国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

紡織品霉變微生物的分離純化與鑒定

2022-03-19 23:29陶婭妃張嫄周椿浩胡蕓孫付保劉建立
絲綢 2022年3期
關(guān)鍵詞:序列分析形態(tài)學(xué)霉菌

陶婭妃 張嫄 周椿浩 胡蕓 孫付保 劉建立

摘要: ?為了確定霉變棉織物上霉變微生物的種類,文章采用PDA培養(yǎng)基劃線分離純化,從霉變棉織物上得到5種霉菌,然后采用真菌形態(tài)學(xué)和顯微形態(tài)學(xué)進(jìn)行了初步鑒定。結(jié)果表明,引起棉織物霉變的微生物主要為曲霉屬霉菌、青霉屬霉菌和根霉屬霉菌,其中曲霉屬占比60 % ,為棉織物致霉的優(yōu)勢(shì)菌屬。通過對(duì)純化后的霉菌進(jìn)行18S rDNA-ITS序列分析,并在NCBI核酸序列數(shù)據(jù)庫(kù)里比較序列同源性,鑒定為5個(gè)種,分別為謝瓦式曲霉、指狀青霉、聚曲多霉、米根霉和黑曲霉。文章利用形態(tài)學(xué)方法結(jié)合ITS序列分析鑒定霉菌種類,使得獲取結(jié)果更加快速和精準(zhǔn),為紡織品防霉基礎(chǔ)研究與抗霉材料研發(fā)提供參考。

關(guān)鍵詞: ?棉織物;霉菌;形態(tài)學(xué);序列分析;純化與鑒定

中圖分類號(hào): TS117.6

文獻(xiàn)標(biāo)志碼: A

文章編號(hào): 1001 7003(2022)03 0040 05

引用頁(yè)碼: 031106

DOI: 10.3969/j.issn.1001-7003.2022.03.006 (篇序)

在日常生活中,服裝不可避免地要接觸各種各樣的細(xì)菌和真菌,微生物污染是導(dǎo)致服裝損壞的主要原因之一。紡織材料屬于多孔材料,具有表面積大、孔隙多等特點(diǎn),使其更容易吸附微生物? [1] 。人體分泌的代謝物,如汗液、皮脂為微生物提供了營(yíng)養(yǎng)源,使得微生物能夠迅速繁殖和生長(zhǎng)? [2-3] 。因此,服裝在日常生活環(huán)境中很容易被空氣中的微生物所污染,在多雨潮濕的氣候里,則更容易滋生霉菌。霉菌能夠?qū)⒑刑?、硫等營(yíng)養(yǎng)源的棉、毛和絲纖維分解為養(yǎng)分,促進(jìn)其快速繁殖和生長(zhǎng)。同時(shí),霉菌在生長(zhǎng)過程中會(huì)分泌有機(jī)酸和色素對(duì)紡織品造成酸蝕和顏色污染,影響其機(jī)械性能和美觀,縮短了紡織品的使用壽命? [4] 。

紡織品上的微生物包括細(xì)菌和真菌,目前紡織品抗菌主要針對(duì)的是細(xì)菌,對(duì)于紡織品抗真菌的研究較少,而真菌是紡織品生物降解過程中最重要的微生物? [5-6] 。紡織品上霉菌菌種的鑒定一直基于形態(tài)學(xué)特征,包括宏觀和微觀,只能鑒定到霉菌屬,這些方法通常耗時(shí)且不準(zhǔn)確。本文利用形態(tài)學(xué)方法結(jié)合ITS序列分析鑒定霉菌種類,可鑒定到霉菌菌種,使得獲取結(jié)果更加快速和精準(zhǔn)??椢锉砻娴拿咕c空氣中的霉菌真菌種類密切相關(guān),織物霉變是空氣中的霉菌對(duì)織物基質(zhì)選擇的結(jié)果。方治國(guó)等? [7] 對(duì)城市室內(nèi)外空氣真菌群落的研究表明,空氣中優(yōu)勢(shì)真菌為枝孢屬、鏈格孢屬、青霉屬、曲霉屬和無孢菌等;楊靖? [8] 對(duì)徐州市城區(qū)不同季節(jié)、晝夜24 h空氣中霉菌群落組成變化和分布特點(diǎn)進(jìn)行了研究,觀察到曲霉屬和青霉屬為優(yōu)勢(shì)霉菌群落。本次分離出的霉菌菌屬均屬于文獻(xiàn)[7-8]報(bào)道的空氣真菌,優(yōu)勢(shì)菌屬與空氣中優(yōu)勢(shì)真菌菌屬也基本一致。唐歡等? [9] 從館藏紙質(zhì)書畫文物上分離出8株分屬于曲霉屬、根霉屬和木霉屬的霉菌; 宋賢沖等? [10] 從廣西南寧霉變的纖維板上分離出茨木霉、深綠木霉和孢脈孢霉;唐長(zhǎng)波等? [11] 從污染絲綢織物中分離出根霉屬、曲霉屬和擬青霉屬霉菌,不同基質(zhì)和環(huán)境條件下分離出的霉菌存在差異。因此,需要鑒定污染紡織品上的微生物種類,并針對(duì)這些微生物的生理生化特征,采取相應(yīng)的物理、化學(xué)方法抑制其在織物表面的生長(zhǎng),以保護(hù)紡織品,延長(zhǎng)其使用壽命。本文從霉變棉織物上提取霉菌,并在PDA培養(yǎng)基上劃線分離純化,得到了單一的菌株,再采用顯微形態(tài)學(xué)觀察與ITS序列分析相結(jié)合的方法對(duì)霉變微生物進(jìn)行鑒定,確定了棉織物致霉優(yōu)勢(shì)菌屬,然后可根據(jù)其生長(zhǎng)規(guī)律和生理生化特性,開發(fā)相應(yīng)的防霉試劑。

1 實(shí) 驗(yàn)

1.1 材料與設(shè)備

1.1.1 材 料

霉變織物:以肉眼可見的霉變?yōu)闃?biāo)準(zhǔn),于江蘇省無錫市江南大學(xué)紡織科學(xué)與工程學(xué)院D區(qū)實(shí)驗(yàn)室中采集的霉變棉織物(平紋,18.5 tex×18.5 tex,510根/10 cm×275根/10 cm, 148 g/m 2 ;中恒大耀紡織科技有限公司)。

PBS緩沖液:5.155 2 g Na 2HPO 4·12H 2O,0.876 3 g NaH 2PO 4·2H 2O(中國(guó)醫(yī)藥集團(tuán)有限公司),1 000 mL蒸 餾水。

PDA培養(yǎng)基:40.1 g馬鈴薯葡萄糖瓊脂培養(yǎng)基干粉(中國(guó)醫(yī)藥集團(tuán)有限公司),1 000 mL蒸餾水,加熱溶解? [12] 。

上述培養(yǎng)基及試劑均采用121 ℃高壓蒸汽滅菌20 min,用于分離鑒定霉變棉織物上的霉菌。使用乳酸石炭酸棉藍(lán)(福州飛凈生物科技有限公司)給霉菌染色并觀察其微觀 形態(tài)。

1.1.2 設(shè) 備

DZF-6050型真空干燥箱、BSD-YF2200型立式雙層精密搖床、YXQ-LS-75G型立式壓力蒸汽滅菌鍋(上海博訊實(shí)業(yè)有限公司),NU-425-400S型生物安全柜(美國(guó)Nuaire公司)、 MJ-1608-Ⅱ型 霉菌培養(yǎng)箱(上海躍進(jìn)醫(yī)療器械有限公司)、VHX-5000超景深三維數(shù)碼顯微鏡(基恩士公司)。

1.2 方 法

1.2.1 霉變微生物的分離純化

參照GB 4789.15—2016《食品安全國(guó)家標(biāo)準(zhǔn)食品微生物學(xué)檢驗(yàn)霉菌和酵母計(jì)數(shù)》中霉菌分離純化的方法。稱取霉變棉織物10 g,置于90 mL PBS溶液中,(28±2) ℃、180 r/min條件下于搖床震蕩培養(yǎng)24 h制成1 ︰ 10菌液,依次稀釋10倍梯度,共稀釋6個(gè)梯度。各梯度均吸取1 mL菌液,并用無菌玻璃棒均勻涂布在PDA培養(yǎng)基上,(28±2) ℃、85 % ?RH條件下于霉菌培養(yǎng)箱中倒置培養(yǎng)5 d。從平板上長(zhǎng)出的菌落中挑取少量菌絲,劃線接種于PDA培養(yǎng)基上,相同條件下繼續(xù)培養(yǎng)5~7 d。根據(jù)菌落的形態(tài)、大小及顏色,挑選不同的單菌落接種于PDA培養(yǎng)基中純化3次,得到形態(tài)單一的菌落,最后接種試管斜面,于4 ℃冰箱保存?zhèn)溆谩?/p>

1.2.2 菌落形態(tài)觀察

利用無菌接種針挑取少量純化后的菌落菌絲,在PDA培養(yǎng)基平板中間點(diǎn)植接種。將其在(28±2) ℃、85 % ?RH條件下置于霉菌培養(yǎng)箱中倒置培養(yǎng)5 d,觀察菌落的生長(zhǎng)情況和形態(tài)特征,并用佳能700D相機(jī)拍照,根據(jù)《真菌鑒定手冊(cè)》? [13] 進(jìn)行初步鑒定。

1.2.3 顯微鏡形態(tài)觀察

采用透明膠帶鏡檢法? [14] 。吸取適量乳酸石炭酸棉藍(lán)染液于載玻片,用無菌鑷子夾住膠帶兩端,使透明膠帶呈U字形,保持膠面朝下觸碰菌落表面,將粘有菌絲體的部分浸入載玻片上的染色液中,在超景深三維數(shù)碼顯微鏡下觀察霉菌的菌絲形態(tài)和孢子形狀。

1.2.4 PCR擴(kuò)增及測(cè)序

霉菌屬于真菌微生物,因此本文選用引物ITSl(5′-TCCGTAGGTGAACCTGCGG-3′)和ITS4(5′-TCCTCCG CTTATTGATATGC-3′)? [9-10,15]? 進(jìn)行ITS片段擴(kuò)增。其中PCR反應(yīng)體系為 50 μL ,共包含35.5 μL水,1 μL模板引物,1 μL引物ITS1, 1 μL引 物ITS4,1 μL dNTP 10 mM,5 μL Taq Buffer,5 μL MgCl 2 25 mM,0.5 μL Taq酶5 U/μL。PCR反應(yīng)條件設(shè)置:在95 ℃時(shí)預(yù)變性3 min,94 ℃時(shí)變性20 s,50~60 ℃時(shí)退火 20 s,72 ℃時(shí) 延伸20~50 s,總共循環(huán)35次,在72 ℃時(shí)修復(fù)延伸5 min。得到的PCR擴(kuò)增產(chǎn)物在150 V、100 mA條件下用1 % 瓊脂糖進(jìn)行20 min電泳。天霖生物科技(上海)有限公司對(duì)樣品進(jìn)行序列測(cè)定。

1.2.5 序列分析

將序列結(jié)果輸入NCBI的核酸序列數(shù)據(jù)庫(kù),使用在線序列比對(duì)搜索工具BLAST進(jìn)行同源性比對(duì)分析,選取與比對(duì)菌株序列同源性超過99 % 且已知分類地位的真菌菌株? [16-17] ,確定霉菌種名。使用MEGA7.0軟件構(gòu)建系統(tǒng)進(jìn)化樹,通過Neighbor- Joining進(jìn)行聚類計(jì)算,使用Bootstrap檢驗(yàn)系統(tǒng)進(jìn)化樹的分枝可信度,自舉檢驗(yàn)次數(shù)為1 000? [10] 。

2 結(jié)果與分析

2.1 形態(tài)學(xué)分析

在PDA培養(yǎng)基上對(duì)霉變棉織物中的微生物進(jìn)行劃線分離與純化,觀察霉菌菌落的生長(zhǎng)狀況、表面高度、菌落邊緣形狀和菌落顏色等,并在超景深顯微鏡的不同放大倍數(shù)下觀察霉變微生物的菌絲有無橫隔,分生孢子的形狀、分生孢子梗和頂囊等個(gè)體形狀? [14] ,初步確定為5種霉菌,依次編號(hào)為A、B、C、D和E。(28±2) ℃、85 % ?RH條件下,將5種霉菌接種到PDA培養(yǎng)基上進(jìn)行培養(yǎng),觀察霉菌的生長(zhǎng)情況。A霉菌生長(zhǎng)初期無色,4~5 d后菌落慢慢變成黃色。B霉菌生長(zhǎng)初期為白色,生長(zhǎng)過程中菌落顏色逐漸變灰,成熟后呈灰綠色。C霉菌在生長(zhǎng)過程中產(chǎn)生大量滲透液,使得培養(yǎng)基呈淺褐色,與其他培養(yǎng)基差異比較明顯。D霉菌在PDA培養(yǎng)基上迅速繁殖生長(zhǎng),48 h后出現(xiàn)白色的直立菌絲,生長(zhǎng)后期菌絲頂端長(zhǎng)出圓形的黑色孢子。E菌落在培養(yǎng)基上快速蔓延生長(zhǎng),氣生菌絲呈厚絨狀,表面生成黑色的孢子。5種霉變微生物菌落形態(tài)、個(gè)體形態(tài)描述及初步鑒定結(jié)果如表1所示。

5種霉菌生長(zhǎng)7 d后的菌落形態(tài)如圖1所示,霉菌個(gè)體形態(tài)(×1 000倍)如圖2所示。通過對(duì)菌落形態(tài)和微生物個(gè)體形態(tài)的分析,初步鑒定菌種A、C和E為曲霉屬霉菌,B為青霉屬霉菌,D為根霉屬霉菌。由形態(tài)學(xué)鑒定結(jié)果可知,曲霉屬真菌為3株,占比60 % ,為棉織物致霉的優(yōu)勢(shì)菌屬。

2.2 18S rDNA-ITS序列分析鑒定

根據(jù)天霖生物科技(上海)有限公司的測(cè)序結(jié)果,將得到的序列按照1.2.5的方法進(jìn)行比對(duì)分析鑒定霉菌微生物種類,鑒定結(jié)果如表2所示,提交序列與數(shù)據(jù)庫(kù)中參照序列的同源性大于99 % ,可視為同一種? [16] 。因此,A、B、C、D、E分別為謝瓦式曲霉、指狀青霉、聚曲多霉、米根霉和黑曲霉。

在MEGA7.0中構(gòu)建5種霉菌18S rDNA-ITS序列的系統(tǒng)進(jìn)化樹,采用1.2.5中的方法進(jìn)行距離分析,并檢驗(yàn)其可信度,來評(píng)估系統(tǒng)進(jìn)化樹的分枝可信度。由圖3可知,系統(tǒng)進(jìn)化樹的自展值均超過50,表明構(gòu)建的系統(tǒng)進(jìn)化樹可信。5種霉變微生物的ITS序列聚類出3個(gè)分支,分別為青霉屬、曲霉屬和根霉屬,同種屬的霉菌進(jìn)化關(guān)系近,獲得較高的支持率,合并在同一分支。

3 結(jié) 論

本文采用PDA培養(yǎng)基劃線分離純化霉變棉織物上的霉菌,并利用形態(tài)學(xué)方法和ITS序列分析完成棉織物致霉優(yōu)勢(shì)菌屬的鑒別,該方法具有可行性,能為紡織品致霉微生物的鑒定提供參考。分離純化的霉菌通過單菌落形態(tài)特征初步鑒定出5種霉變微生物,其中3種霉菌屬于曲霉屬霉菌,1種屬于青霉屬霉菌,1種屬于根霉屬霉菌, 曲霉屬霉菌占比60 % ,為棉織物致霉的優(yōu)勢(shì)菌屬。本文通過序列分析和同源性比較鑒定為5個(gè)種,分別為謝瓦式曲霉、指狀青霉、聚曲多霉、米根霉和黑曲霉。根據(jù)紡織品上微生物種類及其生理生化特征,可選擇合適的存儲(chǔ)環(huán)境和防霉整理劑,從而抑制霉菌生長(zhǎng),延長(zhǎng)紡織品的使用壽命。

參考文獻(xiàn):

[1]? 羅燕, 楊俊枝. 羊絨針織品抗菌功能整理[J]. 毛紡科技, 2010, 38(10): 18-20.

LUO Yan, YANG Junzhi. Antibacterial functional finishing for cashmere knitwear[J]. Wool Textile Journal, 2010, 38(10): 18-20.

[2] 崔樂, 賈焱, 成志偉, 等. 維持皮膚屏障研究進(jìn)展: 脂質(zhì)的分泌及組成[J]. 中國(guó)皮膚性病學(xué)雜志, 2016, 30(6): 640-643.

CUI Le, JIA Yan, CHENG Zhiwei, et al. Advancement in maintaining skin barrier-secretion and composition of lipid[J]. The Chinese Journal of Dermatovenereology, 2016, 30(6): 640-643.

[3]KRIFA ?M, RAJAGANESH S, FAHY W. Perspectives on textile cleanliness: Detecting human sebum residues on worn clothing[J]. Textile Research Journal, 2019, 89(23/24): 5226-5237.

[4] 路智勇, 惠任. 紡織品文物霉害預(yù)防性控制[J]. 四川文物, 2009(3): 89-92.

LOU Zhiyong, HUI Ren. Preventive control of mildew damage on textile cultural relics[J]. Sichuan Cultural Relics, 2009(3): 89-92.

[5]JADWIGA ?S K. Biodeterioration of textiles[J]. International Biodeterioration & Biodegradation, 2004, 53: 165-170.

[6]SANDERS ?D, GRUNDEN A, DUNN R R. A review of clothing microbiology: The history of clothing and the role of microbes in textiles[J]. Biology Letters, 2020, 17(1): 1-4.

[7] 方治國(guó), 歐陽(yáng)志云. 城市室內(nèi)外空氣真菌群落及影響因素研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2009, 18(1): 386-393.

FANG Zhiguo, OUYANG Zhiyun. Advance of airborne fungal community and the influencing factors in indoor and outdoor environments in urban ecosystem[J]. Ecology and Environment, 2009, 18(1): 386-393.

[8] 楊靖. 徐州城市空氣中霉菌群落分布規(guī)律及結(jié)構(gòu)組成差異性研究[J]. 環(huán)境與發(fā)展, 2016, 28(5): 56-58.

YANG Jing. In the air of Xuzhou city mold community distribution and structural composition diversity research[J]. Inner Mongolia Environmental Sciences, 2016, 28(5): 56-58.

[9] 唐歡, 王春, 范文奇, 等. 館藏紙質(zhì)書畫文物上霉菌的分離與鑒定[J]. 文物保護(hù)與考古科學(xué), 2015(2): 40-46.

TANG Huan, WANG Chun, FAN Wenqi, et al. Isolation and identification ?of molds from ancient Chinese calligraphy and paintings in museums[J]. Sciences of Conservation and Archaeology, 2015(2): 40-46.

[10]? 宋賢沖, 張照遠(yuǎn), 劉媛, 等. 廣西南寧纖維板霉變微生物的分離及鑒定[J]. 林業(yè)工程學(xué)報(bào), 2016, 1(1): 78-82.

SONG Xianchong, ZHANG Zhaoyuan, LIU Yuan, et al. Isolation and identification of microorganisms causing mildew of fiberboard in Nanning, ?Guangxi[J]. China Forestry Science and Technology, 2016, 1(1): 78-82.

[11] 唐長(zhǎng)波, 李世超. 污染的絲綢織物中霉菌的分離與鑒定[J]. 安徽農(nóng)學(xué)通報(bào), 2009, 15(17): 28-29.

TANG Changbo, LI Shichao. Separation and identification of mould from silk fabrics contaminated by microorganisms[J]. Anhui Agricultural Science Bulletin, 2009, 15(17): 28-29.

[12] 王志惠. 紡織品抗真菌性能評(píng)價(jià)方法的研究與改進(jìn)[D]. 上海: 東華大學(xué), 2015.

WANG Zhihui. Research and Improvement of Evaluation Methods on ?Antifungal Activity of Textile[D]. Shanghai: Donghua University, 2015.

[13] 魏景超. 真菌鑒定手冊(cè)[M]. 上海: 上??茖W(xué)技術(shù)出版社, 1979.

WEI Jingchao. Fungal Identification Manual[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1979.

[14] 馮長(zhǎng)海. 改良透明膠帶法在絲狀真菌形態(tài)觀察中的應(yīng)用[J]. 臨床檢驗(yàn)雜志, 2017, 35(10): 32-33.

FENG Changhai. Application of a modified transparent tape method to the observation of filamentous fungi morphology[J]. Chinese Journal of Clinical Laboratory Science, 2017, 35(10): 32-33.

[15] 雷聲, 楊乾栩, 師艷萍, 等. 成品卷煙霉變微生物的分離純化與鑒定[J]. 食品與機(jī)械, 2019, 35(9): 98-101.

LEI Sheng, YANG Qianxu, SHI Yanping, et al. Isolation, purification and identification of microorganisms in moldy cigarettes products[J]. Food & Machinery, 2019, 35(9): 98-101.

[16] 樊壬水, 何賢蓉, 葉偉, 等. 纖維板霉變微生物的分離鑒定及生長(zhǎng)抑制方法[J]. 林業(yè)工程學(xué)報(bào), 2020, 5(5): 84-89.

FAN Renshui, HE Xianrong, YE Wei, et al. Isolation, identification and growth inhibition of microorganisms mildew of fiberboard[J]. China Forestry Science and Technology, 2020, 5(5): 84-89.

[17]LANDEWEERT R, LEEFLANG P, KUYPER TW, el al. Molecular identification of ectomycorrhizal mycelium in soil horizons[J]. Applied and Environmental Microbiol, 2003, 69(1): 327-333.

Isolation, purification and identification of moldy microorganisms on textiles

TAO Yafei? 1a , ZHANG Yuan 2, ZHOU Chunhao 2, HU Yun? 1b , SUN Fubao? 1b , LIU Jianli? 1a

(1a.College of Textile Science and Engineering; 1b.School of Biotechnology, Jiangnan University, Wuxi 214122, China; 2.Wuxi Little Swan Electric Co., Ltd., Wuxi 214122, China)

?Abstract:

During the wearing process, clothing will be contaminated by microorganisms from the human skin together with sebaceous lipids, sweat, and dead skin cells, which serve as a source of microbial nutrition. Therefore, clothing is easily contaminated by microorganisms in the air in the environment of daily life and is prone to mildew in warm and humid climate. The invasion of microbes in textile materials is mainly due to the presence of fungi. The growth of mildew on textiles has a series of effects not only on the textile itself but also on the wearer because mildew can secrete enzymes to decompose cotton, wool, and silk containing carbon, sulfur, and other nutrient sources into nutrients to promote their rapid reproduction and growth. At the same time, the mold will secrete organic acids and pigments during the growth process, causing acid corrosion and discoloration to the textiles, affecting their mechanical properties and aesthetics, and shortening the service life of the textiles. Therefore, it is necessary to identify the kinds of mildew on textiles, and adopt corresponding physical and chemical methods to inhibit their growth on the surface of the fabric according to the physiological and biochemical characteristics of these microorganisms, protect the textiles, and extend their service life.

In this experiment, mildew microorganisms were extracted from moldy cotton fabrics. Then, they were separated and purified by streaking on the PDA culture medium suitable for mildew growth, and a single bacterial strain was obtained. Microbial morphology was used for preliminary identification, and the gene sequencing identification of mildew microorganisms was completed through ITS sequence analysis. The moldy cotton fabric was collected from the real environment, and the mold-causing microorganisms were isolated and purified from the above. The mildew was identified through microbial morphology and ITS sequence analysis, and the species of mildew and the dominant fungi causing the mildew of cotton fabric were determined, providing a scientific basis for preventing mildew and inhibiting the growth of mildew. Among the isolated and purified mildew, five moldy microorganisms were initially identified based on the morphological characteristics of a single colony, in which three (60 % ) belonged to the genus ?Aspergillus , one belonged to the genus ?Penicillium , and one belonged to the genus ?Rhizopus . ?Aspergillus ?is the dominant genus of mildew-causing cotton fabrics. Five species were identified by sequence analysis and homology comparison, namely, ?Aspergillus chevalieri , ?Penicillium digitatum , ?Aspergillus sydowii , ?Rhizopus oryzae , and ?Aspergillus niger .

Clarifying the types of microorganisms that cause mildew in textiles can help people to choose suitable storage environment and anti-mold finishing agent in accordance with their physiological and biochemical characteristics, so as to inhibit mildew growth and prolong the service life of textiles.

Key words:

cotton fabric; mildew; morphology; sequence analysis; purification and identification

3162501186558

猜你喜歡
序列分析形態(tài)學(xué)霉菌
臨床檢驗(yàn)中血細(xì)胞形態(tài)學(xué)觀察與分析
音樂科學(xué)研究中的思想實(shí)驗(yàn)——以音樂形態(tài)學(xué)研究中的四個(gè)重大發(fā)現(xiàn)為例
這個(gè)圣誕很熱鬧:霉菌也要過圣誕
石榴果皮DHQ/SDH基因的克隆及序列分析
三個(gè)小麥防御素基因的克隆及序列分析
一種改進(jìn)的分水嶺圖像分割算法研究
柴達(dá)木盆地梭梭耐鹽相關(guān)基因PrxQ的克隆及其蛋白結(jié)構(gòu)預(yù)測(cè)
霉菌的新朋友—地衣
地衣和霉菌
跟蹤導(dǎo)練(二)(2)