出冷凍蝦頭,解凍后迅速稱取100.00 g左右,切小塊,先加入少量預(yù)冷生理鹽水,用高速組織攪碎機(jī)攪碎,再加入大約5倍體積(/)的預(yù)冷生理鹽水勻漿,勻漿液4℃浸提過(guò)夜,8層紗布過(guò)濾,濾液于4℃、10 000 r/min條件下離心15 min,小心刮去上層油脂,收集上清液,棄沉淀。上清液即為蝦頭粗蛋白提取液,精確量取其體積后分裝至小瓶中,于–18℃保存?zhèn)溆?王鳳霞, 2013)。
蛋白質(zhì)含量測(cè)定方法采用Bradford法(Cheng, 2016),以牛血清γ-球蛋白作為標(biāo)準(zhǔn)蛋白,以考馬斯亮藍(lán)G250作為染色劑,測(cè)定溶液在595 nm處的吸光度,以吸光度值為縱坐標(biāo),以蛋白濃度(mg/mL)為橫坐標(biāo),得蛋白標(biāo)準(zhǔn)曲線為=0.536 6–0.000 2 (2=0.998 8)。然后,對(duì)蝦頭粗蛋白提取液進(jìn)行適當(dāng)稀釋后測(cè)定稀釋液在595 nm處的吸光度值,由標(biāo)準(zhǔn)曲線求算稀釋液的蛋白質(zhì)含量(mg/mL),蝦頭蛋白質(zhì)含量比按公式(1)計(jì)算:
式中,1表示根據(jù)吸光度值計(jì)算出的稀釋液的蛋白質(zhì)溶液質(zhì)量濃度(mg/mL);1表示粗蛋白提取液稀釋倍數(shù);1表示粗蛋白提取液體積(mL);表示所用鮮蝦頭質(zhì)量(g)。
1.2.3 氨基酸種類及含量測(cè)定 粗蛋白樣品用真空冷凍干燥機(jī)制成凍干粉,測(cè)定方法參照GB 5009.124-2016《食品中氨基酸的測(cè)定》。
1.2.4 磷脂提取及含量測(cè)定 稱取大約100.00 g解凍蝦頭并攪碎,用7倍體積(/)的95%乙醇振蕩提取(室溫、90 r/min)約16 h,提取液離心(5000 r/min, 15 min)后收集上清液,即為蝦頭磷脂提取液,精確量取其體積后迅速分裝至小瓶中,于4℃下保存?zhèn)溆?(Li, 2018)。
蝦頭磷脂含量的測(cè)定采用紫外分光光度法 (袁延強(qiáng)等, 2011)。對(duì)蝦頭磷脂提取液先進(jìn)行適當(dāng)稀釋,稀釋液取樣測(cè)定體積為0.2 mL,進(jìn)行消化、中和、顯色后測(cè)定其在820 nm 處的吸光度值,由磷標(biāo)準(zhǔn)曲線=0.845 8+0.005 7 (2=0.999 8)求得稀釋液的含磷量,據(jù)公式(2)求得蝦頭磷脂含量:
式中,2表示根據(jù)吸光度值計(jì)算出的稀釋液的含磷量(μg/mL);2表示磷脂提取液稀釋倍數(shù);2表示磷脂提取液體積(mL);表示所用鮮蝦頭質(zhì)量(g)。
1.2.5 蝦青素提取及含量測(cè)定 制備方法與1.2.4節(jié)磷脂提取液基本一致,區(qū)別在于提取溶劑為二氯甲烷。
蝦頭蝦青素含量測(cè)定參照相關(guān)文獻(xiàn)(高巖等, 2020)。以二氯甲烷作為溶劑,蝦頭蝦青素提取液進(jìn)行適當(dāng)稀釋后測(cè)定稀釋液在472 nm波長(zhǎng)下的吸光度值,由蝦青素標(biāo)準(zhǔn)曲線=0.181 8+0.017 (2=0.997 4)求得稀釋液蝦青素含量,據(jù)公式(3)求得蝦頭蝦青素含量:
式中,3表示根據(jù)吸光度值計(jì)算出的稀釋液的蝦青素含量(μg/mL);3表示蝦青素提取液稀釋倍數(shù);3表示蝦青素提取液體積(mL);表示所用鮮蝦頭質(zhì)量(g)。
1.2.6 甲殼素制備及含量測(cè)定 甲殼素的制備及含量測(cè)定方法參見(jiàn)張巧等(2020),即稱取大約100.00 g解凍蝦頭(質(zhì)量為1),于50℃干燥至恒重,粉碎、稱重(2)后備用。分別稱取10.00 g蝦頭細(xì)粉(3),加入1.5 mol/L HCl (料液比1∶40)浸泡6 h,進(jìn)行脫鈣處理,用清水洗至中性;再用質(zhì)量分?jǐn)?shù)為2%的NaOH溶液(料液比1∶30)浸泡處理24 h,脫除蛋白質(zhì)和脂類等大分子,用清水洗至中性,得到顏色略深的絮狀物;接著用質(zhì)量分?jǐn)?shù)為10%的NaOH溶液(料液比1∶20)浸泡處理4 h,至絮狀物呈現(xiàn)白色,用清水洗至中性,50℃烘干至恒重,得到純甲殼素,稱重(4)。
蝦頭甲殼素含量測(cè)定按公式(4)計(jì)算:
每個(gè)試驗(yàn)重復(fù)3次,結(jié)果以Mean±SD表示。采用Graphpad prism V6.0統(tǒng)計(jì)軟件進(jìn)行單因素方差分析(one-way ANOVA),顯著性水平<0.05。
4種蝦頭占全蝦質(zhì)量比情況見(jiàn)表1。由表1可見(jiàn),克氏原鰲蝦蝦頭占全蝦質(zhì)量比最高,達(dá)到85.52%左右(<0.05);其他3種蝦頭占全蝦質(zhì)量比亦高達(dá)36.77%~42.35%。
為了探明4種蝦頭廢棄物中蛋白質(zhì)、磷脂、蝦青素及甲殼素含量的差異,分別對(duì)其進(jìn)行了的比較分析,其結(jié)果見(jiàn)表2。
由表2可以看出,4種蝦頭廢棄物中蛋白含量都比較豐富,約占蝦頭質(zhì)量的12.47%~14.91%??耸显椢r與凡納濱對(duì)蝦、日本對(duì)蝦與中國(guó)對(duì)蝦之間蝦頭蛋白含量差異不顯著,而這2組蝦頭之間蛋白含量有顯著性差異(<0.05)。
不同品種蝦頭廢棄物中磷脂含量差異較大(< 0.05)。其中,日本對(duì)蝦最高,達(dá)到(15.00±0.13) mg/g;中國(guó)對(duì)蝦和凡納濱對(duì)蝦分別為(12.38±0.16) mg/g和(12.61±0.23) mg/g;克氏原鰲蝦蝦頭廢棄物中磷脂含量遠(yuǎn)遠(yuǎn)低于其他3種蝦,僅為(3.39±0.09) mg/g。
4種蝦頭廢棄物中蝦青素含量以凡納濱對(duì)蝦為最高,達(dá)到(68.46±1.28) μg/g;其次為日本對(duì)蝦,為(61.62±1.59) μg/g;中國(guó)對(duì)蝦為(41.42±1.03) μg/g;而克氏原鰲蝦僅為(30.71±1.23) μg/g。不同品種來(lái)源蝦頭中蝦青素含量差異顯著(<0.05)。
表1 4種蝦頭占全蝦質(zhì)量比
Tab.1 Proportions of the head to whole body in four kinds of shrimps
注:同列數(shù)據(jù)肩標(biāo)字母不同表示差異顯著(<0.05)。下同
Note: In the same column, values with different small letter superscripts are significantly different (<0.05). The same as below
表2 4種蝦頭中蛋白質(zhì)、磷脂、蝦青素和甲殼素含量比較
Tab.2 Comparison of protein, phospholipids, astaxanthin, and chitin contents in the four kinds of fresh shrimp heads
甲殼素含量則以克氏原鰲蝦蝦頭廢棄物中為最高,占到蝦頭鮮重的(4.67±0.16)%;而日本對(duì)蝦、中國(guó)對(duì)蝦以及凡納濱對(duì)蝦分別占比(1.63±0.11)%、(1.77± 0.13)%和(1.70±0.18)%。3種對(duì)蝦蝦頭廢棄物中甲殼素含量差異不顯著,但都與克氏原鰲蝦蝦頭之間差異顯著(<0.05)。
食品中蛋白質(zhì)營(yíng)養(yǎng)價(jià)值的高低,主要取決于其所含氨基酸的組成與含量(趙亭亭等, 2018)。4種鮮蝦頭蛋白提取物中17種水解氨基酸的含量結(jié)果見(jiàn)表3。由表3數(shù)據(jù)可以看出,4種鮮蝦頭氨基酸種類齊全,其中,人體必需氨基酸含量占到40%以上,日本對(duì)蝦甚至達(dá)到46.78%左右。4種鮮蝦頭中必需氨基酸含量較高的5種氨基酸為賴氨酸、亮氨酸、苯丙氨酸、纈氨酸和異亮氨酸;4種鮮蝦頭中鮮味氨基酸——谷氨酸含量是17種氨基酸中含量最高的,其中,日本對(duì)蝦鮮蝦頭中谷氨酸相對(duì)含量最高,達(dá)到(14.68±0.05) mg/g (<0.05),中國(guó)對(duì)蝦和凡納濱對(duì)蝦含量接近,約為(13.33±0.06)和(13.06±0.06) mg/g,克氏原螯蝦為12.53 mg/g (<0.05)。日本對(duì)蝦、中國(guó)對(duì)蝦以及凡納濱對(duì)蝦鮮蝦頭鮮、甜味氨基酸約占總氨基酸的40%,而克氏原螯蝦達(dá)到48.52%左右,與3種對(duì)蝦間差異顯著(<0.05)。
蝦頭是蝦仁加工過(guò)程中最主要的副產(chǎn)物,以前常被當(dāng)作廢物扔掉或用作動(dòng)物飼料、肥料等。結(jié)果表明,所研究的4種蝦頭副產(chǎn)物占整個(gè)蝦體質(zhì)量的比例較高,克氏原鰲蝦蝦頭甚至占全蝦質(zhì)量的85%左右,而日本對(duì)蝦、中國(guó)對(duì)蝦以及凡納濱對(duì)蝦3種對(duì)蝦蝦頭占全蝦質(zhì)量的40%左右。若將蝦頭直接廢棄,不僅容易造成環(huán)境污染,還容易造成資源的極大浪費(fèi),因此,非常有必要對(duì)蝦頭廢棄物資源進(jìn)行充分的開發(fā)利用。
冷凍蝦加工過(guò)程中產(chǎn)生的蛋白水解物是最主要的環(huán)境污染源(Prameela, 2017)。本研究4種蝦蝦頭中蛋白含量都比較豐富,約占鮮蝦頭質(zhì)量的12.47%~14.91%。蝦頭蛋白水解后得到的氨基酸中,人體必需氨基酸含量占40%以上,日本對(duì)蝦甚至達(dá)到46.78%左右;且3種對(duì)蝦蝦頭中,鮮、甜味氨基酸約占總氨基酸的40%,克氏原螯蝦甚至達(dá)到48.52%左右。Nirmal等(2020)研究表明,當(dāng)蝦頭廢棄物被蛋白酶水解時(shí),70%以上的蛋白質(zhì)以蛋白水解物形式得到回收。蛋白水解物、多肽或氨基酸除作為營(yíng)養(yǎng)素外,因其具有抗氧化及抗菌(Djellouli, 2020)、血管緊張素轉(zhuǎn)化酶(ACE)抑制(Gao, 2014)和β-分泌酶抑制(Li-Chan, 2016)等活性,還可廣泛應(yīng)用于醫(yī)藥和化妝品等行業(yè)。目前,利用微生物發(fā)酵法或蛋白酶水解法生產(chǎn)活性肽及氨基酸的技術(shù)已非常成熟,因此,可以考慮利用這樣的技術(shù)對(duì)廉價(jià)的蝦頭廢棄物資源進(jìn)行蛋白水解物/肽及氨基酸等產(chǎn)品的開發(fā)。
磷脂和蝦青素均屬于脂溶性活性成分。磷脂是一種天然抗氧化劑,像大豆卵磷脂已被廣泛用作功能性保健食品。而海洋來(lái)源的磷脂因側(cè)鏈部分含有二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)這種ω-3多不飽和脂肪酸(PUFA),被認(rèn)為比大豆來(lái)源的磷脂營(yíng)養(yǎng)價(jià)值更高(Shen, 2021),因此,常被作為功能性保健食品的活性成分進(jìn)行開發(fā)利用(Wang, 2020)。本研究表明,日本對(duì)蝦、中國(guó)對(duì)蝦和凡納濱對(duì)蝦3種對(duì)蝦蝦頭的磷脂含量為12.38~15.00 mg/g,而克氏原鰲蝦蝦頭的磷脂含量?jī)H為3.39 mg/g左右。由于蝦的磷脂成分主要存在于蝦頭廢棄物中(崔益瑋等, 2018; 李曉彬等, 2018),因此,非常有必要利用這一廉價(jià)的蝦頭資源進(jìn)行磷脂相關(guān)功能性保健食品的開發(fā),尤其是來(lái)源于海洋的3種對(duì)蝦蝦頭廢棄物資源。
表3 4種蝦頭氨基酸含量比較
Tab.3 Comparison of amino acid contents in the four kinds of fresh shrimp heads
注:●為鮮味氨基酸,▲為甜味氨基酸;同行數(shù)據(jù)肩標(biāo)字母不同表示差異顯著(<0.05)
Note: The symbols (● and ▲) means the umami amino acid and the sweet amino acid respectively; In the same row, values with different small letter superscripts are significantly different (<0.05)
蝦青素是水生動(dòng)物中最主要的類胡蘿卜素色素,因其具有較高的抗氧化活性,蝦青素在食品、醫(yī)藥和化妝品等行業(yè)具有廣闊的應(yīng)用前景,它還是水產(chǎn)養(yǎng)殖飼料中的色素來(lái)源(Prameela, 2017; 趙永強(qiáng)等; 2019)。據(jù)報(bào)道,蝦青素的抗氧化活性是其他類胡蘿卜素,如玉米黃質(zhì)、葉黃素、角黃素和β-胡蘿卜素的10倍,是α-生育酚的100倍(Naguib, 2000; Silva, 2015)。由于人體不能合成蝦青素,只能從飲食如從蝦頭、內(nèi)臟及蝦殼等蝦加工廢棄物中獲得(Nirmal, 2020)。本研究表明,日本對(duì)蝦和凡納濱對(duì)蝦蝦頭中蝦青素含量分別達(dá)到68.46和61.62 μg/g左右,中國(guó)對(duì)蝦約為41.42 μg/g,而克氏原鰲蝦僅為30.71 μg/g左右,因此,利用廉價(jià)的蝦頭廢棄物資源開發(fā)蝦青素產(chǎn)品具有較好的前景。對(duì)4種蝦頭而言,可以優(yōu)先考慮日本對(duì)蝦和凡納濱對(duì)蝦蝦頭副產(chǎn)物作為開發(fā)蝦青素產(chǎn)品的原料來(lái)源,其次考慮中國(guó)對(duì)蝦蝦頭作為原料來(lái)源。
甲殼素是自然界中唯一帶正電的陽(yáng)性膳食纖維,甲殼素及其脫乙酰基產(chǎn)物殼聚糖在農(nóng)業(yè)、食品、化妝品、化工、生物醫(yī)藥等行業(yè)的潛在用途已得到廣泛認(rèn)可(Liu, 2020)。甲殼素在蝦、蟹殼中含量普遍較高,且由蝦、蟹殼制備甲殼素及其衍生物的技術(shù)相對(duì)比較成熟,因此,在利用蝦頭廢棄物提取蛋白/肽及脂溶性的磷脂、蝦青素成分后,下腳料進(jìn)一步制備高附加值甲殼素類產(chǎn)品具有廣闊前景。為探明4種蝦頭中甲殼素含量情況,本研究對(duì)4種蝦頭甲殼素含量進(jìn)行了分析比較。研究表明,克氏原鰲蝦蝦頭甲殼素含量最高,約占蝦頭鮮重的4.67%,而3種對(duì)蝦蝦頭甲殼素含量?jī)H為1.63%~1.77%。因此,對(duì)4種蝦頭廢棄物而言,克氏原螯蝦蝦頭廢棄物可能最值得進(jìn)行甲殼素類相關(guān)產(chǎn)品的開發(fā)。
本研究以山東4種常見(jiàn)蝦——克氏原鰲蝦、日本對(duì)蝦、中國(guó)對(duì)蝦及凡納濱對(duì)蝦的鮮蝦頭為原料,測(cè)定了不同來(lái)源蝦頭的蛋白質(zhì)、氨基酸、磷脂、蝦青素、甲殼素含量。研究表明,4種蝦頭占全蝦的質(zhì)量比普遍較高,日本對(duì)蝦、中國(guó)對(duì)蝦及凡納濱對(duì)蝦3種對(duì)蝦的蝦頭占全蝦質(zhì)量的36.77%~42.35%,克氏原鰲蝦頭占比甚至達(dá)到85.52%,因此,有必要對(duì)蝦頭資源進(jìn)行開發(fā)利用,以免造成環(huán)境污染和資源浪費(fèi)。4種蝦頭蛋白質(zhì)含量都比較豐富,約占鮮蝦頭質(zhì)量的12.47%~14.91%,且4種蝦頭蛋白中氨基酸種類齊全,人體必需氨基酸含量達(dá)到40%以上,鮮、甜味氨基酸含量較高,因此,4種蝦頭均適合作為蛋白水解物/肽、氨基酸開發(fā)利用的資源;4種蝦頭中克氏原鰲蝦蝦頭甲殼素含量遠(yuǎn)遠(yuǎn)高于3種對(duì)蝦蝦頭,達(dá)到4.67%左右,適合用作制備甲殼素類相關(guān)產(chǎn)品的原料來(lái)源;而3種對(duì)蝦蝦頭中磷脂含量則遠(yuǎn)遠(yuǎn)高于克氏原鰲蝦,可以作為提取磷脂的原料來(lái)源;蝦青素含量以凡納濱對(duì)蝦和日本對(duì)蝦蝦頭中含量相對(duì)較高,其次是中國(guó)對(duì)蝦,3種對(duì)蝦蝦頭均可作為提取蝦青素的原料來(lái)源。
本研究為不同品種的蝦頭中各類高值成分進(jìn)行有針對(duì)性的開發(fā)利用提供了依據(jù),具有重要的經(jīng)濟(jì)和社會(huì)意義。
CAO W H, TAN C Y, ZHAN X J,. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste. Food Chemistry, 2014, 164: 136–141
CHENG Y F, WEI H M, SUN R,. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80. Analytical Biochemistry, 2016, 494: 37–39
CUI Y W, YU X N, LI S Y,. Extraction and lipidomic pro?ling of phospholipids from shrimp heads. Food Sciences, 2018, 39(20): 218–225 [崔益瑋, 俞喜娜, 李詩(shī)言, 等. 蝦頭中磷脂提取與組學(xué)分析. 食品科學(xué), 2018, 39(20): 218–225]
DJELLOULI M, LóPEZ-CABALLERO M E, ARANCIBIA M Y,. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste and Biomass Valorization, 2020, 11(2): 2491–2505
Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs, National Aquatic Products Technology Extension Station, Chinese Society of Fisheries. Chinese Fishery Statistical Yearbook 2020. Beijing: China Agricultural Press, 2020, 22–89 [農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 全國(guó)水產(chǎn)技術(shù)推廣總站, 中國(guó)水產(chǎn)學(xué)會(huì). 中國(guó)漁業(yè)統(tǒng)計(jì)年鑒2020. 北京: 中國(guó)農(nóng)業(yè)出版社, 2020, 22–89]
GAO X J, YAN P S, ZHU Y P,. Bioconversion and deodorization of shrimp processing waste byand inhibitory activity of converted product on angiotensin I converting enzyme. Biotechnology, 2014, 13(6): 263–272
GAO Y, XING L H, SUN W H,. Research progress on extraction, purification and quantitative detection methods of astaxanthin from different sources. Journal of Food Safety and Quality, 2020, 11(5): 1414–1423 [高巖, 邢麗紅, 孫偉紅, 等. 不同來(lái)源蝦青素提取、純化及定量檢測(cè)方法的研究進(jìn)展. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2020, 11(5): 1414–1423]
GóMEZ-GUILLéN M C, MONTERO P, LóPEZ-CABALLERO M E,. Bioactive and technological functionality of a lipid extract from shrimp () cephalothorax. LWT–Food Science and Technology, 2018, 89: 704–711
GUO N, SUN J N, ZHANG Z H,. Recovery of chitin and protein from shrimp head waste by endogenous enzyme autolysis and fermentation. Journal of Ocean University of China, 2019, 18(3): 719–726
HOSSAIN M I, SHIKHA F H, SHARMA A D. Waste management status of shrimp processing plants of south and south-west region of Bangladesh. Journal of Environmental Science and Natural Resources, 2018, 11(1–2): 73–81
JIANG S Q, ZHANG Z W, YU F M,. Ameliorative effect of low molecular weight peptides from the head of red shrimp () against cyclophosphamide-induced hepatotoxicity in mice. Journal of Functional Foods, 2020, 72: 104085
JIANG Y, CAO Z X, XU H Q,. Analysis and development suggestions of shrimp and crab industry in Shandong Province. Fishery Guide to be Rich, 2019, 22: 17–20 [姜燕, 曹振杰, 徐海強(qiáng), 等. 山東省蝦蟹類產(chǎn)業(yè)現(xiàn)狀分析及發(fā)展建議. 漁業(yè)致富指南, 2019, 22: 17–20]
LI X B, HE Q X, HOU H R,. Targeted lipidomics profiling of marine phospholipids from different resources by UPLC-Q-Exactive Orbitrap/MS approach. Journal of Chromatography B, 2018, 1096: 107–112
LI X B, SUN S K, HAN L W,. Extraction process of phospholipids from shrimp head. China Oils and Fats, 2018, 43(1): 112–115 [李曉彬, 孫世康, 韓利文, 等. 對(duì)蝦蝦頭中磷脂提取工藝的研究. 中國(guó)油脂, 2018, 43(1): 112–115]
LI-CHAN E C Y, CHEUNG I W Y, BYUN H. Shrimp () waste hydrolysate as a source of novel β-secretase inhibitors. Fisheries and Aquatic Sciences, 2016, 19: 11
LIU Y L, XING R, YANG H Y,. Chitin extraction from shrimp () shells by successive two-step fermentation withand. International Journal of Biological Macromolecules, 2020, 148: 424–433
NAGUIB Y M A. Antioxidant activities of astaxanthin and related carotenoids. Journal of Agriculture and Food Chemistry, 2000, 48(4): 1150–1154
NIRMAL N P, SANTIVARANGKNA C, RAJPUT M S,. Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science and Technology, 2020, 103: 20–35
Nú?EZ-GASTéLUM J A, SáNCHEZ-MACHADO D I, LóPEZ-CERVANTES J,. Astaxanthin and its esters in pigmented oil from fermented shrimp by products. Journal of Aquatic Food Product Technology, 2016, 25(3): 334–343
PRAMEELA K, VENKATESH K, IMMANDI S B,. Next generation nutraceutical from shrimp waste: The convergence of applications with extraction methods. Food Chemistry, 2017, 237: 121–132
SHEN Q, SONG G S, WANG H H,. Isolation and lipidomics characterization of fatty acids and phospholipids in shrimp waste through GC/FID and HILIC-QTrap/MS. Journal of Food Composition and Analysis, 2021, 95: 103668
SILVA F O, TRAMONTE V L C G, PARISENTI J,.muscle carotenoids versus astaxanthin: A comparison of antioxidant activity andprotective effects against lipid peroxidation. Food Bioscience, 2015, 9: 12–19
SUPARMI E, SARI N I,. Study on the quality of natural flavor powder made from shrimp waste. Earth and Environmental Science, 2020, 430(1): 012007
TAN Y N, LEE P P, CHEN W N. Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 2020, 10(1): 1664–1669
WANG F X. Isolation, Purification and its antimetastatic activitiesof a novel protein from. Doctoral Dissertation of Shandong University, 2013 [王鳳霞. 中華真地鱉()抗腫瘤蛋白分離純化及其體外抗轉(zhuǎn)移活性研究. 山東大學(xué)博士研究生學(xué)位論文, 2013]
WANG Y L, LIU Y Z, MA L,. The oxidation mechanism of phospholipids inoil promoted by metal ions. Food Chemistry, 2020, 333: 127448
YUAN Y Q, HOU H R, WANG X M,. Determination of total phospholipids ingonad extracts by spectrophotometry. Drugs and Clinic, 2011, 26(1): 63–65 [袁延強(qiáng), 侯海榮, 王希敏, 等. 分光光度法測(cè)定魷魚生殖腺提取物中總磷脂. 現(xiàn)代藥物與臨床, 2011, 26(1): 63–65]
ZHANG Q, LI Y C. Preparation and structural characterization of chitin from shrimp shell of. Food Science and Technology, 2020, 45(4): 187–192 [張巧, 李永成. 南美白對(duì)蝦蝦殼甲殼素的提取工藝及結(jié)構(gòu)分析. 食品科技, 2020, 45(4): 187–192]
ZHAO T T, ZHANG Y, CHEN C,. Analysis of nutrient components and evaluation of nutritive quality in flesh of three species of cultured groupers. Progress in Fishery Sciences, 2018, 39(6): 89–96 [趙亭亭, 張巖, 陳超, 等. 3種養(yǎng)殖石斑魚的肌肉營(yíng)養(yǎng)成分分析與品質(zhì)評(píng)價(jià). 漁業(yè)科學(xué)進(jìn)展, 2018, 39(6): 89–96]
ZHAO Y Q, TAN J X, LI L H,. Optimization of the preparation process and the physicochemical properties of Antarctic krill astaxanthin microcapsules. Progress in Fishery Sciences, 2019, 40(5): 185–194 [趙永強(qiáng), 談俊曉, 李來(lái)好, 等. 南極磷蝦蝦青素微膠囊制備工藝優(yōu)化及其理化性質(zhì)研究. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(5): 185–194]
Analysis and Evaluation of Shrimp Head Quality from Four Common Shrimp Species in Shandong Province, China
WANG Fengxia1, ZHANG Shanshan1, ZHANG Xuanming1, WANG Lizhen1, ZHANG Mengqi1, LI Peihai1, LI Xiaobin1,2①, LIU Kechun1①, XING Shu3
(1. Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute,Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong 250103, China;2. Bioengineering Technology Innovation Center of Shandong Province, Heze, Shandong 274000, China;3. School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong 250353, China)
To make full use of shrimp head waste, the protein, amino acid, phospholipid, astaxanthin, and chitin contents were determined from the fresh heads of four shrimp species, and the quality of the different shrimp heads was compared and evaluated. These shrimp heads came from four common species in the Shandong Province:,,,and. The results showed that the weight ratio of the head waste to the whole shrimp weight for the three penaeids reached approximately 40%. The highest weight ratio (85.52%) was observed for. All shrimp heads were rich in protein, ranging from 12.47%~14.91% of the fresh shrimp head weight. The essential amino acid contents in the shrimp head proteins of the four species reached more than 40%, and the umami and sweet amino acid contents were also high. Therefore, the shrimp heads of these four species are suitable for the development and utilization of protein hydrolysate/peptide amino acids. The phospholipid contents were 12.38~15.00 mg/g for the three penaeid species heads, and only 3.39 mg/g for theheads. The relatively higher astaxanthin content was 68.46 μg/g forand 61.62 μg/g for, followed by 41.42 μg/g forand 30.71 μg/g for, respectively. Therefore, the penaeid heads can be used as a raw material for extracting phospholipids and astaxanthin. However, the chitin content in the head ofwas about 3-fold more that of the three penaeid species, reaching about 4.67%, making it suitable for the preparation of chitin-related products. Findings of this study show that the by-products of the shrimp heads of these four species are rich in protein and amino acids, while the phospholipid, astaxanthin, and chitin contents varied significantly in the shrimp heads. Therefore, high value-added bioactive components can be developed from the shrimp heads of different species and may have a wide range of application.
Shrimp head; Component analysis; Quality evaluation
LI Xiaobin, E-mail: lixb@sdas.org; LIU Kechun, E-mail: hliukch@sdas.org
S985.2
A
2095-9869(2022)02-0228-08
10.19663/j.issn2095-9869.20201228001
* 山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019GSF107053)和齊魯工業(yè)大學(xué)(山東省科學(xué)院)青年博士合作基金項(xiàng)目(2017BSH2017)共同資助[This work was supported by the grants from the Key Research and Development Program of Shandong (2019GSF107053), and the Young Doctoral Collaborative Fund (2017BSH2017) of Qilu University of Technology (Shandong Academy of Sciences)]. 王鳳霞,E-mail: hai919@126.com
李曉彬,副研究員,E-mail: lixb@sdas.org;劉可春,研究員,E-mail: hliukch@sdas.org
2020-12-28,
2021-01-12
王鳳霞, 張姍姍, 張軒銘, 王利振, 張夢(mèng)啟, 李培海, 李曉彬, 劉可春, 邢澍. 山東4種常見(jiàn)蝦蝦頭品質(zhì)分析與評(píng)價(jià). 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 228–235
WANG F X, ZHANG S S, ZHANG X M, WANG L Z, ZHANG M Q, LI P H, LI X B, LIU K C, XING S. Analysis and evaluation of shrimp head quality from four common shrimp species in Shandong Province, China. Progress in Fishery Sciences, 2022, 43(2): 228–235
(編輯 陳 輝)