劉濤 歐陽林旗 陳鎮(zhèn) 徐寅 吳金鴻 鄧桂明
〔摘要〕 潰瘍性結(jié)腸炎(ulcerative colitis, UC)是一種慢性、易復(fù)發(fā)的炎癥性腸病,臨床上以血性腹瀉、腹痛等為特征癥狀。UC的發(fā)病機(jī)制與腸黏膜免疫異常、腸道菌群失調(diào)、色氨酸代謝紊亂等密切相關(guān)。色氨酸-腸道菌群代謝能促進(jìn)機(jī)體腸道免疫功能的發(fā)育和完善,因而對(duì)緩解腸道炎癥具有重要意義。中醫(yī)藥在治療UC方面具有一定的特色和優(yōu)勢(shì),許多中藥及中藥復(fù)方被證實(shí)有明顯的免疫調(diào)節(jié)作用。本文就UC中色氨酸-腸道菌群代謝對(duì)腸黏膜屏障功能和免疫功能的影響,以及中藥調(diào)控色氨酸-腸道菌群代謝治療UC的研究進(jìn)展進(jìn)行綜述,以期為中藥治療UC的機(jī)制研究與新藥研發(fā)提供參考。
〔關(guān)鍵詞〕 潰瘍性結(jié)腸炎;色氨酸-腸道菌群代謝;免疫功能;腸道炎癥;中藥
〔中圖分類號(hào)〕R259? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ? 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2022.02.027
Research progress on traditional Chinese medicine regulating tryptophan-gut microbiota
metabolism in the treatment of ulcerative colitis
LIU Tao1, OUYANG Linqi1,2, CHEN Zhen1, XU Yin1, WU Jinhong1, DENG Guiming1*
(1. The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China;
2. School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)
〔Abstract〕 Ulcerative colitis (UC) is a chronic, recurring inflammatory bowel disease, clinically characterized by bloody diarrhea and abdominal pain. The pathogenesis of UC is closely related to abnormal intestinal mucosal immunity, imbalance of gut microbiota, and tryptophan metabolism disorder. The tryptophan-gut microbiota metabolism can promote the development and perfection of the body's intestinal immune function, so it is of great significance to alleviate intestinal inflammation. Traditional Chinese medicine has characteristics advantages in UC treatment. Many single herb and traditional Chinese medicine compound were proved having obvious effect of immunological regulation. In this review, we focused on the effects of tryptophan-gut microbiota metabolism on intestinal mucosal barrier function and immune function in UC, and the research progress of traditional Chinese medicine on regulating tryptophan-gut microbiota metabolism for the treatment of UC, with a view to providing references for mechanistic studies of traditional Chinese medicine for the treatment of UC and the development of new drugs.
〔Keywords〕 ulcerative colitis; tryptophan-gut microbiota metabolism; immune function; intestinal inflammation; traditional Chinese medicine
潰瘍性結(jié)腸炎(ulcerative colitis, UC)是一種特發(fā)性、慢性的炎癥性腸病,病變部位始于直腸,繼而延伸至整個(gè)結(jié)腸[1]。血性腹瀉是UC的特征性癥狀,臨床上常通過結(jié)腸鏡檢和組織病理學(xué)對(duì)其進(jìn)行診斷辨別[1]。目前,UC的發(fā)病機(jī)制尚不明確,研究顯示,其作用機(jī)制與遺傳易感性、環(huán)境因素、腸道免疫異常、腸道菌群失調(diào)、色氨酸(tryptophan, TRP)異常代謝、上皮屏障缺陷等密切相關(guān)[2]。
TRP是機(jī)體中八大必需氨基酸之一,其經(jīng)腸道菌群代謝途徑生成的活性物質(zhì),在維持腸道菌群多樣性、腸道屏障完整性、腸道免疫平衡等方面具有重要作用[3]。TRP-腸道菌群途徑上的代謝物可刺激相關(guān)免疫細(xì)胞和免疫細(xì)胞因子,介導(dǎo)腸道免疫,因此,它被視為聯(lián)系腸道菌群和腸道免疫的重要橋梁[4]。TRP經(jīng)腸道菌群代謝后,不僅可以增強(qiáng)腸道機(jī)械屏障功能、維持腸道屏障完整性,還能誘導(dǎo)T細(xì)胞和先天性淋巴細(xì)胞(innate lymphoid cells, ILCs)增殖、分化,增強(qiáng)腸黏膜免疫功能[4-5]。因此,TRP-腸道菌群代謝對(duì)維持腸黏膜屏障功能,以及腸道免疫系統(tǒng)的發(fā)育具有重要意義。TRP-腸道菌群代謝失衡導(dǎo)致腸黏膜屏障功能受損,繼而引起UC等疾病的發(fā)生、發(fā)展[6-7]。
目前,臨床上西藥治療UC主要以5-氨基水楊酸鹽、糖皮質(zhì)類固醇、免疫抑制劑、干擾素等為主,而這類藥物對(duì)UC治標(biāo)不治本,長(zhǎng)期使用易給患者帶來諸多不良反應(yīng)[8]。然而,中醫(yī)藥在防治炎癥性腸病方面具有療效顯著、不良反應(yīng)少、復(fù)發(fā)率低等優(yōu)勢(shì)和特色。因此,本文擬從TRP-腸道菌群代謝對(duì)腸道免疫的調(diào)控角度,闡明TRP-腸道菌群、腸黏膜屏障、UC三者之間的關(guān)系,系統(tǒng)梳理近年來中藥調(diào)控TRP-腸道菌群代謝治療UC的研究進(jìn)展。
1 TRP-腸道菌群代謝通路
飲食是哺乳動(dòng)物攝取TRP主要途徑,攝入的TRP大部分在體內(nèi)被分解代謝。腸道菌群被視為TRP代謝的重要驅(qū)動(dòng)力,TRP沿著腸道菌群代謝途徑(見圖1)生成吲哚-3-甲醛(indole-3-aldehyde, IAId)、吲哚-2-乙酸(indole acetic acid, IAA)、吲哚-3-丙酸(indole-3-propionic, IPA)、吲哚-3-乳酸(indole-3-lactic acid, ILA)、吲哚-3-乙醛(indole-3-acetaldehyde, IAAId)、吲哚-3-乙酰胺(indole-3-acetamide, IAM)等芳香烴受體(aryl hydrocarbon receptor, AHR)配體。AHR信號(hào)是維持腸道穩(wěn)態(tài)的關(guān)鍵因素,它被激活后能夠促進(jìn)腸上皮細(xì)胞更新,免疫細(xì)胞增殖、分化,從而維持腸黏膜屏障完整性[9]。
2 TRP-腸道菌群代謝對(duì)腸黏膜屏障的影響
腸道菌群代謝途徑上的TRP代謝物可通過增強(qiáng)腸道機(jī)械屏障功能,維持腸道屏障完整性;同時(shí)還能促進(jìn)腸道免疫系統(tǒng)的發(fā)育和完善,如誘導(dǎo)T淋巴細(xì)胞及ILCs增殖、分化,增強(qiáng)腸黏膜免疫功能(見圖2)。
2.1? 維持腸黏膜機(jī)械屏障的完整性
TRP-腸道菌群代謝物可通過激活A(yù)HR,增強(qiáng)腸上皮細(xì)胞緊密連接蛋白表達(dá),減輕腸道炎癥,最終維持腸黏膜屏障完整性。Choi等[11]研究證明,吲哚可增強(qiáng)腸道中緊密連接蛋白Claudin-1的表達(dá),降低腸道屏障通透性。Scott S等[12]研究發(fā)現(xiàn),吲哚-3-乙醇、IPA、IAAId等能夠抑制小鼠體內(nèi)肌球蛋白IIA及Rzin的表達(dá)活性,降低腸道屏障通透性,維持腸道屏障完整性,緩解小鼠結(jié)腸炎癥。Dodd等[13]在無菌小鼠中定植引起fldC(生成IPA相關(guān)的基因)突變的生孢梭菌后,發(fā)現(xiàn)該小鼠血清中IPA含量降低,腸道通透性隨之也降低。由此說明,IPA、IAA等吲哚衍生物可以降低小鼠腸道通透性。此外,IA等TRP代謝物可激活A(yù)HR信號(hào),促進(jìn)腸道中杯狀細(xì)胞分泌黏液蛋白,從而增強(qiáng)腸上皮屏障功能,緩解小鼠的炎癥反應(yīng)[14]。
2.2? 增強(qiáng)腸黏膜免疫功能
2.2.1? 調(diào)控T細(xì)胞的增殖分化? TRP-腸道菌群代謝物可通過激活A(yù)HR信號(hào)促進(jìn)T細(xì)胞的增殖、分化,增強(qiáng)機(jī)體腸黏膜免疫功能。TRP在雙歧桿菌、乳桿菌等腸道微生物作用下代謝生成IPA、ILA等AHR配體。其中,ILA以劑量依賴的方式激活A(yù)HR信號(hào),減少Th17細(xì)胞極化,上調(diào) Th17細(xì)胞中的免疫調(diào)節(jié)半乳糖凝集素1,增強(qiáng)腸黏膜免疫功能[15]。此外,TRP在類桿菌作用下生成IAA、IPA、IAId等AHR配體,它們能夠激活A(yù)HR信號(hào)誘導(dǎo)CD4+T細(xì)胞分化,促進(jìn)IL-10分泌、釋放,最終增強(qiáng)UC大鼠腸道免疫功能[16-17]。
2.2.2? 介導(dǎo)ILCs的增殖與分化? ILCs是先天性免疫系統(tǒng)的重要組成,其主要被分為5個(gè)亞群:NK細(xì)胞、ILC1s、ILC2s、ILC3s和LTI10細(xì)胞[18]。其中,ILC3s能夠主動(dòng)分泌和釋放IL-22,促進(jìn)腸道中抗菌肽的表達(dá),增強(qiáng)腸黏膜免疫功能[19]。研究者給結(jié)腸炎小鼠補(bǔ)充TRP后,發(fā)現(xiàn)該小鼠血清中IL-22的表達(dá)伴隨著IAA濃度的增加而上調(diào)[20]。原因在于,TRP在約氏乳桿菌、羅伊氏乳桿菌、鼠乳桿菌、梭狀芽胞桿菌等作用下被代謝生成IAId、IPA、IAA等AHR配體,它們能夠激活A(yù)HR刺激ILC3s分泌、釋放IL-22 [21-22]。由此表明,TRP-腸道菌群代謝能夠誘導(dǎo)ILCs增殖、分化成ILC3s,促進(jìn)IL-22等免疫細(xì)胞因子的分泌和釋放,增強(qiáng)腸黏膜免疫功能。
3 TRP-腸道菌群代謝對(duì)UC的影響
腸道菌群及其代謝物在維持腸道健康方面具有重要作用,當(dāng)前已引起了人們極大的關(guān)注。當(dāng)CARD9基因被敲除后,小鼠體內(nèi)TRP-腸道菌群代謝通路出現(xiàn)異常,從而導(dǎo)致該小鼠患UC的風(fēng)險(xiǎn)增加。但給CARD9基因表達(dá)缺陷的小鼠補(bǔ)充IAA、IPA等TRP-腸道菌群代謝物后,其腸道中IL-22水平顯著增加,結(jié)腸炎癥反應(yīng)得到抑制[23]。此外,TRP經(jīng)腸道菌群代謝途徑生成的IPA、IAA等TRP代謝物能夠激活A(yù)HR來維持UC小鼠結(jié)腸中Th17/Treg細(xì)胞平衡,改善其病理癥狀[17]。由此表明,TRP-腸道菌群代謝在抑制UC小鼠腸道炎癥反應(yīng)、改善該小鼠病理癥狀等方面具有重要作用。
4 中藥調(diào)控TRP-腸道菌群代謝治療UC
中醫(yī)藥傳承數(shù)千年,為人類疾病的預(yù)防和治療作出了重大貢獻(xiàn)。中藥作為中醫(yī)防治疾病的物質(zhì)基礎(chǔ),基于其多成分、多靶點(diǎn)、整體調(diào)控的優(yōu)勢(shì),近年來已成為治療UC的重要手段。UC屬于中醫(yī)學(xué)“久痢”“腸澼”的范疇,其病機(jī)以脾胃虛弱為本、濕熱蘊(yùn)結(jié)為標(biāo),屬本虛標(biāo)實(shí),故臨床上治療UC以清熱化濕止痢為主,兼以健脾固腎,常用代表方有大黃牡丹湯、清腸溫中湯、理中湯、黃芩湯、白頭翁湯等[24-25]。中醫(yī)在治療UC時(shí),除了使用方藥服用等內(nèi)治法外,還會(huì)采用針灸、穴位埋線、灌腸等中醫(yī)外治法。其中,灌腸液常用中藥有黃連、黃芩、黃柏、赤芍、白芍、厚樸、干姜等。大量動(dòng)物實(shí)驗(yàn)研究[26-42]發(fā)現(xiàn),以TRP-腸道菌群代謝通路為作用靶點(diǎn),中藥(中藥活性成分、復(fù)方)能夠有效降低UC小鼠腸道炎癥嚴(yán)重程度(見表1)。
4.1? 活性成分
4.1.1? 生物堿? 生物堿是一類具有環(huán)狀結(jié)構(gòu)的含氮有機(jī)化合物。研究發(fā)現(xiàn),小檗堿、巴馬汀等生物堿具有減輕UC大鼠腸道炎癥程度的活性[26-27]。毛茛科植物黃連根莖中蘊(yùn)含著大量的生物堿,如小檗堿、巴馬汀等。其中,小檗堿可顯著改善UC大鼠腸道菌群失調(diào)狀態(tài),特別是逆轉(zhuǎn)乳酸桿菌、擬桿菌等微生物的失調(diào),促進(jìn)TRP代謝生成IPA、IAA和IA,進(jìn)而激活A(yù)HR信號(hào),提高緊密連接蛋白和IL-22的表達(dá)水平,恢復(fù)UC大鼠腸道屏障功能[26]。Zhang等[27]研究發(fā)現(xiàn),巴馬汀也能恢復(fù)UC小鼠腸道菌群平衡,從而介導(dǎo)小鼠體內(nèi)TRP代謝,以此增強(qiáng)UC小鼠腸道免疫功能,發(fā)揮抗UC的活性。
4.1.2? 多酚類? 多酚是指植物中具有酚羥基結(jié)構(gòu)的一類化合物,具有抗氧化、抗炎等藥理作用。Zhao等[43]研究發(fā)現(xiàn),木蘭科植物厚樸中的厚樸酚具有抗UC的活性,其作用機(jī)制是通過促進(jìn)TRP代謝生成IAA、IA等AHR配體,激活A(yù)HR信號(hào),增強(qiáng)小鼠腸道免疫功能,降低結(jié)腸中炎癥細(xì)胞因子(TNF-α、IL-6和IL-1β)水平,從而改善UC小鼠結(jié)腸病變狀態(tài)。
4.1.3? 多糖類? 植物多糖是一類由糖苷鍵連接而成的天然高分子化合物,它是維持生命活動(dòng)正常運(yùn)轉(zhuǎn)的基本物質(zhì)之一。近年來,研究發(fā)現(xiàn)白術(shù)多糖、銀耳多糖、姜黃多糖等化合物對(duì)UC具有拮抗作用[28-30]。Feng等[28]研究發(fā)現(xiàn),白術(shù)多糖能夠恢復(fù)UC小鼠腸道菌群紊亂狀態(tài),促進(jìn)血漿中TRP等氨基酸代謝,最終發(fā)揮治療UC的作用。Xu等[29]發(fā)現(xiàn),銀耳多糖可通過調(diào)控UC小鼠腸道菌群,促進(jìn)其體內(nèi)TPR代謝生成5-羥基吲哚等吲哚類物質(zhì),激活A(yù)HR信號(hào),從而抑制該小鼠腸道炎癥反應(yīng),改善其結(jié)腸病理癥狀。Yang等[30]研究發(fā)現(xiàn),姜科植物姜黃中的姜黃多糖能夠改善UC小鼠腸道菌群失調(diào)狀態(tài),增加乳酸菌、梭狀芽孢桿菌等細(xì)菌的豐度,促進(jìn)IAA、IAAId、IAM等AHR配體生成,通過激活A(yù)HR信號(hào)來上調(diào)腸道緊密連接蛋白表達(dá),修復(fù)UC小鼠腸道屏障功能,抑制結(jié)腸炎癥反應(yīng)。此外,茯磚茶多糖同樣能夠緩解UC小鼠癥狀,其主要作用機(jī)制是:茯磚茶多糖能夠改善UC小鼠腸道菌群紊亂狀態(tài),提高腸道中乳酸菌和阿克曼菌的豐度和數(shù)量,促進(jìn)TRP代謝生成IAId、IAA等AHR配體,從而增強(qiáng)結(jié)腸中IL-22以及ZO-1、occludin表達(dá),最終改善UC小鼠腸道炎癥,修復(fù)其腸道屏障[31]。
4.1.4? 黃酮類? 天然黃酮類化合物是一類植物次生代謝產(chǎn)物,廣泛存在于植物中。近年來,大量研究發(fā)現(xiàn),黃酮類化合物具有抗UC的活性,如黃芩素、山姜素、柚皮素等[44-46]。黃芩素是唇形科植物黃芩中黃酮類成分含量最高的化合物之一,研究發(fā)現(xiàn),黃芩素可直接激活A(yù)HR來調(diào)控Th17/Treg細(xì)胞平衡,最終對(duì)UC小鼠發(fā)揮治療作用[44]。此外,姜科植物高良姜中的山姜素和柚皮素同樣能夠?qū)C小鼠產(chǎn)生治療作用,其作用機(jī)制與黃芩素對(duì)UC小鼠產(chǎn)生的作用機(jī)制類似[45-47]。
4.1.5? 其他? 白芍總苷是一種由芍藥苷、白芍內(nèi)酯等單體成分組成的混合物,它不僅具有免疫調(diào)節(jié)、抗炎等作用,而且對(duì)腸道菌群也具有調(diào)控作用[48]。范淇淋[32]研究發(fā)現(xiàn),白芍總苷能夠升高乳酸菌、瘤胃球菌,以及降低擬桿菌等腸道微生物豐度,恢復(fù)UC小鼠腸道菌群失調(diào)狀態(tài),從而促進(jìn)TRP代謝,增加結(jié)腸中IAA濃度、降低ILA濃度,最終改善UC小鼠癥狀。由廣藿香醇和廣藿香酮組成的廣藿香油源于唇形科植物廣藿香,其具有抗炎、抗菌、免疫調(diào)節(jié)等藥理作用[49]。研究發(fā)現(xiàn),廣藿香油可通過調(diào)控UC小鼠腸道菌群變化,促進(jìn)該小鼠體內(nèi)TRP等氨基酸代謝,最終改善UC小鼠的病理癥狀[33-34]。
4.2? 復(fù)方中藥
大黃牡丹湯是臨床上治療UC的常用方,該方出自張仲景的《金匱要略》,具有瀉熱破瘀、散結(jié)消腫的功效。有研究表明,大黃牡丹湯對(duì)UC小鼠腸道菌群進(jìn)行調(diào)節(jié)后,發(fā)現(xiàn)該模型動(dòng)物血清中TRP及吲哚類代謝物等AHR配體水平增加,其腸道Th17/Treg細(xì)胞之間的平衡得以恢復(fù),UC小鼠腸道炎癥有所減輕[35-36],由此表明,大黃牡丹湯可以通過TRP-腸道菌群代謝通路來調(diào)控UC小鼠腸道免疫功能,發(fā)揮抗UC的作用。
清腸溫中湯是由李軍翔教授常年治療UC總結(jié)出來的經(jīng)驗(yàn)方,該方具有健脾溫中、化瘀止血的功效。Sun等[37]研究發(fā)現(xiàn),清腸溫中湯能夠調(diào)節(jié)UC小鼠腸道菌群的代謝譜變化,特別是它能夠增強(qiáng)TRP代謝,并通過激活Wnt/β-連環(huán)蛋白信號(hào),促進(jìn)腸道干細(xì)胞介導(dǎo)的上皮再生,最終對(duì)UC小鼠腸黏膜屏障完整性起到保護(hù)作用。
理中湯源自張仲景的《金匱要略》,具有溫中祛寒、補(bǔ)氣健脾等功效,臨床上常用于治療UC、急/慢性胃炎等脾胃虛寒證。有研究表明,理中湯可以重新塑造腸道菌群結(jié)構(gòu),同時(shí)改變菌群代謝譜,促進(jìn)UC小鼠腸道TRP等內(nèi)源性物質(zhì)代謝,增強(qiáng)腸道免疫功能,最終發(fā)揮抗UC的作用[38]。此外,臨床上也常用黃芩湯來治療UC,該方發(fā)揮抗UC的作用機(jī)制與理中湯類似[39-40]。
白頭翁湯出自張仲景的《傷寒雜病論》,具有清熱解毒、涼血止痢之功效,該方在臨床上對(duì)治療腸炎具有確切療效。研究表明,白頭翁湯可通過調(diào)節(jié)UC小鼠腸道菌群變化,顯著改善該小鼠的結(jié)腸炎癥癥狀[41]。此外,Hua Y等[42]利用代謝組學(xué)技術(shù)研究發(fā)現(xiàn),白頭翁湯可顯著改變濕熱腹瀉型小鼠體內(nèi)TRP、膽汁酸等物質(zhì)代謝,從而改善該小鼠病理癥狀。由此推測(cè),白頭翁湯可通過調(diào)節(jié)UC小鼠腸道菌群,進(jìn)一步影響其體內(nèi)TRP等內(nèi)源性代謝物變化,最終對(duì)UC發(fā)揮治療作用。
5 結(jié)語與展望
腸道菌群是TRP生成吲哚類代謝物的重要途徑,部分吲哚類代謝物可通過激活A(yù)HR,影響機(jī)體腸黏膜屏障功能和腸道免疫功能。由此表明,這一類TRP代謝物與UC、克羅恩病、腸易激綜合征等胃腸道疾病的發(fā)生、發(fā)展密切相關(guān)。如果說激活A(yù)HR是治療UC的關(guān)鍵,那么維持TRP-腸道菌群代謝平衡則是治療UC的重要前提。由此表明,TRP-腸道菌群代謝通路已然成為相關(guān)藥物治療UC的重要途徑之一。一些具有抗UC活性的中藥常以恢復(fù)機(jī)體腸道菌群穩(wěn)態(tài)為切入點(diǎn),進(jìn)而有效預(yù)防或糾正腸道TRP代謝失調(diào),最終達(dá)到治療UC的目的。因此,TRP-腸道菌群代謝通路可以作為篩選抗UC藥物的重要途徑或靶點(diǎn)之一。
現(xiàn)階段,雖然中藥治療UC的臨床療效已得到認(rèn)可,但是在基礎(chǔ)研究中仍存在以下幾個(gè)問題:(1)中藥抗UC的藥效物質(zhì)基礎(chǔ)研究不夠完善,且具體作用機(jī)制尚不明確;(2)中藥對(duì)腸道菌群的組成和結(jié)構(gòu)具有調(diào)控作用,但目前尚不明確中藥中具體哪些藥效成分對(duì)腸道菌群進(jìn)行調(diào)控;(3)當(dāng)前,16S rRNA或16S rDNA測(cè)序是檢測(cè)分析腸道菌群變化的主流技術(shù),但是這種技術(shù)存在一定局限性,體現(xiàn)在對(duì)腸道菌群檢測(cè)范圍窄、檢測(cè)層次不夠深入等方面。
未來,隨著宏基因組、代謝組等多組學(xué)技術(shù)的發(fā)展,人們?cè)谘芯恐锌梢愿玫貙⒅兴幩幮С煞帧⒛c道菌群、疾病特定代謝物進(jìn)行一一關(guān)聯(lián),從而篩選出特定成分對(duì)相關(guān)菌群或代謝物實(shí)現(xiàn)靶向干預(yù),最終對(duì)UC實(shí)現(xiàn)精準(zhǔn)治療。同時(shí),抗UC中藥的研發(fā)也將會(huì)迎來更加美好的發(fā)展前景。
參考文獻(xiàn)
[1] KOBAYASHI T, SIEGMUND B, LE BERRE C, et al. Ulcerative colitis[J]. Nature Reviews Disease Primers, 2020, 6: 74.
[2] CHEN C J, HU H M, LIAO W T. Pathophysiology of inflammatory bowel diseases[J]. The New England Journal of Medicine, 2021, 384(14): 1376-1377.
[3] LI X L, ZHANG Z H, ZABED H M, et al. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease[J]. Molecular Nutrition & Food Research, 2021, 65(5): 2000461.
[4] PLATTEN M, NOLLEN E A A, R?HRIG U F, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond[J]. Nature Reviews Drug Discovery, 2019, 18(5): 379-401.
[5] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Communications, 2018, 9: 3294.
[6] GAO J, XU K, LIU H N, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 13.
[7] AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host & Microbe, 2018, 23(6): 716-724.
[8] FEUERSTEIN J D, ISAACS K L, SCHNEIDER Y, et al. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis[J]. Gastroenterology, 2020, 158(5): 1450-1461.
[9] PERNOMIAN L, DUARTE-SILVA M, DE BARROS CARDOSO C R. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: Insights from an immune and bacteria sensor receptor[J]. Clinical Reviews in Allergy & Immunology, 2020, 59(3): 382-390.
[10] ZHANG J, ZHU S W, MA N, et al. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation[J]. Medicinal Research Reviews, 2021, 41(2): 1061-1088.
[11] CHOI Y, ABDELMEGEED M A, SONG B J. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis[J]. The Journal of Nutritional Biochemistry, 2018, 55: 12-25.
[12] SCOTT S A, FU J J, CHANG P V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19376-19387.
[13] DODD D, SPITZER M H, VAN TREUREN W, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites[J]. Nature, 2017, 551(7682): 648-652.
[14] WLODARSKA M, LUO C W, KOLDE R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation[J]. Cell Host & Microbe, 2017, 22(1): 25-37.
[15] HENRICK B M, RODRIGUEZ L, LAKSHMIKANTH T, et al. Bifidobacteria-mediated immune system imprinting early in life[J]. Cell, 2021, 184(15): 3884-3898.
[16] LIU X C, ZHANG X N, ZHANG J X, et al. Activation of aryl hydro?
carbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation[J]. Journal of Dermatological Science, 2020, 100(3): 192-200.
[17] LI K Y, HAO Z H, DU J Y, et al. Bacteroides thetaiotaomicron relieves colon inflammation by activating aryl hydrocarbon receptor and modulating CD4+T cell homeostasis[J]. International Immunopharmacology, 2021, 90: 107183.
[18] VIVIER E, ARTIS D, COLONNA M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066.
[19] PANTAZI E, POWELL N. Group 3 ILCs: Peacekeepers or troublemakers what’s your gut telling You?![J]. Frontiers in Immunology, 2019, 10: 676.
[20] CERVANTES-BARRAGAN L, CHAI J N, TIANERO M D, et al. Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+T cells[J]. Science, 2017, 357(6353): 806-810.
[21] BORGHI M, PARIANO M, SOLITO V, et al. Targeting the aryl hydro?carbon receptor with indole-3-aldehyde protects from vulvovaginal candidiasis via the IL-22-IL-18 cross-talk[J]. Frontiers in Immunology, 2019, 10: 2364.
[22] IHEKWEAZU F D, ENGEVIK M A, RUAN W, et al. Bacteroides Ovatus promotes IL-22 production and reduces trinitrobenzene sulfonic acid-driven colonic inflammation[J]. The American Journal of Pathology, 2021, 191(4): 704-719.
[23] LAMAS B, RICHARD M L, LEDUCQ V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nature Medicine, 2016, 22(6): 598-605.
[24] 張?zhí)旌? 洪.炎癥性腸病的中醫(yī)辨治思路[J].中醫(yī)雜志,2019, 60(14):1191-1193,1236.
[25] 李玉玲,劉? 云,時(shí)昭紅.中醫(yī)對(duì)炎癥性腸病的認(rèn)識(shí)與治療研究進(jìn)展[J].臨床內(nèi)科雜志,2021,38(2):87-89.
[26] JING W H, DONG S J, LUO X L, et al. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites[J]. Pharmacological Research, 2021, 164: 105358.
[27] ZHANG X J, YUAN Z W, QU C, et al. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota[J]. Pharmacological Research, 2018, 137: 34-46.
[28] FENG W W, LIU J, TAN Y Z, et al. Polysaccharides from Atractylodes macrocephala Koidz. Ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism[J]. Food Research International, 2020, 138: 109777.
[29] XU Y Y, XIE L Y, ZHANG Z Y, et al. Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium-treated mice via Foxp3+ T cells, gut microbiota, and bacterial metabolites[J]. Frontiers in Immunology, 2021, 12: 648162.
[30] YANG C C, DU Y, REN D Y, et al. Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis[J]. Food & Function, 2021, 12(20): 9793-9807.
[31] YANG W Q, REN D Y, ZHAO Y, et al. Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism[J]. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8448-8459.
[32] 范淇淋.白芍總苷治療小鼠潰瘍性結(jié)腸炎作用機(jī)制的研究[D]. 廣州:廣東藥科大學(xué),2019.
[33] YU X T, YANG G H, JIANG H, et al. Patchouli oil ameliorates acute colitis: A targeted metabolite analysis of 2, 4, 6-trinitrobenzenesulfonic acid-induced rats[J]. Experimental and Therapeutic Medicine, 2017, 14(2): 1184-1192.
[34] WU J Z, GAN Y X, LI M X, et al. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota[J]. Biomedicine & Pharmacotherapy, 2020, 124: 109883.
[35] LUO S, WEN R Y, WANG Q, et al. Rhubarb Peony Decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance[J]. Journal of Ethnopharmacology, 2019, 231: 39-49.
[36] 農(nóng)菲菲,羅? 爽,趙鐘祥,等.基于UPLC/Q-TOF-MS技術(shù)的大黃牡丹湯治療IBD大鼠的血清代謝組學(xué)研究[J].中藥新藥與臨床藥理,2019,30(5):571-579.
[37] SUN Z M, LI J X, WANG W T, et al. Qingchang Wenzhong Decoction accelerates intestinal mucosal healing through modulation of dysregulated gut microbiome, intestinal barrier and immune responses in mice[J]. Frontiers in Pharmacology, 2021, 12: 738152.
[38] ZOU J F, SHEN Y M, CHEN M J, et al. Lizhong Decoction ameliorates ulcerative colitis in mice via modulating gut microbiota
and its metabolites[J]. Applied Microbiology and Biotechnology, 2020, 104(13): 5999-6012.
[39] LI M Y, LUO H J, WU X, et al. Anti-inflammatory effects of Huangqin Decoction on dextran sulfate sodium-induced ulcerative colitis in mice through regulation of the gut microbiota and suppression of the ras-PI3K-Akt-HIF-1α and NF-κB pathways[J]. Frontiers in Pharmacology, 2020, 10: 1552.
[40] 王敦方.基于TLR4/MyD88通路和組學(xué)研究黃芩湯治療潰瘍性結(jié)腸炎的作用機(jī)制[D].北京:中國(guó)中醫(yī)科學(xué)院,2017.
[41] CHEN X Q, LV X Y, LIU S J. Baitouweng Decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway[J]. Journal of Ethnopharmacology, 2021, 265: 113357.
[42] HUA Y L, MA Q, LI W, et al. Metabolomics analysis of Pulsatilla decoction on treatment of wetness-heat-induced diarrhea in rats based on UPLC-Q/TOF-MS/MS[J]. Biomedical Chromatography, 2019, 33(11): e4629.
[43] ZHAO L, XIAO H T, MU H X, et al. Magnolol, a natural polyphenol, attenuates dextran sulfate sodium-induced colitis in mice[J]. Molecules, 2017, 22(7): 1218.
[44] LIU C, LI Y Y, CHEN Y P, et al. Baicalein restores the balance of Th17/treg cells via aryl hydrocarbon receptor to attenuate colitis[J]. Mediators of Inflammation, 2020, 2020: 5918587.
[45] LV Q, SHI C, QIAO S M, et al. Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation[J]. Cell Death & Disease, 2018, 9: 890.
[46] GUO A, HE D M, XU H B, et al. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents[J]. Scientific Reports, 2015, 5: 14046.
[47] WANG J P, NIU X L, WU C F, et al. Naringenin modifies the development of lineage-specific effector CD4+ T cells[J]. Frontiers in Immunology, 2018, 9: 2267.
[48] PENG J E, LU X R, XIE K L, et al. Dynamic alterations in the gut microbiota of collagen-induced arthritis rats following the prolonged administration of total glucosides of paeony[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9: 204.
[49] 王? 磊,李跟旺.廣藿香抗菌消炎調(diào)節(jié)免疫作用的最新研究[J]. 西部中醫(yī)藥,2018,31(2):138-140.