蘇程程 單秀娟 楊 濤 韓青鵬
黃海秋季魚(yú)類群落關(guān)鍵種的年代際變化*
蘇程程1,2單秀娟1,3①楊 濤1,3韓青鵬1,4
(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 山東省漁業(yè)資源與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室 山東 青島 266071;2. 上海海洋大學(xué)海洋科學(xué)學(xué)院 上海 201306; 3. 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室 山東 青島 266237; 4. 中國(guó)海洋大學(xué)水產(chǎn)學(xué)院 山東 青島 266003)
黃海;魚(yú)類群落;食物網(wǎng)拓?fù)浣Y(jié)構(gòu);網(wǎng)絡(luò)分析法;關(guān)鍵種
關(guān)鍵種直接或間接調(diào)控著群落結(jié)構(gòu)和影響群落中其他物種的分布,在維持群落穩(wěn)定性和物種多樣性方面起重要作用(孫剛等, 2000)。通過(guò)對(duì)群落關(guān)鍵種的研究,可以明確食物網(wǎng)中的物種關(guān)系;通過(guò)關(guān)鍵種的變動(dòng),可以了解物質(zhì)能量在食物網(wǎng)中的流動(dòng)情況(王鳳珍等, 2019)。以節(jié)點(diǎn)度為位置重要性指數(shù),可以建立其余拓?fù)鋵W(xué)指標(biāo);通過(guò)食物網(wǎng)拓?fù)浣Y(jié)構(gòu),可以確定食物網(wǎng)中節(jié)點(diǎn)之間的位置關(guān)系及聯(lián)系程度,以及重要節(jié)點(diǎn)的變動(dòng)對(duì)其他節(jié)點(diǎn)和整個(gè)食物網(wǎng)所造成的影響(Libralato, 2006; Jordán, 2006)。社會(huì)網(wǎng)絡(luò)分析法是研究社會(huì)網(wǎng)絡(luò)實(shí)體之間的關(guān)系結(jié)構(gòu)及屬性的理論和方法。目前,在水域生態(tài)系統(tǒng)使用的研究方法包括轉(zhuǎn)移矩陣靈敏度分析法(Miller, 2012)、Ecopath with Ecosim模型法(Libralato, 2006)、構(gòu)建食物網(wǎng)拓?fù)浣Y(jié)構(gòu)并運(yùn)用網(wǎng)絡(luò)分析法(Jordán, 2006)。將網(wǎng)絡(luò)分析方法與食物網(wǎng)拓?fù)浣Y(jié)構(gòu)結(jié)合,可進(jìn)一步探究影響食物網(wǎng)穩(wěn)定性的關(guān)鍵物種變化,掌握食物網(wǎng)結(jié)構(gòu)和動(dòng)態(tài),進(jìn)而監(jiān)測(cè)群落穩(wěn)定性(朱江峰等, 2016)。目前,我國(guó)有關(guān)關(guān)鍵種的研究主要針對(duì)海灣生態(tài)系統(tǒng),如萊州灣(楊濤等, 2018)、膠州灣(馬孟磊等, 2018)、北部灣(孫龍啟等, 2016)等,大面積水域的相關(guān)研究未見(jiàn)報(bào)道。
黃海作為我國(guó)重要的漁業(yè)水域,是多種漁業(yè)生物的產(chǎn)卵場(chǎng)、索餌場(chǎng)和越冬場(chǎng)(邱盛堯等, 2009; 金顯仕等, 2005)。近30年,由于過(guò)度捕撈和環(huán)境改變,黃海魚(yú)類群落結(jié)構(gòu)和種類組成發(fā)生變化(Jin, 1996; 鄧景耀等, 1991),低質(zhì)魚(yú)類增多,傳統(tǒng)大型經(jīng)濟(jì)魚(yú)類減少,群落結(jié)構(gòu)簡(jiǎn)單化,平均營(yíng)養(yǎng)級(jí)降低(劉靜等, 2011; 單秀娟等, 2014)。黃海捕撈漁獲物逐漸從長(zhǎng)壽命、高營(yíng)養(yǎng)級(jí)的底層魚(yú)類向短壽命、低營(yíng)養(yǎng)級(jí)的中上層小型魚(yú)類或無(wú)脊椎動(dòng)物轉(zhuǎn)變(杜建國(guó)等, 2014)。研究發(fā)現(xiàn),1985—2010年,黃海主要漁業(yè)種類超過(guò)半數(shù)出現(xiàn)食性轉(zhuǎn)變,游泳動(dòng)物食性魚(yú)類減少,廣食性魚(yú)類增多,黃海魚(yú)類群落食物網(wǎng)發(fā)生改變(張波等, 2011)。為探究黃海食物網(wǎng)中關(guān)鍵種的變化對(duì)群落結(jié)構(gòu)、功能和多樣性的影響,本研究基于1985、2001、2009和2018年秋季黃海漁業(yè)資源調(diào)查數(shù)據(jù),利用拓?fù)鋵W(xué)原理構(gòu)建了黃海秋季魚(yú)類群落食物網(wǎng)絡(luò),分析了網(wǎng)絡(luò)中關(guān)鍵種的年代際更替,旨在為后續(xù)研究及資源管理提供科學(xué)基礎(chǔ)。
數(shù)據(jù)來(lái)源于中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所“北斗”號(hào)1985、2001、2009和2018年秋季(10月) (2001年為11月)在黃海的底拖網(wǎng)漁業(yè)資源調(diào)查數(shù)據(jù)。調(diào)查海域?yàn)辄S海(30°00′~39°00′N,120.5°00′~ 126°00′E)。網(wǎng)具參數(shù):1985年底拖網(wǎng)網(wǎng)口周長(zhǎng)為450目×17 cm,網(wǎng)囊網(wǎng)目為2.0 cm,網(wǎng)口高度為5~7 m;2001年后各年網(wǎng)口周長(zhǎng)為836目×20 cm,網(wǎng)囊網(wǎng)目2.4 cm,網(wǎng)具高度5~7 m。根據(jù)實(shí)測(cè)數(shù)據(jù),2001年所用網(wǎng)具的網(wǎng)口面積是1985年的1.5倍,數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化。調(diào)查站位延續(xù)歷史調(diào)查站設(shè)計(jì)方案(極少數(shù)站位存在不同),調(diào)查水域范圍一致(李忠爐等, 2015; 韓青鵬等, 2019),每站拖網(wǎng)時(shí)間為0.5~1 h,平均拖速為3.0 kn。食性數(shù)據(jù)參考鄧景耀等(1988)、金顯仕等(1998)、成慶泰等(1997)、韋晟等(1998)和楊紀(jì)明(2001)。
1.2.1 群落優(yōu)勢(shì)度 優(yōu)勢(shì)度由相對(duì)重要性指標(biāo)(index of relative importance, IRI)來(lái)確定(Pinkas, 1971):
IRI=(
N
%+
W
%)
F
(1)
式中,為某種魚(yú)個(gè)體數(shù)占捕獲魚(yú)類總個(gè)體數(shù)百分比,為某種魚(yú)重量占捕獲魚(yú)類總重量百分比,為某種魚(yú)在調(diào)查中被捕獲的站數(shù)與總調(diào)查站數(shù)百分比。IRI>500為優(yōu)勢(shì)種,50~500為常見(jiàn)種,優(yōu)勢(shì)種與常見(jiàn)種合稱為魚(yú)類群落的重要組成成分(程濟(jì)生, 2000)。
1.2.2 生物多樣性指數(shù) 采用Margalef種群豐富度指數(shù)、Shannon-Wiener多樣性指數(shù)′和Pielou均勻度指數(shù)′,并分別采用相對(duì)生物量和個(gè)體數(shù)進(jìn)行計(jì)算。
Shannon-Wiener多樣性指數(shù)′ (Shannon, 1949):
Margalef種群豐富度指數(shù)(Margalef, 1958):
Pielou均勻度指數(shù)′ (Pielou, 1975):
式中,為種類數(shù);為漁獲總重量或尾數(shù);P為種魚(yú)重量(或尾數(shù))占總漁獲物重量(或尾數(shù))的比例。
1.2.3 食物網(wǎng)拓?fù)浣Y(jié)構(gòu)指數(shù) 點(diǎn)度(degree,)包括入度(in-degree,D)和出度(out-degree,D) (Dunne, 2002)
式中,D為物種的捕食者及被捕食者種類總數(shù),D為物種的被捕食者種類數(shù)量,D為物種的捕食者種類數(shù)量。用于描述其存在攝食關(guān)系物種的數(shù)量,D越大,表示其被捕食者種類數(shù)量多;D越大,表示捕食者種類數(shù)量越多,反之亦然。
中介中心性(betweenness centrality, BC) (Freeman, 1978)
式中,為調(diào)查中出現(xiàn)的種類數(shù),≠≠且<,g表示物種和物種之間存在的最短路徑數(shù)量,g()表示種和種之間存在的經(jīng)過(guò)第3個(gè)種的捷徑數(shù)目。BC值越大,代表該物種對(duì)群落內(nèi)信息交換的控制能力越強(qiáng),在維持群落結(jié)構(gòu)的穩(wěn)定性上越關(guān)鍵。
緊密中心性(closeness centrality, CC)(Freeman, 1978; Okamoto, 2008)
式中,為調(diào)查中出現(xiàn)的種類數(shù),≠、≠且<,d代表物種和物種之間的捷徑距離。CC值大的物種,其在群落中信息傳遞中,能以最快的速度將信息傳遞給其他物種。
種間關(guān)聯(lián)度指數(shù)(connectance,)(Dunne, 2002):
C
=
L
/
S
2
(9)
式中,為魚(yú)類群落中種類數(shù)量;為群落內(nèi)各種間存在的攝食關(guān)系數(shù)量;D為節(jié)點(diǎn)密度,節(jié)點(diǎn)密度值越大,群落內(nèi)物種的攝食關(guān)系的平均值就會(huì)越大;為種間關(guān)聯(lián)度,種間關(guān)聯(lián)度越大,2個(gè)物種之間存在的捕食–被捕食的概率就越大。
拓?fù)渲匾灾笖?shù)(topological importance index, TI) (Jordán, 2006):
式中,a為物種經(jīng)過(guò)步到達(dá)物種時(shí),物種對(duì)物種的影響;TI為物種經(jīng)過(guò)步時(shí),對(duì)魚(yú)類群落拓?fù)浣Y(jié)構(gòu)影響的重要性指數(shù)。在本研究中,取值為1和7。TI值越大,代表其信息擴(kuò)散速度越快。
關(guān)鍵性指數(shù)(keystone index,),包括上行關(guān)鍵指數(shù)(bottom-up keystone index,K)和下行關(guān)鍵指數(shù)(top-down keystone,K)(Jordán, 1999):
KPP運(yùn)算(key player problem),使用KPP-1運(yùn)算法則,離散度(fragmentation,)和距離權(quán)重離散度(distance-weighted fragmentation,F) (Breiger, 2003):
群落種間聚類系數(shù)計(jì)算參照Watts等(1998)。
本研究使用統(tǒng)計(jì)分析軟件SPSS 20.0、Excel 2016、網(wǎng)絡(luò)分析軟件Ucinet6 (http://www.analytictech. com/)計(jì)算、D、D、BC、CC,使用CoSBiLaB Graph 1.0(http://www.cosbi.eu/)計(jì)算TI1、TI7、、K和K,Keypalyer 1.44 (http://analytictech.com/)計(jì)算、和。
從圖1可以看出,1985—2018年間,黃海秋季魚(yú)類多樣性變化很大。1985年物種豐富度指數(shù)R和R達(dá)到高峰,隨后逐漸降低,2009年降至最低,2018年有顯著回升,但未超過(guò)1985年。多樣性指數(shù)總體呈降低趨勢(shì),于2001年降到最低,2009年有所回升,但并未超過(guò)1985年水平;于2009年降到最低,2018年有所回升,與1985年持平。均勻度指數(shù)與呈相對(duì)穩(wěn)定波動(dòng)。
表1 1985—2018年黃海秋季魚(yú)類優(yōu)勢(shì)種組成
圖1 1985—2018年黃海秋季魚(yú)類多樣性變化
1985—2018年間,黃海秋季魚(yú)類食物網(wǎng)中物種數(shù)量()為67~103個(gè),攝食關(guān)系數(shù)量()平均值為388。其中,2018年攝食關(guān)系最多,為449個(gè),2009年最低,為300個(gè);食物網(wǎng)拓?fù)浣Y(jié)構(gòu)密度(D)變化范圍為0.198~0.227,平均密度為0.211,最高值出現(xiàn)在2018年,最低值為1985年;種間關(guān)聯(lián)度()為0.044~0.074,平均值為0.060,最高值出現(xiàn)在2001年,最低值出現(xiàn)在2018年;聚類系數(shù)(Cl)為0.114~0.152,最低值與最高值分別出現(xiàn)在2009年和1985年,平均值為0.138,加權(quán)聚類系數(shù)(W-Cl)為0.093~0.137,2001年與2009年出現(xiàn)最高值,平均值為0.119(圖2)。物種數(shù)量在調(diào)查期間(1985—2018年)呈先降低后增加的趨勢(shì),并于2018年超過(guò)1985年;在1985—2009年呈逐步下降趨勢(shì),2009年降到最低,2018年增加并與1985年攝食關(guān)系數(shù)量持平;D于1985—2009年逐步增加,于2009年到達(dá)高峰,后續(xù)有緩慢下降;、Cl和W-Cl在1985—2001年均呈增加趨勢(shì),Cl增加幅度相對(duì)較大;2001—2018年,三者呈緩慢下降趨勢(shì),與Cl于2018年降至最低,但并未低于1985年水平,W-Cl下降幅度相對(duì)較大,低于1985年水平。這與豐富度指數(shù)R和R的變化趨勢(shì)基本相反,其中,Cl與W-Cl和R呈極顯著負(fù)相關(guān)(<0.01)(表2)。
圖2 1985—2018年黃海秋季魚(yú)類食物網(wǎng)拓?fù)浣Y(jié)構(gòu)屬性
表2 黃海魚(yú)類多樣性指數(shù)與食物網(wǎng)拓?fù)鋵W(xué)指標(biāo)的相關(guān)性
圖3 黃海魚(yú)類群落食物網(wǎng)拓?fù)浣Y(jié)構(gòu)(1985—2018)
附表I 物種編號(hào)
續(xù)表
BREIGER R, CARLEY K, PATTISON P,. Dynamic social network modeling and analysis: Workshop summary and papers. Washington: National Academies Press, 2003, 241–252
CHENG J H, DING F Y, LI S F,. Changes of fish community structure in the coastal zone of the Northern Part of East China Sea in summer. Journal of Natural Resources, 2006, 21(5): 775–781 [程家驊, 丁峰元, 李圣法, 等. 夏季東海北部近海魚(yú)類群落結(jié)構(gòu)變化. 自然資源學(xué)報(bào), 2006, 21(5): 775–781]
CHENG J S. The structure and diversity of demersal fish communities in winter in the East China Sea and the Yellow Sea. Marine Fisheries Research, 2000, 21(3): 1–8 [程濟(jì)生. 東、黃海冬季底層魚(yú)類群落結(jié)構(gòu)及其多樣性. 海洋水產(chǎn)研究, 2000, 21(3): 1–8]
CHENG Q T, ZHOU C W, LIN H Y,. Fishes of Shandong Province. Jinan: Shandong Science and Technology Press, 1997, 42–497 [成慶泰, 周才武, 林華英, 等. 山東魚(yú)類志. 濟(jì)南: 山東科學(xué)技術(shù)出版社, 1997, 42–497]
DENG J Y, MENG T X, REN S M. Food web of fishes in the Bohai Sea. Marine Fisheries Research, 1988, 9(2): 151–172 [鄧景耀, 孟田湘, 任勝民. 渤海魚(yú)類的食物關(guān)系. 海洋水產(chǎn)研究, 1988, 9(2): 151–172]
DU J G, YE G Q, CHEN B,. Changes in the marine trophic index of Chinese marine area. Biodiversity Science, 2014, 22(4): 532–538 [杜建國(guó), 葉觀瓊, 陳彬, 等. 中國(guó)海域海洋生物的營(yíng)養(yǎng)級(jí)指數(shù)變化特征. 生物多樣性, 2014, 22(4): 532–538]
DUNNE J A, WILLIAMS R J, MARTINEZ N D. Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12917–12922
FREEMAN L C. Centrality in social networks conceptual clarification. Social Networks, 1978, 1(3): 215–239
HAN Q P, SHAN X J, WAN R,.Spatiotemporal distribution and the estimated abundance indices ofin winter in the Yellow Sea based on geostatistical delta-generalized linear mixed models, Journal of Fisheries of China, 2019, 43(7): 1603–1614 [韓青鵬, 單秀娟, 萬(wàn)榮, 等. 基于地統(tǒng)計(jì)二階廣義線性混合模型的黃海冬季小黃魚(yú)時(shí)空分布和資源量指數(shù)估算, 水產(chǎn)學(xué)報(bào), 2019, 43(7): 1603–1614]
JIN X S, HAMRE J, ZHAO X Y,. Study on the quota management of anchovy () in the Yellow Sea. Journal of Fishery Sciences of China, 2001, 8(3): 27–30 [金顯仕, Hamre J, 趙憲勇, 等. 黃海鳀魚(yú)限額捕撈的研究, 中國(guó)水產(chǎn)科學(xué), 2001, 8(3): 27–30]
JIN X S, TANG Q S. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fisheries Research, 1996, 26(3/4): 337–352
JIN X S, TANG Q S. The structure, distribution and variation of the fishery resources in the Bohai Sea. Journal of Fishery Sciences of China, 1998, 5(3): 18–24 [金顯仕, 唐啟升. 渤海漁業(yè)資源結(jié)構(gòu)、數(shù)量分布及其變化. 中國(guó)水產(chǎn)科學(xué), 1998, 5(3): 18–24]
JIN X S, ZHAO X Y, MENG T X,. Biological resources and habitats of the Yellow Sea and the Bohai Sea. Beijing: Science Press, 2005, 262–351 [金顯仕, 趙憲勇, 孟田湘, 等. 黃、渤海生物資源與棲息環(huán)境. 北京: 科學(xué)出版社, 2005, 262–351]
JORDáN F, LIU W, DAVIS A J. Topological keystone species: Measures of positional importance in food webs. Oikos, 2006, 112(3): 535–546
JORDáN F, TAKACS-SANTA A, MOLNAR I. A liability theoretical quest for key stones. Oikos, 1999, 86(3): 453–462
LIBRALATO S, CHRISTENSEN V, PAULY D. A method for identifying keystone species in food web models. Ecological Modelling, 2006, 195(3/4): 153–171
LIU J, NING P. Species composition and faunal characteristics of fishes in the Yellow Sea. Biodiversity Science, 2011, 19(6): 158–163 [劉靜, 寧平. 黃海魚(yú)類組成、區(qū)系特征及歷史變遷. 生物多樣性, 2011, 19(6): 764–769]
Lü Z B, LI F, WANG B,. Community structure of fish resources in spring and autumn in the Yellow Sea off Shandong. Journal of Fisheries of China, 2011, 35(5): 692–699 [呂振波, 李凡, 王波, 等. 黃海山東海域春、秋季魚(yú)類群落結(jié)構(gòu). 水產(chǎn)學(xué)報(bào), 2011, 35(5): 692–699]
MA M L, XU S N, XU Y W,. Comparative study of Jiaozhou Bay ecosystem based on an Ecopath model. Journal of Fishery Sciences of China, 2018, 25(2): 413–422 [馬孟磊, 徐姍楠, 許友偉, 等. 基于Ecopath模型的膠州灣生態(tài)系統(tǒng)比較研究. 中國(guó)水產(chǎn)科學(xué), 2018, 25(2): 413–422]
MARGALEF R. Information theory in ecology. General System, 1958, 3: 36–71
MILLER D A W. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models. Ecology, 2012, 93(5): 1204–1213
MOU X X, ZHANG C, ZHANG C L,. The fisheries biology of the spawning stock ofin the Bohai and Yellow Ses. Journal of Fishery Sciences of China, 2018, 25(6): 161–169 [牟秀霞, 張弛, 張崇良, 等. 黃渤海藍(lán)點(diǎn)馬鮫繁殖群體漁業(yè)生物學(xué)特征研究. 中國(guó)水產(chǎn)科學(xué), 2018, 25(6): 161–169]
ODUM E P. Fundamental of ecological. Philadelphia: Saunders College Publishing, 1953, 135–147
OKAMOTO K, CHEN W, LI X Y. Ranking of closeness centrality for large-scale social networks. International workshop on frontiers in algorithmics. Springer, Berlin, Heidelberg, 2008, 186–195
PIELOU E C. Ecological Diversity. New York: Wiley, 1975, 4–50
PINKAS L, OLIPHANT M S, IVERSON I L K. Food habits of albacore, bluefin tuna and bonito in Californian waters. California Department of Fish and Game Fish Bulletin, 1971, 152: 1–105
QIU S Y, Lü Z B, JIAO J J,. Study on the suitable season for exploitation and utilization of fishery resources in the Yellow Sea and the Bohai Sea. Shandong Fisheries, 2009, 26(3): 18–20 [邱盛堯, 呂振波, 焦金菊, 等. 黃渤海漁業(yè)資源適宜開(kāi)發(fā)利用季節(jié)的研究. 齊魯漁業(yè), 2009, 26(3): 18–20]
SHAN X J, CHEN Y L, DAI F Q,. Variations in fish community structure and diversity in the sections of the central and southern Yellow Sea. Acta Ecologica Sinica, 2014, 34(2): 377–389 [單秀娟, 陳云龍, 戴芳群, 等. 黃海中南部不同斷面魚(yú)類群落結(jié)構(gòu)及其多樣性. 生態(tài)學(xué)報(bào), 2014, 34(2): 377–389]
SHAN X J, LI Z L, DAI F Q,. Seasonal and annual variation in biological characteristics of small yellow croakerin the central and southern Yellow Sea. Progress in Fishery Sciences, 2011, 32(6): 7–16 [單秀娟, 李忠爐, 戴芳群, 等. 黃海中南部小黃魚(yú)種群生物學(xué)特征的季節(jié)變化和年際變化. 漁業(yè)科學(xué)進(jìn)展, 2011, 32(6): 7–16]
SHAN X J, SUN P F, JIN X S,. Seasonal variations of fishery resource structure in the sections of the southern Yellow Sea. Journal of Fisheries of China, 2013, 37(3): 425–435 [單秀娟, 孫鵬飛, 金顯仕, 等. 黃海典型斷面漁業(yè)資源結(jié)構(gòu)的季節(jié)變化. 水產(chǎn)學(xué)報(bào), 2013, 37(3): 425–435]
SHANNON C E, WEAVER W. The mathematical theory of communication. Urbana IL: University of Illinois Press, 1949
SHI L, LI T M, LIU L T. Review on China’s capture fisheries policy over 70 years of PRC’s founding and its prospect. Agricultural Outlook, 2019, 1(12): 16–23, 31 [史磊, 李泰民, 劉龍騰. 新中國(guó)成立70年以來(lái)中國(guó)捕撈漁業(yè)政策回顧與展望. 農(nóng)業(yè)展望, 2019, 1(12): 16–23, 31]
SUN G, SHENG L X. Theory of keystone species in ecosystems: New idea, new mechanism, new approach. Journal of Northeast Normal University (Natural Science), 2000, 32(3): 73–78 [孫剛, 盛連喜. 生態(tài)系統(tǒng)關(guān)鍵種理論: 新思想、新機(jī)制、新途徑. 東北師大學(xué)報(bào)(自然科學(xué)版), 2000, 32(3): 73–78]
SUN L Q, LIN Y S, CHEN L X,Analysis of ecosystem structure and function in the northern Beibu Gulf Ⅶ: Nutrition structure and keystone species selection based on Ecopath with Ecosim. Journal of Tropical Oceanography, 2016, 35(4): 51–62 [孫龍啟, 林元燒, 陳俐驍, 等. 北部灣北部生態(tài)系統(tǒng)結(jié)構(gòu)與功能研究Ⅶ: 基于Ecopath模型的營(yíng)養(yǎng)結(jié)構(gòu)構(gòu)建和關(guān)鍵種篩選. 熱帶海洋學(xué)報(bào), 2016, 35(4): 51–62]
TANG M Z, LIAN D J, Lu Y,. Fisheries administration and changes of anchovy resources in the East and Yellow Sea. Fisheries Science, 2002, 21(2): 44–45 [唐明芝, 連大軍, 盧巖, 等. 東黃海區(qū)鳀魚(yú)資源變動(dòng)及漁業(yè)管理. 水產(chǎn)科學(xué), 2002, 21(2): 44–45]
TANG Q S, YE M Z. Exploitation and protection of fishery resources in Shandong offshore. Beijing: Agriculture Press, 1990, 22–26 [唐啟升, 葉懋中. 山東近海漁業(yè)資源開(kāi)發(fā)與保護(hù). 北京: 農(nóng)業(yè)出版社, 1990, 22–26]
WANG F Z, TANG Y. Determination of key species in the food web and their impact on the robustness. Biodiversity Science, 2019, 27(10): 1132–1137 [王鳳珍, 唐毅. 食物網(wǎng)關(guān)鍵種的判定及其對(duì)穩(wěn)健性的影響. 生物多樣性, 2019, 27(10): 1132–1137]
WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440–442
WEI S, JIANG W M. Study on food web of fishes in the Yellow Sea. Oceanologia et Limnologia Sinica, 1992, 23(2): 182–192 [韋晟, 姜衛(wèi)民. 黃海魚(yú)類食物網(wǎng)的研究. 海洋與湖沼, 1992, 23(2): 182–192]
XU B D, JIN X S, LIANG Z L. Changes of demersal fish community structure in the Yellow Sea during the autumn. Journal of Fishery Sciences of China, 2003, 10(2): 148–154 [徐賓鐸, 金顯仕, 梁振林. 秋季黃海底層魚(yú)類群落結(jié)構(gòu)的變化. 中國(guó)水產(chǎn)科學(xué), 2003, 10(2): 148–154]
YANG J M. A study on food and trophic levels of Bohai Sea fish. Fishery Information and Strategy, 2001, 16(10): 10–19 [楊紀(jì)明. 渤海魚(yú)類的食性和營(yíng)養(yǎng)級(jí)研究. 漁業(yè)信息與戰(zhàn)略, 2001, 16(10): 10–19]
YANG T, SHAN X J, JIN X S,. Long-term changes in keystone species in fish community in spring in Laizhou Bay. Progress in Fishery Sciences, 2018, 39(1): 1–11 [楊濤, 單秀娟, 金顯仕, 等. 萊州灣春季魚(yú)類群落關(guān)鍵種的長(zhǎng)期變化. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(1): 1–11]
ZHANG B, JIN X S. Seasonal variations of the functional groups of fish community and their consumption of zooplankton in the Yellow Sea. Journal of Fisheries of China, 2010, 34(4): 548–558 [張波, 金顯仕. 黃海魚(yú)類功能群及其對(duì)浮游動(dòng)物捕食的季節(jié)變化. 水產(chǎn)學(xué)報(bào), 2010, 34(4): 548–558]
ZHANG B, TANG Q S, JIN X S. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem. Journal of Marine Systems, 2007, 67(3/4): 304–311.
ZHANG B, TANG Q S. Study on trophic level of important resources species at high trophic levels in the Bohai Sea, Yellow Sea and East China Sea. Advances in Marine Science, 2004, 22(4): 393–404 [張波, 唐啟升. 渤、黃、東海高營(yíng)養(yǎng)層次重要生物資源種類的營(yíng)養(yǎng)級(jí)研究. 海洋科學(xué)進(jìn)展, 2004, 22(4): 393–404]
ZHANG B, WU Q, NIU M X,. Variation in feeding ecology within the fish community in the north Yellow Sea. Journal of Fishery Sciences of China, 2011, 18(6): 1343–1350 [張波, 吳強(qiáng), 牛明香, 等. 黃海北部魚(yú)類群落的攝食生態(tài)及其變化. 中國(guó)水產(chǎn)科學(xué), 2011, 18(6): 1343–1350]
ZHANG G Z, LI X S, JIN X S,. Changes of biological characteristics of small yellow croaker () in the central and southern Yellow Sea. Acta Ecologica Sinica, 2010, 30(24): 174–181 [張國(guó)政, 李顯森, 金顯仕, 等. 黃海中南部小黃魚(yú)生物學(xué)特征的變化. 生態(tài)學(xué)報(bào), 2010, 30(24): 174–181]
ZHU J F, DAI X J, WANG X F,. A review of methodology in marine food-web topology. Progress in Fishery Sciences, 2016, 37(2): 153–159 [朱江峰, 戴小杰, 王學(xué)昉, 等. 海洋食物網(wǎng)拓?fù)鋵W(xué)方法研究進(jìn)展. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(2): 153–159]
Interdecadal Changes in Keystone Species of Fish Community during Autumn in the Yellow Sea
SU Chengcheng1,2, SHAN Xiujuan1,3①, YANG Tao1,3, HAN Qingpeng1,4
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment, Qingdao, Shandong 266071, China; 2. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; 3. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, China; 4. College of Fisheries, Ocean University of China, Qingdao, Shandong 266003, China)
Keystone species play an important role in structural stability of a community and changes in diversity. Using Yellow Sea autumn survey data for 1985, 2001, 2009, and 2018, we constructed the topological structure of the food-web network of the Yellow Sea fish community and analyzed the interdecadal changes of keystone species in the Yellow Sea fish community. The food webs included 67~103 different fish species and 300~449 prey-predator relationships. The structural density of these food webs ranged from 0.198 to 0.227, and interspecies connectivity ranged between 0.044 and 0.074, consistent with fish communities under natural conditions. The keystone species of the autumn fish community in the Yellow Sea from 1985 to 2018 were,, and, remaining unchanged for nearly 30 years.is the keystone prey in the fish community, whileas a species that controls the fragmentation of community, both resources decline. As the keystone predator,resources have gradually increased. From 1985 to 2018, the dominant species in the Yellow Sea changed significantly in autumn, gradually shifting fromandto,, and. The Margalef richness index (R, R) and Shannon diversity index (H',H') calculated by weight and quantity have gradually decreased and have rebounded significantly in 2018, while Pielou evenness index (J',J') fluctuated slightly. The keystone species in the Yellow Sea did not change in autumn; however, the dominant species changed significantly, while the community structure fluctuated slightly but still remained in a relatively stable state.
Yellow Sea; Fish community; Food-web topological structure; Network analysis; Keystone species
SHAN Xiujuan, E-mail: shanxj@ysfri.ac.cn
S931
A
2095-9869(2021)06-0001-14
10.19663/j.issn2095-9869.20200525001
http://www.yykxjz.cn/
蘇程程, 單秀娟, 楊濤, 韓青鵬. 黃海秋季魚(yú)類群落關(guān)鍵種的年代際變化. 漁業(yè)科學(xué)進(jìn)展, 2021, 42(6): 01–14
SU C C, SHAN X J, YANG T, HAN Q P. Interdecadal changes in keystone species of fish community during autumn in the Yellow Sea. Progress in Fishery Sciences, 2021, 42(6): 01–14
單秀娟,研究員,E-mail: shanxj@ysfri.ac.cn
2020-05-25,
2020-06-15
*國(guó)家自然科學(xué)基金項(xiàng)目(31872692)、山東省泰山學(xué)者專項(xiàng)基金和中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)(2018GH20)共同資助 [This work was supported by the National Natural Science Foundation of China (31872692), Special Funds for Taishan Scholar Project of Shandong Province, and Central Public-Interest Scientific Institution Basal Research Fund, YSFRI, CAFS (2018GH20)]. 蘇程程,E-mail: 13335088169@163.com
(編輯 馮小花)