趙?浩,張英佳,黃佐華
苯甲醛脫氫反應(yīng)從頭算及速率系數(shù)不確定度分析
趙?浩,張英佳,黃佐華
(西安交通大學動力工程多相流國家重點實驗室,西安 710049)
苯甲醛;脫氫反應(yīng)速率;量子化學從頭算;RRKM主方程;不確定度分析
速率系數(shù)的不確定度是化學反應(yīng)機理建模動力學參數(shù)優(yōu)化的重要參考.以往研究中,通常根據(jù)量化計算中能量不確定度簡單估計速率系數(shù)不確定度(一般為2~3).然而,影響速率系數(shù)不確定度因素眾?多[6],且不同反應(yīng)體系對能量的敏感程度有較大差異,導(dǎo)致僅通過對單一影響因素的均方求和方法估計速率系數(shù)不確定度存在較大誤差.為此,本文采用Goldsmith等[7]提出的靜態(tài)全局不確定評估方法,假定量子化學計算誤差呈均勻分布,運用隨機采樣高維模型獲得速率系數(shù)概率分布,實現(xiàn)量子化學從頭算為始點到主方程為終點的全過程速率系數(shù)誤差傳播評估.
綜上,本文工作的目的一是獲得苯甲醛與關(guān)鍵自由基的脫氫反應(yīng)類速率系數(shù),對現(xiàn)有結(jié)構(gòu)化相似類比方法不可靠性給出理論證據(jù);目的二是采用靜態(tài)全局方法科學評估目標計算體系速率系數(shù)的不確定度,為苯甲醛動力學機理建模和模型優(yōu)化提供依據(jù).
本文在M06-2X/6-311+g(d,p)理論水平下獲得了幾何結(jié)構(gòu)優(yōu)化、諧振頻率和零點能;平衡計算耗時和精度要求,在CCSD(T)/cc-pVTZ理論水平下獲得了醛基位脫氫反應(yīng)勢能面上的單點能;考慮苯環(huán)位脫氫較高能壘和較小反應(yīng)速率,平衡計算效率和結(jié)果可靠性,在DLPNO-CCSD(T)/cc-pVTZ水平獲得苯環(huán)位脫氫單點能.以上結(jié)構(gòu)的T1診斷值均小于 0.03,故采用單參考態(tài)方法可滿足目標體系計算要求[8].本文使用ORCA(v4.1.0)程序[9]完成本文 DLPNO-CCSD(T)理論方法計算,使用 Gaussian 09 軟件[10]完成其他電子能計算.零點能和頻率矯正采用Alecu等[11]的推薦值 0.97.
反應(yīng)速率系數(shù)通過求解RRKM/ME一維主方程獲得,計算溫度域為300~2000K,壓力域為0.1~10MPa.計算過程考慮了范德瓦爾斯勢阱,通過相空間理論方法聯(lián)結(jié)反應(yīng)物和勢阱;采用一維受阻振動轉(zhuǎn)子模型描述C6H5COCH3中甲基與苯環(huán)的內(nèi)轉(zhuǎn)動;采用Eckart模型進行量子隧道效應(yīng)修正;使用MESS軟件[12]獲得分子結(jié)構(gòu)的幾何對稱數(shù)及反應(yīng)速率系數(shù).將計算獲得的反應(yīng)速率系數(shù)按修正阿倫尼烏斯型關(guān)系式擬合.
(1)
脫氫反應(yīng)勢能面描述其反應(yīng)歷程包括:反應(yīng)物進入范德瓦爾斯勢阱形成反應(yīng)物絡(luò)合物,后越過勢壘形成過渡態(tài),再進入范德瓦爾斯勢阱形成產(chǎn)物絡(luò)合物,最終生成穩(wěn)定產(chǎn)物.對于環(huán)上脫氫反應(yīng),其鄰位(476.1kJ/mol)、間位(474.0kJ/mol)和對位(474.0 kJ/mol)的C—H鍵解離能幾乎相同,使得3個位點有著幾乎相同的勢能面和反應(yīng)速率系數(shù).因此,本文統(tǒng)一以鄰位脫氫反應(yīng)為代表,速率系數(shù)為苯環(huán)總位點數(shù)的倍數(shù)作為計算標準.
圖1?CCSD(T)/cc-pVTZ水平下C6H5CHO+/////O2脫氫反應(yīng)勢能面
2.2?反應(yīng)速率系數(shù)
通過上述詳細勢能面信息,對主方程求解可獲得相應(yīng)速率系數(shù),以公式(1)擬合的結(jié)果見表1.
Tab.1 Calculated rate coefficients of H-abstraction of benzaldehyde attacked by ////O2/ radicals
圖2 苯甲醛+////O2/脫氫反應(yīng)速率系數(shù)比較
圖3?苯甲醛醛基位和苯環(huán)位脫氫反應(yīng)分支比
圖4 苯甲醛+醛基位脫氫反應(yīng)不確定度與溫度的關(guān)系
圖5 苯甲醛+和乙醛+醛基位脫氫反應(yīng)速率系數(shù)比較
圖6 苯甲醛+和乙醛+醛基位脫氫反應(yīng)速率系數(shù)比較
對O2脫氫反應(yīng),Baulch等[15]從實驗和理論層面系統(tǒng)回顧了乙醛+O2體系速率系數(shù)并給出了綜合估計值.本文計算結(jié)果與該值的比較見圖8.可以看出,該類型反應(yīng)活化能較大,反應(yīng)速率表現(xiàn)出較強的溫度依賴.當溫度低于700K時,Baulch等[15]對乙醛脫氫速率系數(shù)的推薦值位于誤差帶內(nèi);溫度大于700K時,該值溢出誤差帶.Baulch等[15]給出了600K和1100K下的不確定度分別為3和10,誤差隨溫度變化的趨勢與本文計算結(jié)果相反.同樣地,不建議使用當前乙醛結(jié)果分配苯甲醛+O2反應(yīng)速率系數(shù).
圖7 苯甲醛+和乙醛+醛基位脫氫反應(yīng)速率系數(shù)比較
圖8 苯甲醛+O2和乙醛+O2醛基位脫氫反應(yīng)速率系數(shù)比較
圖9 苯甲醛+/和乙醛+/醛基位脫氫反應(yīng)速率系數(shù)比較
(3)分支比結(jié)果證明,部分自由基在環(huán)位脫氫體現(xiàn)出與醛基位脫氫的競爭,但均在單分子解離主導(dǎo)溫度區(qū)間(大于1750K),平衡動力學模型尺寸和預(yù)測精度,認為苯甲醛動力學建模時可忽略環(huán)上脫氫反應(yīng)過程.
(4) 采用了靜態(tài)統(tǒng)計學和隨機采樣方法來科學地評估了目標反應(yīng)不確定度,并使用速率系數(shù)概率分布的2對其進行表征.對于脫氫反應(yīng),2000次樣本容量可準確估計目標體系速率系數(shù)不確定度,誤差不超過0.01.結(jié)果顯示,不確定度的對數(shù)與溫度倒數(shù)表現(xiàn)出近阿倫尼烏斯依賴關(guān)系,室溫條件下不確定度較高需要依靠實驗進行修正.當溫度大于500K,脫氫反應(yīng)不確定度對自由基的種類不敏感,該現(xiàn)象可作為苯甲醛脫氫反應(yīng)類速率準則構(gòu)建作參考.
[1] Andrae J C G. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation[J].,2013,107:740-748.
[2] Yuan W,Li Y,Dagaut P,et al. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions(II):A comprehensive kinetic modeling study[J].,2015,162(1):22-40.
[3] Zhang Y,Somers K P,Mehl M,et al. Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures[J].,2017,36(1):413-421.
[4] Namysl S,Pelucchi M,Maffei L P,et al. Experimental and modeling study of benzaldehyde oxidation[J].,2020,211:124-132.
[5] Wang S K,Davidson D F,Hanson R K. Rate constants of long,branched,and unsaturated aldehydes with OH at elevated temperatures[J].,2017,36(1):151-160.
[6] Metcalfe W K,Dooley S,Dryer F L. Comprehensive detailed chemical kinetic modeling study of toluene oxidation[J].,2011,25(11):4915-4936.
[7] Goldsmith C F,Tomlin A S,Klippenstein S J. Uncertainty propagation in the derivation of phenomenological rate coefficients from theory:A case study of n-propyl radical oxidation [J].,2013,34(1):177-185.
[8] Watts J D,Urban M,Bartlett R J. Accurate electrical and spectroscopic properties of X1Σ+BeO from coupled-cluster methods [J].,1995,90:341-355.
[9] Neese F. The ORCA program system[J].:,2012,2(1):73-78.
[10] Frisch M J,Trucks G W,Schlegel H B,et al.09,. 01[M]. Wallingford C T:Gaussian. Inc,2009
[11] Alecu I,Zheng J,Zhao Y,et al. Computational thermochemistry:Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries [J].,2010,6(9):2872-2887.
[12] Georgievskii Y,Miller J A,Burke M P,et al. Reformulation and solution of the master equation for multiple-well chemical reactions [J].,2013,117(46):12146-12154.
[13] Goodwin D G,Moffat H K,Speth R L. Cantera:An Object-Oriented Software Toolkit for Chemical Kinetics,Thermodynamics,and Transport Processes [EB/OL].https://cantera.org,2019-12-21.
[14] Pelucchi M,Cavallotti C,Cuoci A,et al. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils[J].,2019,4:490-506.
[15] Baulch D,Bowman C,Cobos C,et al. Evaluated kinetic data for combustion modeling:Supplement Ⅱ[J].,2005,34(3):757-1397.
[16] Sivaramakrishnan R,Michael J,Klippenstein S. Direct observation of roaming radicals in the thermal decomposition of acetaldehyde[J].,2010,114(2):755-764.
[18] Warnatz J.C/H/O[M]. New York:Springer-Verlag,1984.
[19] Taylor P H,Yamada T,Marshall P. The reaction of OH with acetaldehyde and deuterated acetaldehyde:Further insight into the reaction mechanism at both low and elevated temperatures[J].,2006,38(8):489-495.
[20] Smith G P,Golden D M,F(xiàn)renklach M,et al. GRI 3. 0 Mechanism. Gas Research Institute [EB/OL]. http://www.meberkeley.edu/Gri_mech,1999.
[21] Li Y,Zhou C W,Somers K P,et al. The oxidation of 2-butene:A high pressure ignition delay,kinetic modeling study and reactivity comparison with isobutene and 1-butene[J].,2017,36(1):403-411.
Calculation of H-Atom Abstractions of Benzaldehyde and Uncertainty Analysis of Rate Coefficient
Zhao Hao,Zhang Yingjia,Huang Zuohua
(State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
benzaldehyde;reaction rate coefficient of H-atom abstraction;calculation;RRKM master equation;uncertainty analysis
TK16
A
1006-8740(2022)01-0078-07
2021-02-28.
國家自然科學基金資助項目(91741115).
趙?浩(1997—??),男,碩士研究生,zhaohaoyx@stu.xjtu.edu.cn.Email:m_bigm@tju.edu.cn
張英佳,男,博士,教授,yjzhang_xjtu@xjtu.edu.cn.
(責任編輯:隋韶穎)