国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高速長(zhǎng)桿彈對(duì)有限直徑金屬厚靶的侵徹分析

2022-04-09 01:54:36趙均海孫珊珊
工程力學(xué) 2022年4期
關(guān)鍵詞:靶體靶材彈體

王 娟,趙均海,周 媛,孫珊珊,吳 賽

(1. 長(zhǎng)安大學(xué)理學(xué)院,西安 710064;2. 長(zhǎng)安大學(xué)建筑工程學(xué)院,西安 710061;3. 長(zhǎng)安大學(xué)基建處,西安 710064)

長(zhǎng)桿彈高速侵徹問(wèn)題一直是近年來(lái)的研究熱點(diǎn)[1 ? 2],不同于剛性彈,高速長(zhǎng)桿彈撞擊靶體時(shí),彈靶界面的壓力遠(yuǎn)遠(yuǎn)超過(guò)材料的屈服強(qiáng)度,碰撞應(yīng)力足以使彈體變形及消蝕[3],關(guān)于該問(wèn)題最初建立的分析模型是流體力學(xué)模型,隨后此模型被不斷改進(jìn)和發(fā)展[4]。Anderson等[5]利用柱形空腔膨脹理論推導(dǎo)了靶體阻力和侵徹速度之間的關(guān)系,建立了與時(shí)間相關(guān)的侵徹模型。國(guó)內(nèi)孫庚辰等[6]通過(guò)對(duì)彈體頭部流動(dòng)區(qū)進(jìn)行分析,提出了一維簡(jiǎn)化新模型。蘭彬[7]將靶體響應(yīng)區(qū)進(jìn)行了新的分區(qū),對(duì)侵徹模型進(jìn)行了改進(jìn)。樓建鋒[8]總結(jié)了現(xiàn)有長(zhǎng)桿彈理論模型,編制了統(tǒng)一計(jì)算程序。然而,已有對(duì)高速?gòu)楏w侵徹問(wèn)題的研究大多是建立在半無(wú)限靶體或者有限厚靶體的基礎(chǔ)上,未考慮靶體側(cè)面自由邊界對(duì)侵徹產(chǎn)生的影響,少有的對(duì)消蝕彈侵徹有限平面尺寸靶體的探究還主要停留于試驗(yàn)[9 ? 10],理論分析則大都忽略了靶體側(cè)面邊界的影響,由于當(dāng)靶體尺寸較小時(shí),這種假設(shè)帶來(lái)的結(jié)果與試驗(yàn)偏差明顯[9 ? 10],蔣志剛等[11]提出了有限柱形空腔膨脹理論,首次以系統(tǒng)的理論建立了長(zhǎng)桿彈侵徹有限直徑金屬厚靶的理論模型,然而該模型只適用于理想彈塑性材料、采用的Mises準(zhǔn)則只適合于剪切屈服極限和拉壓屈服極限關(guān)系為τs=0.577σs的材料,且未討論侵徹影響因素。隨后宋殿義等[12]和王娟等[13]基于此理論進(jìn)行的靶體側(cè)面邊界分析也僅是針對(duì)剛性彈,并未對(duì)發(fā)生侵蝕的高速長(zhǎng)桿彈侵徹問(wèn)題進(jìn)行研究。

統(tǒng)一強(qiáng)度理論考慮了作用于雙剪單元體上的全部應(yīng)力分量及其對(duì)材料破壞的不同影響,可以十分靈活地適用于各種不同的材料[14],包括金屬[15]、混凝土[16]、巖石[17 ? 18]等,在國(guó)內(nèi)外得到廣泛的應(yīng)用,是求解侵徹復(fù)雜應(yīng)力問(wèn)題更合理的新強(qiáng)度準(zhǔn)則[18]。由于材料強(qiáng)度準(zhǔn)則的建立和選用是研究靶材抗侵徹性能的重要環(huán)節(jié),同時(shí)為了擴(kuò)大解的適用范圍并充分發(fā)揮靶材潛能,本文考慮中間主應(yīng)力的影響,建立基于統(tǒng)一強(qiáng)度理論的有限柱形空腔膨脹模型,推導(dǎo)線性硬化有限直徑金屬厚靶在彈體高速(1500 m/s~2200 m/s)侵徹時(shí)的阻力和深度計(jì)算公式;將計(jì)算結(jié)果與試驗(yàn)結(jié)果、其他公式結(jié)果對(duì)比驗(yàn)證,文獻(xiàn)[11]的結(jié)果僅是本文結(jié)論的一個(gè)特例;得到一系列基于不同強(qiáng)度準(zhǔn)則的解析解,有效預(yù)測(cè)了不同靶彈半徑比金屬靶材的侵深區(qū)間;討論了強(qiáng)度參數(shù)、撞擊速度及靶體半徑對(duì)彈道性能的影響,可為金屬裝甲防護(hù)設(shè)計(jì)提供一定參考。

1 統(tǒng)一強(qiáng)度理論

統(tǒng)一強(qiáng)度理論的數(shù)學(xué)表達(dá)式為[14]:

式中: σ1、 σ2和 σ3分別為雙剪應(yīng)力單元體的三個(gè)主應(yīng)力;α為材料的拉壓強(qiáng)度比;b為反映中間切應(yīng)力及相應(yīng)面上正應(yīng)力對(duì)材料破壞影響程度的參數(shù),也是選用不同強(qiáng)度理論的參數(shù), 0≤b≤1。

2 基于統(tǒng)一強(qiáng)度理論的有限柱形空腔膨脹模型

2.1 計(jì)算模型

有限柱形空腔膨脹模型[11]如圖1所示。設(shè)柱體半徑為rt,t時(shí)刻空腔半徑為rc(最大值rcf),彈塑性邊界半徑為rp,r˙c為常數(shù)。膨脹過(guò)程分彈塑性階段(rp

圖1 有限柱形空腔膨脹模型Fig.1 Finite cylindrical cavity expansion model

由式(1)可得金屬材料的等效應(yīng)力為[13]:

式中, σr和 σθ分別為徑向應(yīng)力和環(huán)向應(yīng)力。

根據(jù)線性硬化材料的本構(gòu)關(guān)系,并聯(lián)立式(3)可得應(yīng)力-應(yīng)變關(guān)系方程為:

式中:σoy為材料的初始屈服應(yīng)力; εr和 εθ分別為徑向應(yīng)變和環(huán)向應(yīng)變;E和ν分別為材料的彈性模量和泊松比。

2.2 空腔膨脹應(yīng)力計(jì)算

2.2.1 彈塑性階段(rp

由于應(yīng)力和質(zhì)點(diǎn)速度連續(xù)[19],由式(6)和式(7),可得:

2.2.2 塑性階段(rp≡rt)

式中,rc2為第二階段結(jié)束時(shí)的空腔半徑。

假設(shè) εeq為等效應(yīng)變, εf為材料單向拉伸斷裂應(yīng)變,基于Hill的塑性功假設(shè)[20 ? 21]可知:

當(dāng)rp=rt,第一階段結(jié)束時(shí)的空腔半徑rc1為:

由式(14)和式(15)可得:

2.3 擴(kuò)孔耗能和空腔壁平均應(yīng)力計(jì)算

當(dāng)rc1≤rcf

3 長(zhǎng)桿彈侵徹有限直徑金屬厚靶效應(yīng)

3.1 侵蝕長(zhǎng)桿彈侵徹模型分析

根據(jù)Tate模型方程[22]中:

式中: ρd和 σd分別為彈體的密度和屈服應(yīng)力;Yd為彈體的特征強(qiáng)度;R為 靶體的阻力;l0和v0分別為彈體的初始長(zhǎng)度和速度;l和v分 別為t時(shí)刻彈體的長(zhǎng)度和速度;u和x分別為靶體侵徹速度和深度。

若rd為彈體半徑,取R=A1,rcf可近似取[11]:

若Yd

若Yd>R時(shí),磨蝕先停止,剩余彈體視為剛體,以v=vc2=u侵徹直至v=0 ,vc2則為[11]:

3.2 侵徹深度計(jì)算

若Yd

式中:

將u=u0,v=v0代入式(17),可求得u0為:

若Yd>R, 總侵深D包括磨蝕侵徹階段侵深x1和剛性侵徹階段侵深x2,即:

式中,x1、x2和x1結(jié)束時(shí)彈體剩余長(zhǎng)度l1為[11]:

4 算例及討論

4.1 模型驗(yàn)證

取文獻(xiàn)[9]和文獻(xiàn)[10]中試驗(yàn)數(shù)據(jù),代入本文公式計(jì)算侵深及阻力。文獻(xiàn)[9]試驗(yàn)靶板由4340鋼制成,密度ρ=7850 kg/m3,彈性模量E=200.6 GPa (Ep=0),泊 松 比υ=0.29,屈 服 應(yīng) 力σoy=1.365 GPa;鎢彈桿長(zhǎng)L0=77.9 mm,密度ρd=17 730 kg/m3,特征強(qiáng)度Yd=1.33 GPa,屈服應(yīng)力σs=1.3 GPa,極限應(yīng)力σst=1.33 GPa。文獻(xiàn)[10]試驗(yàn)靶板為6061-T6511鋁合金制成(ρ=2710 kg/m3,E=68.9 GPa,Ep=46 MPa,υ=1/3,σoy=365 MPa);4340鋼彈桿長(zhǎng)L0=71.1 mm,ρd=7830 kg/m3,σs=1.14 GPa,Yd=σs=1.17 GPa。其他材料參數(shù)、試驗(yàn)值和理論計(jì)算值匯總見表1所示。

表1 侵徹計(jì)算結(jié)果匯總Table 1 Summary of calculation results for penetration

圖2為當(dāng)b=0.6時(shí)本文公式與文獻(xiàn)[9]試驗(yàn)結(jié)果、文獻(xiàn)公式[9,11]的對(duì)比曲線。計(jì)算中根據(jù)膨脹體所經(jīng)歷階段分情況運(yùn)用MATLAB編程計(jì)算侵徹阻力及深度。由圖2可知:本文公式結(jié)果、文獻(xiàn)[11]和文獻(xiàn)[9]公式結(jié)果分別和試驗(yàn)結(jié)果對(duì)比的平均相對(duì)誤差為2.00%、5.47%和8.27%;當(dāng)rt/rd=4.9時(shí),本文結(jié)果的最大誤差為7.36%,文獻(xiàn)[11]的最大誤差為10.26%,文獻(xiàn)[9]的最大誤差可達(dá)20%以上,本文結(jié)果與試驗(yàn)吻合的最好。

圖2 侵徹深度對(duì)比Fig.2 Comparison of penetration depth

圖3為當(dāng)b=0.4時(shí)本文公式與文獻(xiàn)[10]試驗(yàn)結(jié)果的對(duì)比,兩者平均相對(duì)誤差為3.25%,吻合較好。

圖3 侵徹深度對(duì)比Fig.3 Comparison of penetration depth

圖4為基于文獻(xiàn)[9]試驗(yàn)參數(shù)的理想彈塑性靶材和線性硬化靶材侵深的比較,當(dāng)rtr˙c/c≤rcf

圖4 不同靶材侵徹深度對(duì)比Fig.4 Comparison of penetration depth for different targets

表2為根據(jù)本文式(18)、文獻(xiàn)[11]和文獻(xiàn)[9]公式計(jì)算阻力Rt。當(dāng)rt→∞時(shí),后兩者Rt=4.41 GPa,本文公式結(jié)果Rt=4.64 GPa,即當(dāng)本文結(jié)論應(yīng)用于半無(wú)限金屬靶體時(shí),靶體抗侵徹能力提高了5%。將本文公式應(yīng)用于文獻(xiàn)[10]可得Rt→R∞=1.25 GPa。

表2 不同靶彈半徑比時(shí)的侵徹阻力計(jì)算值Table 2 Penetration resistance of projectiles with different ratios of target radius to projectile radius

4.2 強(qiáng)度參數(shù)的影響

圖5和圖6為b不同時(shí),Rt、Dmax與靶彈半徑比rt/rd的關(guān)系曲線。由圖可知:強(qiáng)度參數(shù)b對(duì)Rt和Dmax均有較大影響,b值越大,中間主應(yīng)力效應(yīng)越明顯,Rt越大,Dmax越小。即考慮中間主應(yīng)力的影響,可以更加客觀的表現(xiàn)材料的強(qiáng)度潛能,使構(gòu)件發(fā)揮自身抗侵徹能力,侵徹計(jì)算中不宜忽略。

圖5 不同b值時(shí)侵徹阻力對(duì)比Fig.5 Comparison of penetration resistance with different b

圖6 不同b值時(shí)侵徹深度對(duì)比Fig.6 Comparison of penetration depth with different b

不同的材料,b值各不相同,同時(shí)b還是選用不同強(qiáng)度準(zhǔn)則的參數(shù),當(dāng)其取不同值時(shí),統(tǒng)一強(qiáng)度理論退化為不同的強(qiáng)度準(zhǔn)則,由此所得的結(jié)果差別很大,對(duì)于金屬類材料,采用Tresca屈服準(zhǔn)則(b=0)與采用雙剪屈服準(zhǔn)則(b=1)相比,所得侵徹阻力最大可減小33.33%,侵深最大可增加15.93%。由此說(shuō)明強(qiáng)度準(zhǔn)則的選用對(duì)侵徹終點(diǎn)效應(yīng)的預(yù)測(cè)也具有重要作用,實(shí)際應(yīng)用中應(yīng)選擇合適的強(qiáng)度準(zhǔn)則進(jìn)行計(jì)算,從而更好地合理設(shè)計(jì)和節(jié)約材料。例如本文通過(guò)計(jì)算,對(duì)鋼靶取b=0.6時(shí)所得結(jié)果與試驗(yàn)結(jié)果最為吻合,此結(jié)果也代表了基于一種新的、針對(duì)此靶材更加合適的強(qiáng)度準(zhǔn)則的解;若為其它靶材(如鋁合金靶材),可取得適合自身的b值進(jìn)行計(jì)算(本文通過(guò)計(jì)算取b=0.4,與文獻(xiàn)[13]一致)。

本文計(jì)算方法可以得到一系列解析解,文獻(xiàn)[11]所得結(jié)果(Mises屈服準(zhǔn)則結(jié)果)為本文Ep=0、b=0.366 時(shí) 的特例(只適合τs=0.577σs的材料);繼而得到某一特定工況下彈體侵深的上限值和下限值,有效預(yù)測(cè)侵徹深度的范圍,表3為不同靶彈半徑比時(shí)金屬類靶材侵深的預(yù)測(cè)區(qū)間。

表3 不同靶彈半徑比時(shí)彈體侵深預(yù)測(cè)區(qū)間Table 3 Penetration depth ranges for projectiles with different ratios of target radius to projectile radius

4.3 靶體半徑的影響

圖7為基于文獻(xiàn)[9]試驗(yàn)數(shù)據(jù),取Ep=46 MPa時(shí)靶彈半徑比rt/rd對(duì)侵徹深度Dmax和侵徹阻力Rt的影響曲線,由圖可知:隨著rt/rd的減小,Rt不斷減小,Dmax不斷增大;當(dāng)rt/rd<20,Rt/R∞隨著rt/rd的減小急劇減小,Dmax迅速增大,rt/rd=4.9與rt/rd=19.88相比,Rt減小了41.30%,Dmax增長(zhǎng)了32.61%,此時(shí)靶體自由邊界對(duì)侵徹性能的影響顯著,不能繼續(xù)按半無(wú)限靶體進(jìn)行計(jì)算;當(dāng)rt/rd≥20時(shí),Rt/R∞>0.93,隨著rt/rd的增大Dmax減小的速度緩慢,rt/rd=77.66與rt/rd=19.83相比,Dmax只減小了4.19%;當(dāng)rt/rd≥30時(shí),Rt/R∞>0.97,Dmax相比Rt→R∞時(shí)僅增大1.9%。這是由于彈體侵徹靶體的瞬間產(chǎn)生沖擊波,該沖擊波與靶體產(chǎn)生相互作用,改變波所穿過(guò)的靶體介質(zhì)的材料特性,當(dāng)沖擊波碰上靶體側(cè)面自由邊界時(shí),波中的部分能量將被反射回靶體,出現(xiàn)一定范圍的靶材破壞響應(yīng)區(qū),在一定程度上削弱靶體抗侵徹能力;從空腔膨脹理論角度分析,當(dāng)靶體塑性區(qū)域到達(dá)側(cè)面邊界,邊界會(huì)向外膨脹,靶體提供的阻力將會(huì)變小,彈體所能達(dá)到的侵徹深度則變大。

圖7 侵徹阻力、侵徹深度與靶彈半徑比的關(guān)系Fig.7 Relationships among Rt, Dmax and rt/rd.

4.4 撞擊速度的影響

圖8為rt/rd不同時(shí),最終侵深Dmax與撞擊速度v0的關(guān)系曲線,由圖可以看出:v0越大,Dmax越大,當(dāng)v0≤700 m/s時(shí),Dmax隨著v0的增大增長(zhǎng)緩慢,而當(dāng)v0>700 m/s時(shí),Dmax隨著v0的增大顯著增長(zhǎng)。同時(shí),當(dāng)v0越小,隨著rt/rd的減小,Dmax的增長(zhǎng)幅度越大,甚至成倍增長(zhǎng),例如當(dāng)v0=700 m/s時(shí),rt/rd=6.25與rt/rd=19.88相比,Dmax增長(zhǎng)了2.04倍。

圖8 侵徹深度與彈體撞擊速度的關(guān)系Fig.8 Relationship between penetration depth and impact velocity

5 結(jié)論

本文采用統(tǒng)一強(qiáng)度理論,研究了較高速長(zhǎng)桿彈侵徹有限直徑金屬厚靶的機(jī)理和計(jì)算模型,并討論了彈道終點(diǎn)效應(yīng)的影響因素。主要結(jié)論如下:

(1) 采用統(tǒng)一強(qiáng)度理論,建立長(zhǎng)桿彈高速侵徹線性硬化有限直徑金屬厚靶的侵徹阻力和深度計(jì)算模型,對(duì)半無(wú)限金屬靶體同樣適用。將計(jì)算結(jié)果與試驗(yàn)、文獻(xiàn)公式結(jié)果對(duì)比,本文結(jié)果精確度更高。

(2) 本文方法可以得到一系列基于不同強(qiáng)度準(zhǔn)則的解析解,文獻(xiàn)[11]結(jié)果僅為本文的一個(gè)特例。強(qiáng)度參數(shù)b對(duì)計(jì)算結(jié)果影響很大,即考慮中間主應(yīng)力效應(yīng),可以更加客觀的表現(xiàn)出材料的強(qiáng)度潛能。

(3) 彈體撞擊速度v0和靶彈半徑比rt/rd對(duì)侵徹結(jié)果的影響較大。rt/rd=4.9與rt/rd=19.88相比,Rt減小41.30%,Dmax增長(zhǎng)32.61%,表明當(dāng)rt/rd<20時(shí),靶體自由邊界對(duì)侵徹性能的影響顯著,不能繼續(xù)按半無(wú)限靶體進(jìn)行計(jì)算。

猜你喜歡
靶體靶材彈體
靶體結(jié)構(gòu)對(duì)前混合水射流噴丸強(qiáng)化應(yīng)力特性的影響
尾錐角對(duì)彈體斜侵徹過(guò)程中姿態(tài)的影響研究
超高韌性水泥基復(fù)合材料—纖維混凝土組合靶體抗兩次打擊試驗(yàn)研究*
爆炸與沖擊(2022年3期)2022-04-11 03:14:32
橢圓截面彈體斜侵徹金屬靶體彈道研究*
爆炸與沖擊(2022年2期)2022-03-17 07:28:44
熱壓法制備二硫化鉬陶瓷靶材工藝研究
退火工藝對(duì)WTi10靶材組織及純度的影響
玻璃磨邊機(jī)改造成氧化銦錫靶材磨邊機(jī)的研究
風(fēng)雨后見彩虹
STOPAQ粘彈體技術(shù)在管道施工中的應(yīng)用
上海煤氣(2018年6期)2018-03-07 01:03:22
彈丸對(duì)預(yù)開孔混凝土靶體侵徹的實(shí)驗(yàn)研究
岳池县| 宣武区| 美姑县| 加查县| 白朗县| 石棉县| 安阳县| 贵德县| 监利县| 安化县| 陈巴尔虎旗| 泰安市| 特克斯县| 恩平市| 区。| 东乡族自治县| 达孜县| 晋城| 静宁县| 社会| 冀州市| 安吉县| 朝阳市| 额尔古纳市| 开原市| 西城区| 五指山市| 饶平县| 射洪县| 荆门市| 台安县| 湛江市| 凤庆县| 稷山县| 彭州市| 桐庐县| 平阴县| 威信县| 西城区| 贡嘎县| 合江县|