段史江,陳小龍,吳飛躍,王占偉,程小強(qiáng),張子穎,李亞純,謝天琪,韓助君,楊永鋒*
低濃度茉莉酸甲酯對(duì)煙草長(zhǎng)柄腺毛發(fā)生發(fā)育的影響
段史江1,陳小龍2,吳飛躍3,王占偉2,程小強(qiáng)1,張子穎2,李亞純1,謝天琪2,韓助君1,楊永鋒2*
(1.江西省煙草公司吉安市公司,江西 吉安 343009;2.河南中煙工業(yè)有限責(zé)任公司,鄭州 450016;3.福建中煙工業(yè)有限責(zé)任公司,廈門(mén) 361000)
茉莉酸甲酯(MeJA)對(duì)煙草長(zhǎng)柄腺毛的發(fā)生具有強(qiáng)烈的誘導(dǎo)作用,但濃度過(guò)高時(shí)會(huì)抑制煙苗發(fā)育。本文以云煙87幼苗為材料,研究低濃度MeJA對(duì)腺毛發(fā)育和腺毛分泌物的影響,并利用qRT-PCR技術(shù)研究腺毛發(fā)生發(fā)育調(diào)控基因?qū)eJA的應(yīng)答模式。結(jié)果表明,隨著MeJA噴施濃度的升高,長(zhǎng)柄腺毛的密度和腺頭直徑逐漸增加;噴施300 μmol/L MeJA對(duì)長(zhǎng)柄腺毛發(fā)生和發(fā)育有顯著的誘導(dǎo)作用,且對(duì)葉片發(fā)育無(wú)明顯影響;當(dāng)MeJA噴施濃度達(dá)到600 μmol/L時(shí),葉片發(fā)育受到抑制。葉面化學(xué)成分分析發(fā)現(xiàn),與未噴施MeJA的對(duì)照相比,噴施300 μmol/L MeJA后西柏烷二萜、烷烴和蔗糖酯含量增加約一倍?;驊?yīng)答模式研究發(fā)現(xiàn),西柏烷二萜合成基因和,以及酯轉(zhuǎn)運(yùn)蛋白基因受MeJA誘導(dǎo)表達(dá);煙草腺毛發(fā)生調(diào)控基因、、、和對(duì)MeJA處理均具有應(yīng)答反應(yīng),其中和的表達(dá)受到MeJA誘導(dǎo),而、和的表達(dá)受到MeJA抑制。綜上,300 μmol/L MeJA可以調(diào)控腺毛發(fā)育相關(guān)基因的表達(dá),安全、有效地促進(jìn)長(zhǎng)柄腺毛發(fā)生發(fā)育以及腺毛分泌物的合成。
煙草;腺毛;茉莉酸甲酯;西柏烷二萜;蔗糖酯;基因表達(dá)
植物表皮毛作為植物與環(huán)境間的天然屏障,可減少水分及熱量散失,緩沖日光直射,抵抗病原菌和昆蟲(chóng)等的侵害,在應(yīng)對(duì)各種生物脅迫及非生物脅迫中發(fā)揮重要作用[1-3]。植物表皮毛的結(jié)構(gòu)和形態(tài)多樣,依據(jù)分泌腺的有無(wú),可分為保護(hù)毛(非腺體毛)和腺毛。栽培煙草(L.)的表皮毛包括3種類型:保護(hù)毛、長(zhǎng)柄腺毛和短柄腺毛;長(zhǎng)柄腺毛和短柄腺毛形態(tài)差異較大,其中長(zhǎng)柄腺毛由4~6個(gè)柄細(xì)胞和1~6個(gè)頭細(xì)胞組成,可以特異地合成和分泌西柏烷二萜化合物和蔗糖酯,而短柄腺毛由1個(gè)柄細(xì)胞和8~16個(gè)頭細(xì)胞組成,可以外泌煙堿物質(zhì)[4-5]。
煙草腺毛分泌能力旺盛,分泌物占煙草葉面化學(xué)物總量的85%,其中,長(zhǎng)柄腺毛特異合成的西柏烷二萜和蔗糖酯是煙草葉面化學(xué)的主要成分,也是重要的致香前體物質(zhì)[6-7],對(duì)于煙株抗性和煙葉香氣品質(zhì)具有重要意義。研究發(fā)現(xiàn),西柏烷二萜具有抗真菌和抗蚜蟲(chóng)活性[8-9],蔗糖酯可以調(diào)節(jié)種子萌發(fā)和植物發(fā)育過(guò)程、同時(shí)具有很高的殺蟲(chóng)活性[10-11]。
茉莉酸甲酯(methyl jasmonate, MeJA)是茉莉酸(JA)的衍生物,常用來(lái)替代JA進(jìn)行外施,以增強(qiáng)植物對(duì)生物和非生物脅迫的抗性。例如,在開(kāi)花期噴施MeJA可以有效地促進(jìn)水稻和小麥的穎花開(kāi)放,提高制種產(chǎn)量[12-13]。在姜黃生育中期噴施800 μmol/L MeJA可以顯著增加姜黃產(chǎn)量和姜黃素含量[14]。對(duì)百合花朵噴施50~60 μmol/L MeJA可以增加萜烯類、醇類和酮類等花香揮發(fā)物的釋放量[15]。對(duì)煙草幼苗噴施MeJA可以提高煙草的耐冷性和抗蟲(chóng)性[16-17]。對(duì)栽培煙草體外噴施茉莉酸甲酯對(duì)長(zhǎng)柄腺毛發(fā)生具有強(qiáng)烈的誘導(dǎo)作用,但是,噴施高濃度MeJA會(huì)嚴(yán)重抑制煙苗的發(fā)育[18-20]。
本文以云煙87幼苗為試驗(yàn)材料,噴施不同濃度的MeJA后進(jìn)行煙苗和腺毛形態(tài)的比較觀察,明確能夠促進(jìn)長(zhǎng)柄腺毛發(fā)生且不影響葉片發(fā)育的MeJA噴施濃度,以及MeJA對(duì)腺毛分泌物的誘導(dǎo)效果,同時(shí)探索MeJA誘導(dǎo)腺毛發(fā)生、發(fā)育可能的分子機(jī)制。
云煙87進(jìn)行漂浮育苗,4周后進(jìn)行盆栽,每盆1株,幼苗在光強(qiáng)2000 Lx,16 h/8 h明/暗光周期,26 ℃的光照培養(yǎng)室用霍格蘭營(yíng)養(yǎng)液培養(yǎng)。
選擇生長(zhǎng)一致的三葉期云煙87幼苗,分別噴施濃度為0、300、600 和900 μmol/L MeJA溶液,保證所有葉片充分濕潤(rùn)(每株2 mL溶液),每周?chē)娛?次,噴施3次,最后1次噴施1周后觀察腺毛形態(tài)。每個(gè)處理5株煙苗,試驗(yàn)重復(fù)3次。
對(duì)照和處理組分別取葉齡21 d的葉片,置于0.2%(/)羅丹明B水溶液中浸染30 min,然后用蒸餾水漂洗3次。利用超景深顯微鏡對(duì)葉片表面進(jìn)行表皮毛形態(tài)觀察和密度統(tǒng)計(jì)。
對(duì)照和處理組分別取葉齡21 d的葉片,取直徑為10 cm的葉圓片20片,在二氯甲烷中依次浸提2 s,重復(fù)8次,在浸提液中加入1 mL內(nèi)標(biāo){2.02 mg/mL蔗糖八乙酸酯(C28H38O19)和2.47 mg/mL正十七烷醇[CH3(CH2)15CH2OH]的混合液},旋轉(zhuǎn)蒸發(fā)儀濃縮后用氮吹儀吹干。加入500 μL的1∶1 (∶)N,N-二甲基甲酰胺和N,O-雙三甲硅基三氟乙酰胺,置于75 ℃水浴中反應(yīng)1 h,加入N,O-雙乙酰胺和吡啶各125 μL,獲得檢測(cè)液。利用GC/MS(色譜儀型號(hào)HP-5890,質(zhì)譜儀型號(hào)vc-70SE,美國(guó)Agilent公司)進(jìn)行化學(xué)成分的定性和定量分析[21]。
對(duì)照和處理組分別取葉齡21 d的葉片,撕取葉表皮按照Trizol法提取總RNA,并反轉(zhuǎn)錄為cDNA。將已報(bào)道的植物腺毛發(fā)育基因()[22]、[23]、()[24]、()[25]、()[26]和()[27]序列提交至NCBI,通過(guò)同源比對(duì)下載對(duì)應(yīng)的煙草直系同源基因序列,使用Premier Prime 5.0軟件設(shè)計(jì)特異引物(表1)。按照LightCycler? 480 SYBR Green I Master qPCR試劑盒說(shuō)明書(shū)在LightCycler? 480 Ⅱ型熒光定量PCR 儀上進(jìn)行qRT-PCR反應(yīng)。以作為內(nèi)參基因,按照2?ΔΔCT公式[28]計(jì)算各基因的相對(duì)表達(dá)量。
采用Excel 2007軟件繪圖制表,利用SPSS 22軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,用新復(fù)極差法分析均值差異的顯著性,顯著性水平<0.05。
表1 qRT-PCR引物序列
云煙87幼苗分別噴施濃度為0、300、600和900 μmol/L的MeJA溶液,3周后觀察其腺毛形態(tài)。結(jié)果顯示,未噴施MeJA的云煙87幼苗(對(duì)照)葉片具有長(zhǎng)柄腺毛、短柄腺毛和保護(hù)毛3種表皮毛類型,其中長(zhǎng)柄腺毛比例最高,短柄腺毛次之,保護(hù)毛含量最少。隨著MeJA噴施濃度的升高,長(zhǎng)柄腺毛的密度和頭部直徑呈增加趨勢(shì),保護(hù)毛密度逐漸降低,而短柄腺毛的密度和形態(tài)無(wú)顯著變化(圖1-3)。噴施300 μmol/L MeJA后幼苗的生長(zhǎng)發(fā)育沒(méi)有受到明顯影響;當(dāng)MeJA濃度增至600 μmol/L時(shí),葉片出現(xiàn)內(nèi)卷現(xiàn)象;當(dāng)MeJA濃度達(dá)到900 μmol/L時(shí),葉片發(fā)黃和內(nèi)卷現(xiàn)象嚴(yán)重??梢?jiàn),噴施300 μmol/L MeJA可以顯著誘導(dǎo)長(zhǎng)柄腺毛發(fā)生,促進(jìn)其腺頭發(fā)育,且對(duì)葉片發(fā)育無(wú)明顯影響。
注:Bar = 100 μm。
圖1 MeJA噴施濃度對(duì)煙苗和腺毛發(fā)育的影響
Fig. 1 Effects of MeJA concentrations on the development of tobacco seedlings and glandular trichomes
注:n = 20±SE,不同字母表示處理之間存在顯著差異(p<0.05),下同。
圖3 MeJA噴施濃度對(duì)長(zhǎng)柄腺毛腺頭直徑的影響
選擇長(zhǎng)勢(shì)一致的三葉期煙苗進(jìn)行300 μmol/L MeJA溶液噴施試驗(yàn),每周?chē)娛?次,噴施3次。為觀察腺毛糖酯含量的變化,對(duì)葉片進(jìn)行糖酯染色后觀察腺毛形態(tài)。表型觀察結(jié)果(圖4)與前期噴施結(jié)果相似,與對(duì)照相比,噴施300 μmol/L MeJA溶液后煙苗的生長(zhǎng)發(fā)育沒(méi)有受到抑制;總表皮毛密度明顯增加,尤其是長(zhǎng)柄腺毛密度急劇增加;腺毛糖酯染色的著色強(qiáng)度增加,腺毛分泌的糖酯外泌至腺毛柄部。
利用二氯甲烷萃取葉面化學(xué)成分,進(jìn)行GC/MS檢測(cè),分析噴施300 μmol/L MeJA溶液對(duì)西柏烷二萜和蔗糖酯含量的影響(圖5)。分析結(jié)果顯示,噴施300 μmol/L MeJA后葉面分泌物總量增加近一倍其中西柏烷二萜含量由9.56 μg/cm2增至16.56 μg/cm2;烷烴類含量由1.46 μg/cm2增至2.69 μg/cm2;糖酯類含量由3.07 μg/cm2增至6.44 μg/cm2。進(jìn)一步分析西柏烷二萜和蔗糖酯成分的變化發(fā)現(xiàn),噴施300 μmol/L MeJA溶液后西柏三烯一醇、西柏三烯二醇、以及Ⅰ型和Ⅱ型蔗糖酯的含量均高于對(duì)照(圖6)。綜上,葉片噴施300 μmol/L MeJA可以顯著增加長(zhǎng)柄腺毛的分泌物含量。
圖4 噴施300 μmol/L MeJA后腺毛糖酯染色
注:**,p<0.01。
由圖7可見(jiàn),葉面噴施MeJA 溶液后,西柏烷二萜合成關(guān)鍵基因()和()的表達(dá)水平持續(xù)增加,在噴施后6 h達(dá)到峰值,相對(duì)表達(dá)量為對(duì)照(0 h)的2.3~2.5倍,隨后表達(dá)量逐漸降低至對(duì)照的1.5~1.7倍。表達(dá)量變化模式呈現(xiàn)先升高再降低的趨勢(shì),其表達(dá)量在噴施后12 h達(dá)到峰值,相對(duì)表達(dá)量為對(duì)照的5.3倍,隨后表達(dá)量逐漸降低至對(duì)照的2.5倍。,和的表達(dá)水平不受MeJA誘導(dǎo)。
由圖8可見(jiàn),6個(gè)煙草腺毛發(fā)生調(diào)控基因主要呈現(xiàn)4種表達(dá)模式:在葉面噴施MeJA溶液后,的表達(dá)水平逐漸升高,在噴施后24 h達(dá)到峰值,相對(duì)表達(dá)量為對(duì)照(0 h)的2.1倍,噴施后72 h表達(dá)量降低為對(duì)照的1.5倍;的表達(dá)水平不受MeJA誘導(dǎo);的表達(dá)水平在葉面噴施MeJA 溶液后1 h即達(dá)到峰值,表達(dá)量為對(duì)照的2.1倍,隨后表達(dá)水平逐漸降低,噴施后72 h的表達(dá)量為對(duì)照的1.3倍;、和對(duì)MeJA的應(yīng)答模式相似,在葉面噴施MeJA溶液后,3個(gè)基因的表達(dá)水平呈現(xiàn)下調(diào)模式,噴施MeJA前的基因表達(dá)量約為MeJA噴施后72 h的2.3~2.6倍。
圖6 西柏烷二萜和蔗糖酯含量分析
圖7 西柏烷二萜合成和酯轉(zhuǎn)運(yùn)蛋白基因?qū)eJA的應(yīng)答模式
圖8 煙草腺毛發(fā)生調(diào)控基因?qū)eJA的應(yīng)答模式
茉莉酸(JA)及其揮發(fā)性衍生物茉莉酸甲酯(MeJA)和氨基酸衍生物統(tǒng)稱為茉莉素類物質(zhì),廣泛參與調(diào)節(jié)植物生長(zhǎng)發(fā)育,如根系生長(zhǎng)、植物育性以及衰老過(guò)程等。大量研究表明,對(duì)栽培煙草體外噴施高濃度MeJA能顯著提高長(zhǎng)柄腺毛的密度,這些研究主要集中在MeJA誘導(dǎo)長(zhǎng)柄腺毛的發(fā)生方面。但是,上述試驗(yàn)所用MeJA濃度較大,對(duì)葉片發(fā)育造成抑制作用[18-20]。例如,婁亞楠等[19]的研究發(fā)現(xiàn)在煙草幼苗的葉面噴施1~5 mmol/L的MeJA對(duì)煙草長(zhǎng)柄分泌型腺毛發(fā)生具有強(qiáng)烈的誘導(dǎo)作用,腺毛的形態(tài)變化隨著MeJA處理濃度的提高而更加明顯,當(dāng)噴施濃度達(dá)到5 mmol/L MeJA時(shí),腺毛密度和腺頭體積達(dá)到最大值,但隨著MeJA濃度的增加會(huì)出現(xiàn)葉片變黃和早衰現(xiàn)象[19]。本文主要研究低濃度MeJA對(duì)長(zhǎng)柄腺毛發(fā)生的誘導(dǎo)效果,結(jié)果發(fā)現(xiàn)噴施MeJA濃度達(dá)到600 μmol/L時(shí)會(huì)抑制煙苗的生長(zhǎng)發(fā)育,當(dāng)降低MeJA的噴施濃度至300 μmol/L時(shí),煙苗的生長(zhǎng)不僅沒(méi)有受到明顯的影響,還能夠顯著增加長(zhǎng)柄腺毛的密度和腺頭體積。
煙草葉面的主要化學(xué)成分西柏烷二萜和蔗糖酯均由長(zhǎng)柄腺毛特異合成,目前未見(jiàn)關(guān)于JA誘導(dǎo)腺毛分泌物合成的報(bào)道。煙草西柏烷二萜的生物合成是以焦磷酸香葉基香葉酯(geranylgeranyl-PP,GGPP)為起始物分兩步進(jìn)行[29]:第一步,GGPP被CBTS催化合成西柏三烯一醇;第二步,西柏三烯一醇被CYP71D16催化形成西柏三烯二醇。本研究發(fā)現(xiàn)和基因均受MeJA誘導(dǎo)表達(dá),葉面噴施300 μmol/L MeJA后西柏烷二萜含量增加了73.22%。前人從煙草腺毛文庫(kù)中鑒定出4個(gè)糖酯轉(zhuǎn)運(yùn)蛋白編碼基因(),其中僅在長(zhǎng)柄腺毛中表達(dá)[30]。本研究發(fā)現(xiàn)葉片噴施MeJA后腺毛中蔗糖酯含量增加約1倍,進(jìn)一步分析4個(gè)基因?qū)eJA 的應(yīng)答模式發(fā)現(xiàn),僅受MeJA激活誘導(dǎo)表達(dá),推測(cè)可能是調(diào)控長(zhǎng)柄腺毛中蔗糖脂轉(zhuǎn)運(yùn)的重要基因。
近年來(lái),關(guān)于JA調(diào)控?zé)煵蓍L(zhǎng)柄腺毛發(fā)生的分子機(jī)制已經(jīng)取得一些成果,發(fā)現(xiàn)煙草Wo和B型細(xì)胞周期蛋白CycB2可以形成復(fù)合體,響應(yīng)植物體內(nèi)的JA水平,協(xié)同調(diào)控長(zhǎng)柄腺毛的發(fā)生[26-27,31]。其中,在煙草長(zhǎng)柄腺毛發(fā)生過(guò)程中起負(fù)調(diào)節(jié)作用[26]。[27]和[25]屬于家族基因,均可正向調(diào)控腺毛發(fā)育。本文研究普通煙草、和對(duì)MeJA的應(yīng)答模式發(fā)現(xiàn),3個(gè)基因的表達(dá)量均受到外源MeJA抑制??梢?jiàn),應(yīng)用qRT-PCR技術(shù)可以初步研究基因?qū)τ诩に睾铜h(huán)境等外源因子的應(yīng)答模式,但不能實(shí)際反映該基因在植物體內(nèi)的作用方式。
除JA外,生長(zhǎng)素和赤霉素可能同時(shí)參與腺毛的發(fā)生。在番茄中對(duì)生長(zhǎng)素應(yīng)答基因進(jìn)行RNA干擾后,表皮細(xì)胞及其上附著的保護(hù)毛和腺毛的形成均受到抑制,推測(cè)是表皮毛起始的重要基因[22]。煙草基因可能通過(guò)赤霉素信號(hào)通路正向調(diào)控腺毛的發(fā)生[24]。本研究發(fā)現(xiàn)普通煙草和基因均受外源MeJA誘導(dǎo)表達(dá),推測(cè)植物腺毛的發(fā)生可能同時(shí)受到多種激素的協(xié)同調(diào)控,這些信號(hào)通路之間存在交叉調(diào)控。
綜上分析,推測(cè)煙草葉面噴施MeJA后長(zhǎng)柄腺毛的密度和腺頭顯著增加的原因是MeJA調(diào)控腺毛發(fā)育調(diào)控基因、、、和的表達(dá),進(jìn)而促進(jìn)長(zhǎng)柄腺毛的發(fā)生和發(fā)育。此外,西柏烷二萜合成基因和,以及長(zhǎng)柄腺毛酯轉(zhuǎn)運(yùn)蛋白基因均受MeJA誘導(dǎo)表達(dá),從而增加腺毛分泌物的含量。
研究表明,噴施300 μmol/L MeJA對(duì)長(zhǎng)柄腺毛發(fā)生和發(fā)育有顯著的誘導(dǎo)作用,且對(duì)葉片發(fā)育無(wú)明顯影響。噴施300 μmol/L MeJA后長(zhǎng)柄腺毛分泌物西柏烷二萜、烷烴和蔗糖酯的含量增加約1倍?;虮磉_(dá)模式研究發(fā)現(xiàn)MeJA可以調(diào)控、、、、、、和的表達(dá)。
[1] MAURICIO R, RAUSHER M D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense[J]. Evolution, 1997, 51(5): 1435-1444.
[2] LI S, TOSENS T, HARLEY P C, et al. Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage and emission of lox products across a diverse set of species[J]. Plant Cell & Environment, 2018, 41(6): 1263-1277.
[3] YAN A, PAN J, AN L, et al. The responses of trichome mutants to enhanced ultraviolet-B radiation in[J]. J Photochem Photobiol B, 2012, 113: 29-35.
[4] ROBERTO B, WRENSMAN E A. Trichome type, density and distribution on the leaves of certain tobacco varieties and hybrids[J]. Tobacco Science, 1966, 10: 157-161.
[5] MEYBERG M, KROHN S, BRCIMMER B, et al. Ultrastructure and secretion of glandular trichomes of tobacco leaves[J]. Flora, 1991, 185(5): 357-363.
[6] CHANG S Y, GRUNWALD C. Duvatrienediol, alkanes, and fatty acids in cuticular wax of tobacco leaf of various physiological maturity[J]. Phytochemistry, 1976, 15(6): 961-963.
[7] JOHNSON A W, SEVERSON R F, HUDSON J, et al. Tobacco leaf trichomes and their exudates[J]. Tobacco Science, 1985, 29: 67-72.
[8] WANG E M, WANG R, DEPARASIS J, et al. Suppression of a p450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nature Biotechnology, 2001, 19(4): 371-374.
[9] ZHANG H Y, ZHANG S T, YANG Y X, et al. Metabolic flux engineering of cembratrien-ol production in both the glandular trichome and leaf mesophyll in[J]. Plant & Cell Physiology, 2018, 59(3): 566-574.
[10] BUTA G J, LUSBY W R, NEAL J W J, et al.Sucrose ester fromactive against the greenhouse whitefly[J]. Phytochemistry, 1993, 32(4): 859-864.
[11] SHINOZAKI Y, MATUSUZAKI T, SUHARA S, et a1. New types of glycolipids from the surface lipids of[J]. Agricultural and Biological Chemistry, 1991, 55(3): 751-756.
[12] 楊宇塵,杜志敏,張小鵬,等. 抽穗開(kāi)花期噴施MeJA對(duì)粳稻產(chǎn)量和品質(zhì)的影響[J]. 作物雜志,2021,6(2):71-76.
YANG Y C, DU Z M, ZHANG X P, et al. Effects of spraying methyl jasmonate on yield and grain quality of japonica rice during heading and flowering stage[J]. Crops, 2021, 6(2): 71-76.
[13] 王大偉,高慶榮,張愛(ài)民,等. 茉莉酸甲酯(MeJA)對(duì)小麥開(kāi)穎的誘導(dǎo)效應(yīng)[J]. 麥類作物學(xué)報(bào),2007,27(2):293-297.
WANG D W, GAO Q R, ZHANG A M, et al. Effect of methyl jasmonate on the induction of spikelets opening in wheat[J]. Journal of Triticeae Crops, 2007, 27(2): 293-297.
[14] 晏小霞,任保蘭,王茂媛,等. 外源茉莉酸甲酯對(duì)姜黃產(chǎn)量和姜黃素含量的影響[J]. 時(shí)珍國(guó)醫(yī)國(guó)藥,2020,31(11):2735-2737.
YAN X X, REN B L, WANG M Y, et al. Effect of exogenous MeJA on turmeric yield and curcumin content[J]. Lishizhen Medicine and Materia Medica Research, 2020, 31(11): 2735-2737.
[15] 吳琦,付宇辰,閆子飛,等. 噴施茉莉酸甲酯對(duì)百合花香的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(6):100-104.
WU Q, FU Y C, YAN Z F, et al. Effect of methyl jasmonate (MeJA) on floral scent of Lilium “Siberia”[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 100-104.
[16] 馬曉寒,張杰,張環(huán)緯,等. 通過(guò)外源MeJA抑制H2O2積累提高煙草的耐冷性[J]. 作物學(xué)報(bào),2019,45(3):411-418.
MA X H, ZHANG J, ZHANG H W, et al. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2accumulation[J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[17] 張林娜,游秀峰,劉向陽(yáng),等. 茉莉酸甲酯誘導(dǎo)煙草抗蟲(chóng)的有效濃度和持效期[J]. 中國(guó)煙草學(xué)報(bào),2017,23(4):64-69.
ZHANG L N, YOU X F, LIU X Y, et al. Effective concentration and period of methyl jasmonate for inducing tobacco resistance to insect pests[J]. Acta Tabacaria Sinica, 2017, 23(4): 64-69.
[18] 馮琦,王永,武東玲等. 外源MeJA誘導(dǎo)煙草葉面防御反應(yīng)[J]. 中國(guó)煙草科學(xué),2013,34(5):83-88.
FENG Q, WANG Y, WU D L, et al. Defense response of tobacco leaf surface to exogenous methyl jasmonate[J]. Chinese Tobacco Science, 2013, 34(5): 83-88.
[19] 婁亞楠,王召軍,楊欣玲,等. 茉莉酸甲酯對(duì)煙草分泌型和非分泌型腺毛形態(tài)發(fā)生的影響[J]. 中國(guó)煙草學(xué)報(bào),2018,24(2):24-29.
LOU Y N, WANG Z J, YANG X L, et al. Effects of exogenous methyl jasmonic acid on the morphogenesis of tobacco glandular and non-glandular trichome[J]. Acta Tabacaria Sinica, 2018, 24(2): 24-29.
[20] ZHANG H Y, LI W J, NIU D X, et al. Tobacco transcription repressors NtJAZ: potential involvement in abiotic stress response and glandular trichome induction[J]. Plant Physiology and Biochemistry, 2019, 141: 388-397.
[21] 王霄龍,楊永霞,張松濤,等. 中間香型烤煙葉面腺毛形態(tài)及分泌特性研[J]. 中國(guó)煙草學(xué)報(bào),2013,19(3):45-48.
WANG X L, YANG Y X, ZHANG S T, et al. Trichome morphology and secreting feature in neutral flavor type flue-cured tobacco leaf[J]. Acta Tabacaria Sinica, 2013, 19(3): 45-48.
[22] ZHANG X, YAN F, TANG Y, et a1. Auxin response geneplays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes[J]. Plant & Cell Physiology, 2015, 56(11): 2110-2124.
[23] KANG J H, CAMPOS M L, ZEMELIS-DURFEE S, et a1. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue[J]. Journal of Experimental Botany, 2016, 67(18): 5313-5324.
[24] LIU Y, LIU D, KANG A R, et al.regulates glandular trichome initiation through GA signaling in tobacco[J]. Plant Molecular Biology, 2018, 98: 153-167.
[25] Nadakuduti S S, Pollard M, KOSMA D K, et a1. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role ofin epidermal cell function in tomato[J]. Plant Physiology, 2012, 159(3): 945-960.
[26] WANG Z J, YAN X X, ZHANG H Y, et a1.negatively regulates tobacco glandular trichome formation, exudate accumulation, and aphid resistance[J]. Plant Molecular Biology, 2022, 108(1): 65-76.
[27] WU M L, CUI Y C, GE L, et al.represses Nbwo activity via a negative feedback loop in tobacco trichome development[J]. Journal of Experimental Botany, 2020, 71(6): 1815-1827.
[28] LIVAKA K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25: 402-408.
[29] YAN N, DU Y, LIU X, et al. Chemical structures, biosynthesis, bioactivities, biocatalysis and semisynthesis of tobacco cembranoids: an overview[J]. Industrial Crops and Products, 2016, 83: 66-80.
[30] CHOI Y E, LIM S, KIM H J, et al. Tobacco, a glandular-specifific lipid transfer protein, is required for lipid secretion from glandular trichomes[J]. Plant Journal, 2012, 70: 480-491.
[31] YAN X X, CUI L P, LIU X Y, et al.is required for jasminate-meditated glandular trichomes development in[J]. Physiologia Plantarum, 2021, 174(2): e13666.
Effects of Low Concentration Methyl Jasmonate on Initiation and Development of Long-stalk Glandular Trichomes in Tobacco
DUAN Shijiang1, CHEN Xiaolong2, WU Feiyue3, WANG Zhanwei2, CHENG Xiaoqiang1, ZHANG Ziying2, LI Yachun1, XIE Tianqi2, HAN Zhujun1, YANG Yongfeng2*
(1. Jiangxi Province Ji’an Branch Company, China National Tobacco Corporation, Ji’an, Fujian 343009, China; 2. China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450016, China; 3. China Tobacco Fujian Industrial Co., Ltd., Xiamen 361000, China)
Methyl jasmonate (MeJA) has a strong induction effect on the initiation of long-stalk glandular trichomes in tobacco, but the development of tobacco seedlings can be inhibited by high concentration MeJA. To study the effects of low concentration MeJA on the development of glandular trichomes and trichome secretions, and to explore the responsive patterns of related genes,cv. Yunyan 87 seedlings at three-leaf stage were separately sprayed with MeJA at different concentrations. The results showed that the density and glandular head of long-stalk glandular trichomes increased gradually with the increase of MeJA concentrations. Among them, 300 μmol/L MeJA had a significant effect on induction of long-stalk glandular trichomes, and had no effect on leaf development. When treated with high concentration MeJA (600 μmol/L MeJA), the growth and development of leaves were inhibited. Analysis of the chemical components on leaf surface showed that the contents of cembranoids, alkanes and sucrose esters were nearly doubled after sprayed with 300 μmol/L MeJA. qRT-PCR was used to study the gene expression pattern after MeJA treatments. It was found that the key genes related to cembranoid biosynthesisand, as well as the lipid transporter gene, were activated by MeJA treatments. The expressions of,,and, which may regulate the initiation of glandular trichomes, were responsive to MeJA treatments. Among them,andwere induced by MeJA, while,andwere repressed by MeJA. These results indicated that 300 μmol/L MeJA can regulate the expression of genes related to glandular trichome development, and thus safely and effectively promote the initiation and development of long-stalk glandular trichomes and trichome secretion synthesis.
tobacco; glandular trichome; methyl jasmonate; cembranoid; sucrose ester; gene expression
10.13496/j.issn.1007-5119.2022.06.003
S572.01
A
1007-5119(2022)06-0017-08
江西省煙草公司吉安市公司資助項(xiàng)目(202136080027195)
段史江(1986-),碩士,高級(jí)農(nóng)藝師,主要從事煙草生產(chǎn)技術(shù)研發(fā)與推廣工作。E-mail:574227118@qq.com
,E-mail:yangyf@hatic.com
2022-07-28
2022-10-13