馬新華,閆海軍,陳京元,何東博,徐偉
四川盆地安岳氣田震旦系氣藏疊合巖溶發(fā)育模式與主控因素
馬新華1,閆海軍1,陳京元2,何東博1,徐偉2
(1. 中國石油 勘探開發(fā)研究院北京 100083;2.中國石油西南油氣田分公司,四川 成都 610051)
通過對四川盆地安岳氣田震旦系氣藏巖溶儲層發(fā)育特征和完鉆氣井測試產(chǎn)能綜合分析,從碳酸鹽巖巖溶儲層發(fā)育機(jī)制出發(fā),提出疊合巖溶概念和發(fā)育模式,明確了疊合巖溶發(fā)育主控因素及其對完鉆氣井產(chǎn)能的控制作用。利用巖心、成像資料,考慮儲集空間類型、大小以及縫洞搭配關(guān)系,將燈影組四段(燈四段)巖溶儲層劃分為縫洞型、孔洞型和孔隙型3種類型,縫洞型和孔洞型是燈四段優(yōu)質(zhì)儲層。受原始沉積體巖性、物性及巖溶期古地貌特征差異影響,巖溶風(fēng)化溶蝕深度、優(yōu)質(zhì)儲層垂向發(fā)育位置及平面展布范圍等特征存在差異。建立了“差異溶蝕”的疊合巖溶發(fā)育模式,指出丘灘體沉積特征、兩期風(fēng)化殼疊合程度、巖溶期斷裂系統(tǒng)發(fā)育規(guī)模以及構(gòu)造翻轉(zhuǎn)的地質(zhì)過程綜合控制了疊合巖溶儲層發(fā)育,同時疊合巖溶發(fā)育強(qiáng)度控制氣井產(chǎn)能分布。疊合巖溶發(fā)育區(qū)是氣藏開發(fā)優(yōu)先目標(biāo),其儲層發(fā)育模式與主控因素的研究對于安岳氣田震旦系氣藏開發(fā)評價、建產(chǎn)區(qū)篩選和井位部署具有重要的指導(dǎo)意義。
發(fā)育特征;發(fā)育模式;疊合巖溶;碳酸鹽巖氣藏;燈影組;震旦系;安岳氣田;四川盆地
碳酸鹽巖氣藏在天然氣儲量、產(chǎn)量中占有重要地位,全球碳酸鹽巖天然氣可采儲量約占天然氣總可采儲量的45 %,其產(chǎn)量約占天然氣總產(chǎn)量的60 %,其中超過80 %的碳酸鹽巖氣藏儲層成因與巖溶有關(guān)。巖溶型碳酸鹽巖儲層類型多樣,廣泛分布在中國四川盆地、鄂爾多斯盆地和塔里木盆地。中國巖溶型碳酸鹽巖氣藏經(jīng)歷了半個多世紀(jì)的勘探開發(fā)歷程,從早期四川盆地川南下二疊統(tǒng)、川西南威遠(yuǎn)震旦系到四川盆地川東石炭系、普光、元壩、龍崗氣田,鄂爾多斯盆地靖邊氣田,塔里木盆地塔中Ⅰ號氣田,再到四川盆地安岳氣田龍王廟組、震旦系深層碳酸鹽巖氣藏,分布范圍從初期僅四川盆地拓展至目前四川、鄂爾多斯和塔里木三大盆地,開發(fā)層系從二疊系、石炭系新地層,向奧陶系、寒武系、震旦系古老層系挺進(jìn),產(chǎn)量規(guī)模從早期的幾億方增加至目前的400×108m3以上,揭示中國巖溶型碳酸鹽巖氣藏具有良好的勘探開發(fā)前景,是未來天然氣增儲上產(chǎn)的重要領(lǐng)域之一。
隨著巖溶型碳酸鹽巖氣藏的勘探開發(fā)不斷深入,巖溶型儲層的研究也取得了極大進(jìn)展,研究成果不勝枚舉。巖溶儲層按照不同的分類依據(jù)有不同的分類方案,按巖溶發(fā)生環(huán)境可以分為(準(zhǔn))同生期巖溶、表生期巖溶和埋藏期巖溶,按成因機(jī)制可以分為層間巖溶、順層巖溶、潛山(風(fēng)化殼)巖溶及構(gòu)造-熱液巖溶,按巖溶時間先后可以劃分為同生期巖溶、早成巖期巖溶、晚成巖期巖溶和表成巖期巖溶,同時也建立了巖溶儲層發(fā)育模式[1-7]。對于巖溶儲層發(fā)育主控因素的研究各有側(cè)重,主控因素包括原始沉積環(huán)境[7-8],表生環(huán)境和埋藏環(huán)境[9],古構(gòu)造[10]、巖溶古地貌及古水系地質(zhì)環(huán)境[11-13],構(gòu)造運(yùn)動、地層巖性和白云石化作用[14-24]等。這些研究論證了巖溶儲層發(fā)育機(jī)理,明確了巖溶儲層發(fā)育特征,建立了巖溶儲層發(fā)育模式,確定了巖溶儲層發(fā)育的主控因素,研究成果支撐了巖溶型碳酸鹽巖氣藏的區(qū)帶評價和風(fēng)險井位部署[25-30],但對于開發(fā)評價、建產(chǎn)階段古老巖溶儲層如何控制優(yōu)質(zhì)儲層的發(fā)育、優(yōu)質(zhì)儲層發(fā)育模式、主控因素及對高產(chǎn)氣井的控制作用等研究相對比較缺乏。
作為中國目前發(fā)現(xiàn)最古老的海相碳酸鹽巖氣藏,安岳氣田震旦系氣藏對于西南上產(chǎn)發(fā)揮非常重要的作用。本文以安岳氣田震旦系氣藏為例,綜合巖心、露頭、鉆井、測井和試氣等資料,提出疊合巖溶概念和成因機(jī)制,明確安岳氣田震旦系疊合巖溶儲層發(fā)育特征,建立疊合巖溶發(fā)育模式,確定疊合巖溶發(fā)育的控制因素,分析疊合巖溶發(fā)育對氣井產(chǎn)能的控制作用,揭示疊合巖溶儲層發(fā)育的非均質(zhì)性和氣井高產(chǎn)的關(guān)系,以期對該類氣藏的開發(fā)評價和產(chǎn)能建設(shè)提供技術(shù)支撐。
安岳氣田震旦系氣藏位于四川省遂寧市、資陽市和重慶市潼南縣境內(nèi)(圖1),構(gòu)造上隸屬于四川盆地川中古隆起平緩構(gòu)造區(qū)的威遠(yuǎn)-龍女寺構(gòu)造群,位于樂山-龍女寺古隆起的東端,是古隆起背景上的一個大型潛伏構(gòu)造[31]。安岳氣田燈影組四段(燈四段)為臺地背景上的一套碳酸鹽巖建造,地層巖性以白云巖為主,與下伏燈三段為連續(xù)沉積,呈整合接觸,與上覆灰?guī)r、泥巖為主的麥地坪組、筇竹寺組不整合接觸。受桐灣運(yùn)動抬升影響,地層遭受不同程度剝蝕,研究區(qū)以西為德陽-安岳裂陷槽,燈四段快速尖滅,大部分地層殘余厚度一般為280 ~ 380 m。
圖1 四川盆地安岳氣田構(gòu)造
震旦系是四川盆地最古老的含油氣層系,最早發(fā)現(xiàn)威遠(yuǎn)氣田,其后在樂山-龍女寺古隆起的多個構(gòu)造進(jìn)行鉆探,發(fā)現(xiàn)了龍女寺、安平店、資陽、高石梯等含氣構(gòu)造,但未獲得重大突破。2011年7月高石1井測試獲得高產(chǎn)氣流,標(biāo)志著安岳氣田震旦系氣藏的發(fā)現(xiàn),氣藏三級儲量達(dá)上萬億方,潛在含氣面積7 500 km2。之后,震旦系氣藏勘探力度不斷增強(qiáng)、開發(fā)評價持續(xù)深入,在成藏[32-35]、沉積[36-38]、巖石類型[39]、成巖[40-42]、古地貌[43-48]、儲層[49-51]等方面取得了大量的研究成果,綜合認(rèn)為燈四段氣藏大面積含氣、儲量整體規(guī)模大,但氣藏儲量豐度不均、氣井產(chǎn)能差異大,是受古老微生物沉積和巖溶改造兩方面綜合控制的巖溶風(fēng)化殼型碳酸鹽巖氣藏。
隨著氣藏開發(fā)評價的不斷深入,動、靜態(tài)資料不斷豐富,逐步認(rèn)識到安岳氣田震旦系氣藏地質(zhì)條件的復(fù)雜性和特殊性,主要體現(xiàn)在:①受原始沉積古地貌、古環(huán)境及多期巖溶發(fā)育共同控制,不同部位巖溶儲滲體發(fā)育期次、規(guī)模、物性等特征表現(xiàn)出較大的差異,儲層非均質(zhì)性強(qiáng);②受儲層發(fā)育厚度及儲層內(nèi)部非均質(zhì)性綜合控制,氣井產(chǎn)能差異較大,在平面上呈現(xiàn)出顯著的分區(qū)特征。
四川盆地是在上揚(yáng)子克拉通基礎(chǔ)上發(fā)展起來的疊合盆地,經(jīng)歷了3期重要的盆地演化階段[36],沉積了震旦系—中三疊統(tǒng)海相層系,地層累計厚度達(dá)6 000 ~ 7 000 m。這些海相地層經(jīng)歷了桐灣運(yùn)動、加里東運(yùn)動及印支運(yùn)動,形成了多期古隆起及多個區(qū)域性不整合面。安岳氣田震旦系燈影組受桐灣運(yùn)動影響,發(fā)育3期幕式風(fēng)化殼(圖2)。桐灣運(yùn)動Ⅰ幕發(fā)生在燈二段沉積末期,表現(xiàn)為燈三段區(qū)域性碎屑巖假整合于燈二段白云巖之上(圖3a)。桐灣運(yùn)動Ⅱ幕發(fā)生在燈影組沉積期末,表現(xiàn)為燈影組與下寒武統(tǒng)麥地坪組假整合接觸(圖3b)。桐灣運(yùn)動Ⅲ幕發(fā)生在早寒武世麥地坪組沉積期末,表現(xiàn)為下寒武統(tǒng)麥地坪組與筇竹寺組假整合接觸(圖3c)。受多期構(gòu)造運(yùn)動、暴露時間以及地層剝蝕程度等綜合影響,安岳氣田燈四段頂部麥地坪組局部殘存,燈四段呈現(xiàn)出兩期風(fēng)化殼巖溶疊合的特征。
圖2 四川盆地震旦系-寒武系劃分方案
疊合巖溶指受單一或多種成因機(jī)制控制,天然淡水對可溶性巖石進(jìn)行多期巖溶作用的一種現(xiàn)象。廣義的疊合巖溶相對復(fù)雜,成因機(jī)制既包括單一成因機(jī)制的多期次疊加,也包括兩種或兩種以上成因機(jī)制的疊加甚至是兩者的結(jié)合。本文所強(qiáng)調(diào)的疊合巖溶是狹義的范疇,僅指受區(qū)域構(gòu)造運(yùn)動單一成因機(jī)制控制,發(fā)育多期構(gòu)造不整合,同一地層前后遭受多期持續(xù)時間、構(gòu)造強(qiáng)度等存在差異的巖溶溶蝕。這類巖溶往往暴露時間長、側(cè)向展布范圍廣、縱向影響范圍深,形成不同尺度孔、縫、洞等復(fù)雜介質(zhì)的巖溶型儲層。前人對巖溶風(fēng)化殼儲層的描述均側(cè)重于一次構(gòu)造不整合對有效儲層控制、有效儲層發(fā)育規(guī)律、儲層預(yù)測的研究[3-4,7-9]。安岳氣田震旦系氣藏巖溶儲層為受構(gòu)造不整合控制,地層經(jīng)歷多期次表生巖溶,該現(xiàn)象在整個巖溶型碳酸鹽巖儲層發(fā)育過程中具有特殊性。本文著重強(qiáng)調(diào)疊合巖溶儲層發(fā)育特征、發(fā)育模式和主控因素,明確疊合巖溶對氣井產(chǎn)能的控制作用,從而有效指導(dǎo)氣藏開發(fā)評價、開發(fā)建產(chǎn)區(qū)選擇和井位部署。
圖3 四川盆地?zé)舳巍獰羲亩?、麥地坪組與筇竹寺組接觸關(guān)系
a.燈二段與燈三段假整合接觸(峨邊先鋒剖面)b.燈影組與麥地坪組假整合接觸(黔中麻江基東剖面);c.麥地坪組與筇竹寺組假整合接觸(黔中麻江基東剖面)
安岳氣田燈四段儲層以桐灣運(yùn)動Ⅱ幕和Ⅲ幕兩期風(fēng)化殼巖溶作用形成的溶孔、溶洞和溶縫廣泛發(fā)育為特征。野外露頭、巖心、薄片、鉆井等資料分析表明,燈四段風(fēng)化巖溶特征明顯[46-49]。
2.2.1露頭證據(jù)
區(qū)域地層接觸關(guān)系分析表明,桐灣運(yùn)動Ⅱ幕、Ⅲ幕造成燈四段保留不全,燈影組與上覆下寒武統(tǒng)呈假整合接觸關(guān)系(圖3)。
2.2.2巖心證據(jù)
取心井巖心觀察發(fā)現(xiàn),距震旦系頂部約100 m內(nèi)燈四段發(fā)育大量的溶洞、溶溝及巖溶角礫(圖4a—c),可以作為風(fēng)化殼巖溶的有力證據(jù)。其中2 ~ 10 cm溶洞常見,溶洞多被白云石、瀝青或石英充填、半充填,高角度縫多發(fā)育在致密白云巖段,常被泥質(zhì)云巖、泥巖充填。
2.2.3薄片證據(jù)
大量的巖心、薄片照片觀察可以見到溶蝕殘余物質(zhì),特別是非選擇性溶蝕縫、洞中可見大量滲流粉砂等溶蝕充填物(圖4d)。
2.2.4鉆井證據(jù)
在鉆井過程中井漏與放空是鉆遇大型裂縫和溶洞的反應(yīng),同時也是風(fēng)化殼型儲層的最直觀響應(yīng)。安岳氣田震旦系氣藏在鉆井過程中頻繁出現(xiàn)井漏和放空,例如高石6井鉆井液漏失量達(dá)到1 081 m3,高石2井放空可達(dá)6 m。
2.2.5井對比證據(jù)
通過完鉆井錄井、測井資料對比研究發(fā)現(xiàn),研究區(qū)震旦系頂部不均一殘留一套灰?guī)r地層,結(jié)合全盆地研究成果,認(rèn)為該層應(yīng)為麥地坪組。整體上來說,桐灣運(yùn)動Ⅱ幕發(fā)生在燈影組沉積期末,表現(xiàn)為燈影組與下寒武統(tǒng)麥地坪組假整合接觸,桐灣運(yùn)動Ⅲ幕發(fā)生在早寒武世麥地坪組沉積末期,表現(xiàn)為下寒武統(tǒng)麥地坪組與筇竹寺組假整合接觸,麥地坪組在研究區(qū)局部殘存,整個燈四段表現(xiàn)為桐灣運(yùn)動Ⅱ幕和Ⅲ幕兩期風(fēng)化殼的疊合(圖5),燈四段表現(xiàn)為疊合巖溶的特征。受疊合巖溶發(fā)育程度影響,不同區(qū)域溶蝕強(qiáng)度存在較大差異。
圖4 安岳氣田燈四段巖溶風(fēng)化殼儲層巖心典型特征
a.MX108井,藻疊層白云巖,扁圓狀溶縫,埋深5 296.57 ~ 5 296.77 m;b.MX21井,藻砂屑白云巖,溶溝發(fā)育,埋深5 054.10 ~ 5 054.22 m;c.MX105井,藻凝塊白云巖,裂縫溝通孔洞,埋深5 325.68 ~ 5 325.98 m;d.MX108井,粉細(xì)晶砂屑云巖,溶孔溶洞發(fā)育,埋深5 296.45 ~ 5 296.63 m
圖5 安岳氣田燈四段剖面對比
2.3.1儲層發(fā)育類型
碳酸鹽巖巖溶風(fēng)化殼型儲層由于受多種因素控制,儲層表現(xiàn)為巖性類型多、孔縫洞多尺度、物性差異大、滲流能力高度復(fù)雜等特征。為了深入分析疊合巖溶對有效儲層發(fā)育的影響,同時為了精細(xì)刻畫有效儲層內(nèi)部的強(qiáng)非均質(zhì)性,利用巖心、成像資料,綜合考慮儲集空間類型、大小與縫洞搭配關(guān)系,將燈四段巖溶儲層劃分為縫洞型、孔洞型和孔隙型3種類型(表1)。成像測井顯示縫洞型儲層溶蝕孔洞與裂縫搭配好,依據(jù)縫-洞搭配關(guān)系及其形態(tài),可將其進(jìn)一步分為順裂縫狀、裂縫-層狀以及裂縫-蜂窩狀;孔洞型儲層成像測井顯示溶蝕孔洞發(fā)育,裂縫欠發(fā)育,喉道以縮頸喉道為主,又進(jìn)一步可以劃分為蜂窩狀溶孔型和層狀溶孔型;孔隙型儲層成像測井顯示縫洞欠發(fā)育,喉道以片狀喉道為主,根據(jù)孔隙發(fā)育成因,可分為晶間孔型和孤立溶孔型。對物性研究發(fā)現(xiàn),縫洞型和孔洞型儲層孔隙度多大于3 %,滲透率多大于0.1×10-3μm2,是相對優(yōu)質(zhì)儲層,孔隙型儲層孔隙度小于3 %,滲透率度小于0.01×10-3μm2。從成因上講,縫洞型儲層是巖溶垂直滲流帶垂直縫、水平潛流帶水平溶蝕擴(kuò)大縫、巖溶體形態(tài)、喜馬拉雅期高角度構(gòu)造縫等多種因素的疊加;孔洞型儲層主要是基于高能丘灘體基礎(chǔ)上所進(jìn)行的淡水林濾溶蝕;而孔隙型儲層主要是原生或次生溶蝕的晶間孔(圖6)。
表1 安岳氣田燈四段儲層類型識別模板
圖6 安岳氣田典型井儲層類型發(fā)育特征柱狀圖
2.3.2儲層分布特征
受原始沉積及后期古地貌綜合影響,疊合巖溶發(fā)育呈現(xiàn)出“差異溶蝕”特征,因此,在對儲層發(fā)育特征表征的時候綜合沉積和古地貌兩因素進(jìn)行綜合命名,采用“沉積類型-古地貌類型”的方法。沉積類型主要依據(jù)能量高低分為臺緣和臺內(nèi);古地貌類型主要劃分為巖溶高地、巖溶斜坡和巖溶低地,同時依據(jù)所處斜坡位置和巖溶期地面徑流是否為開放水體又將斜坡細(xì)分為上斜坡和下斜坡,上斜坡坡度陡、高差大、地面徑流以封閉水體為主,下斜坡坡度緩、高差小、地面徑流以開放水體為主。
安岳氣田震旦系疊合巖溶縱向展現(xiàn)出以下特征(圖7—圖9):①疊合巖溶發(fā)育區(qū)縫洞型儲層和孔洞型儲層厚度厚、物性好,完鉆氣井測試產(chǎn)量高,是氣藏優(yōu)先開發(fā)的主體,受差異溶蝕作用影響,風(fēng)化殼溶蝕深度在平面上表現(xiàn)出較大差異。平面上,風(fēng)化巖溶發(fā)育深度介于100 ~ 200 m,臺緣帶下斜坡溶蝕厚度最厚,達(dá)185 m;臺緣帶上斜坡次之,達(dá)125 m;臺內(nèi)上斜坡最薄,僅109 m。②受原始沉積環(huán)境、沉積體物性及后期微地貌特征差異影響,完鉆井縱向產(chǎn)層分布位置平面上存在差異。整體上來說,臺緣帶產(chǎn)層頂部距離風(fēng)化殼近,臺內(nèi)厚,臺內(nèi)產(chǎn)層頂部相對于臺緣帶整體向下偏移10 m以上;另一方面,受風(fēng)化剝蝕期差異溶蝕特征影響,臺緣帶上斜坡產(chǎn)層底部距離風(fēng)化殼近,臺緣下斜坡和臺內(nèi)上斜坡產(chǎn)層底部距離風(fēng)化殼遠(yuǎn),差異不明顯。③受原始沉積體特征及后期差異溶蝕影響,儲層非均質(zhì)性較強(qiáng),有效儲層發(fā)育存在較大的差異??p洞型儲層臺緣帶上斜坡最發(fā)育,臺內(nèi)上斜坡最不發(fā)育;孔洞型儲層臺緣帶下斜坡和臺內(nèi)上斜坡均較發(fā)育,差異不明顯。整體上,臺緣帶上斜坡地層剝蝕嚴(yán)重(圖7,W14井、W12井),有效儲層厚度?。慌_緣下斜坡溶蝕厚度厚,有效儲層厚、物性好;臺內(nèi)上斜坡溶蝕厚度薄,有效儲層相對較薄,物性較差。
圖7 安岳氣田磨溪區(qū)塊臺緣帶南北向有效儲層剖面
圖8 安岳氣田磨溪區(qū)塊臺緣-臺內(nèi)方向有效儲層剖面
圖9 安岳氣田燈四段疊合巖溶發(fā)育特征對比柱狀圖
依據(jù)沉積、構(gòu)造、成巖、巖溶微地貌等特征分析,建立了安岳氣田震旦系氣藏“疊合巖溶”儲層發(fā)育模式,通過井震結(jié)合預(yù)測上覆麥地坪組厚度可以間接刻畫兩期風(fēng)化殼的疊合區(qū)分布范圍,“疊合巖溶”差異溶蝕作用表現(xiàn)在4個方面。
2.4.1風(fēng)化溶蝕程度的不同導(dǎo)致疊合巖溶儲層品質(zhì)存在差異
兩期巖溶的疊合程度影響風(fēng)化溶蝕程度,進(jìn)而影響疊合巖溶儲層品質(zhì)(圖10)。兩期風(fēng)化殼疊合區(qū)巖溶儲層發(fā)育厚度厚、物性好,完鉆井測試無阻流量達(dá)70×104m3/d,兩期風(fēng)化殼非疊合區(qū)巖溶儲層發(fā)育厚度較薄、物性相對較差,完鉆井測試無阻流量為52×104m3/d。例如,W1井處于兩期風(fēng)化殼疊合區(qū),該井鉆遇優(yōu)質(zhì)儲層70 m,測試無阻流量達(dá)218×104m3/d;W26井處于兩期風(fēng)化殼非疊合區(qū),優(yōu)質(zhì)儲層發(fā)育厚度薄、物性差,測試無阻流量僅有10×104m3/d。
圖10 安岳氣田疊合巖溶發(fā)育模式
2.4.2巖溶古地貌特征的不同導(dǎo)致疊合巖溶殘留地層厚度存在差異
磨溪區(qū)塊臺地邊緣大部分地區(qū)處于巖溶斜坡下斜坡,但臺地邊緣北區(qū)處于巖溶斜坡上斜坡,沉積和巖溶均處于有利部位,風(fēng)化溶蝕作用強(qiáng)烈,地層剝蝕嚴(yán)重,殘留地層厚度較?。▓D10,W7井),優(yōu)質(zhì)儲層發(fā)育厚度小,測試無阻流量低,平均僅41×104m3/d。
2.4.3沉積古地貌高低不同導(dǎo)致疊合巖溶溶蝕效果存在差異
臺地邊緣高部位厚層丘灘體原始沉積體物性好,巖溶期淡水淋濾泄流通暢,優(yōu)質(zhì)儲層發(fā)育,有效儲層厚度厚,完鉆井測試產(chǎn)量高(平均無阻流量107×104m3/d);低部位原始沉積體物性差,兩期巖溶對儲層的改造均弱,有效儲層品質(zhì)差,完鉆井測試產(chǎn)量低(平均無阻流量17×104m3/d)。
2.4.4沉積環(huán)境的不同導(dǎo)致疊合巖溶儲層發(fā)育特征存在差異
臺地邊緣沉積體呈厚層塊狀,巖溶期溶蝕效果好,完鉆井測試產(chǎn)量高(平均無阻流量74×104m3/d),臺地內(nèi)部原始沉積體物性差,同時地層頂部發(fā)育硅質(zhì)云巖,造成巖溶期地層剝蝕程度低,巖溶對物性的改善效果不明顯,造成有效儲層呈薄層多期分布,完鉆井測試產(chǎn)量低(平均無阻流量8×104m3/d)。
3.1.1丘灘體沉積特征是巖溶儲層發(fā)育的物質(zhì)基礎(chǔ)
安岳氣田震旦系氣藏為受沉積+巖溶綜合控制的風(fēng)化殼型碳酸鹽巖氣藏,優(yōu)質(zhì)丘灘體為巖溶水的淋濾提供了良好的通道,更易形成規(guī)模優(yōu)質(zhì)儲層。丘灘體沉積特征受沉積環(huán)境和沉積古地貌兩方面因素控制。臺緣帶丘灘體呈厚層塊狀,沉積體原始物性好,臺內(nèi)帶丘灘體呈多期薄層型,沉積體原始物性較差,同時沉積古地貌高部位更易形成優(yōu)質(zhì)規(guī)模丘灘體,而低部位丘灘體品質(zhì)變差,不利于巖溶作用的發(fā)育。W1井和W3井原始沉積位置古地貌位置高,丘灘體呈厚層塊狀、物性好,疊合巖溶作用強(qiáng),儲層品質(zhì)好,兩者之間的W26井為沉積古地貌低部位,丘灘體物性變差,疊合巖溶作用弱,儲層品質(zhì)差。
3.1.2兩期風(fēng)化殼疊合程度是控制巖溶儲層品質(zhì)好壞的關(guān)鍵因素
兩期風(fēng)化殼疊合程度受兩期風(fēng)化殼界面是否重合、重合后風(fēng)化剝蝕持續(xù)時間及兩期巖溶期地層所處巖溶古地貌特征等多種因素控制。對于存在兩期風(fēng)化殼界面區(qū)域,巖溶儲層品質(zhì)與麥地坪組厚度呈反比,麥地坪組越厚,兩期巖溶疊合程度越差,儲層品質(zhì)越壞;對于兩期風(fēng)化殼重合區(qū)域,重合后持續(xù)時間越長,溶蝕效果越好,儲層品質(zhì)越好;同時兩期巖溶期巖溶微地貌配置關(guān)系也影響最終巖溶儲層品質(zhì)好壞,若兩期均處于有利巖溶微地貌單元,則巖溶儲層發(fā)育,儲層品質(zhì)好,反之則差。
3.1.3巖溶期斷裂系統(tǒng)的發(fā)育規(guī)模是促使疊合巖溶發(fā)育的有利因素
桐灣運(yùn)動導(dǎo)致安岳氣田燈四段儲層發(fā)育不同級別斷層和裂縫,高能丘灘體和斷裂系統(tǒng)為淡水淋濾提供了通道,風(fēng)化殼頂部主要發(fā)育垂直縫,地表淡水以垂直滲流為主,中、下部主要發(fā)育水平溶蝕縫,地表淡水以水平潛流為主。不同級別及規(guī)模的斷裂系統(tǒng)擴(kuò)大了地層基質(zhì)與地表淡水的接觸范圍,增強(qiáng)了溶蝕效果,促使巖溶儲層規(guī)模發(fā)育。例如磨溪區(qū)塊北部開發(fā)建產(chǎn)區(qū)中間有一近東西向展布的巖溶期斷裂,受該斷裂影響,順裂縫巖溶和順層巖溶發(fā)育,巖溶儲層發(fā)育物性好、規(guī)模大,完鉆開發(fā)井平均無阻流量102×104m3/d,平均動態(tài)儲量42.6×108m3,是同區(qū)塊其他井區(qū)的7.5 倍。
3.1.4沉積期—巖溶期的構(gòu)造翻轉(zhuǎn)地質(zhì)過程加劇了巖溶儲層發(fā)育的非均質(zhì)性
安岳地區(qū)為開闊臺地丘灘相沉積,在沉積期受海平面頻繁升降及丘灘體多期發(fā)育綜合影響,臺緣帶沉積古地貌高,臺內(nèi)沉積古地貌低,經(jīng)沉積古地貌恢復(fù)研究發(fā)現(xiàn),安岳氣田震旦系氣藏巖溶期臺地內(nèi)部古地貌位置高于臺地邊緣,因此沉積期到巖溶期臺緣和臺內(nèi)經(jīng)歷了一個輕微的構(gòu)造翻轉(zhuǎn)的地質(zhì)過程,構(gòu)造由巖溶期的東高西低轉(zhuǎn)變?yōu)楝F(xiàn)今的西高東低,構(gòu)造的不均一隆升和下降導(dǎo)致應(yīng)力釋放縫分布的高度非均質(zhì)性,導(dǎo)致沉積期高能沉積單元與巖溶期有利巖溶微地貌單元配置關(guān)系差,加劇了儲層發(fā)育的非均質(zhì)性。
圖11 安岳氣田震旦系氣藏上覆灰?guī)r厚度與氣井無阻流量關(guān)系
受其化學(xué)成分、物理特性等性質(zhì)影響,碳酸鹽巖儲層發(fā)育不同尺度孔、縫、洞等多重介質(zhì),儲層微觀和宏觀非均質(zhì)性均較強(qiáng),造成單井開發(fā)指標(biāo)差異較大[50-59]。經(jīng)研究發(fā)現(xiàn),安岳氣田震旦系疊合巖溶氣藏完鉆井測試無阻流量與上覆灰?guī)r段(麥地坪組)厚度呈現(xiàn)明顯的分區(qū)特征。
安岳氣田燈四段氣藏完鉆井上覆灰?guī)r厚度與測試無阻流量呈現(xiàn)出明顯的負(fù)相關(guān)性(圖11),震旦系上覆灰?guī)r厚度與完鉆氣井無阻流量關(guān)系呈現(xiàn)出明顯的四區(qū)特征,Ⅰ區(qū):麥地坪組厚度為0 m;Ⅱ區(qū):麥地坪組厚度介于0 ~ 5 m;Ⅲ區(qū):麥地坪組厚度介于5 ~ 20 m;Ⅳ區(qū):麥地坪組厚度大于20 m,除去第Ⅰ區(qū)外,灰?guī)r厚度與完鉆氣井無阻流量呈冪函數(shù)關(guān)系,相關(guān)系數(shù)分別為0.89,0.95和0.99,疊合巖溶發(fā)育程度對完鉆氣井測試無阻流量具有非常強(qiáng)的控制作用。震旦系頂部麥地坪組厚度依靠地震手段很難刻畫出來,目前依靠完鉆井資料結(jié)合地質(zhì)認(rèn)識確定灰?guī)r分布范圍,依據(jù)疊合巖溶對氣井產(chǎn)能的控制作用指導(dǎo)開發(fā)建產(chǎn)區(qū)篩選和井位部署。
1)安岳氣田震旦系氣藏含氣面積廣、探明儲量大、完鉆氣井測試無阻流量差異大,是一個受沉積和巖溶綜合控制的古老微生物巖溶風(fēng)化殼型碳酸鹽巖氣藏。基于巖溶儲層發(fā)育特征及成因機(jī)制分析提出疊合巖溶概念。
2)安岳氣田震旦系氣藏發(fā)育縫洞型、孔洞型和孔隙型3種類型儲層,縫洞型和孔洞型儲層是優(yōu)質(zhì)儲層。受原始沉積體巖性、物性及巖溶微地貌影響,巖溶溶蝕深度、有效儲層縱向發(fā)育位置、側(cè)向展布規(guī)模及地層殘留程度等方面存在著極大的差異,建立了安岳氣田震旦系氣藏疊合巖溶發(fā)育模式。
3)明確了疊合巖溶發(fā)育的主控因素包括以下4個方面:①丘灘體沉積特征是巖溶儲層發(fā)育的物質(zhì)基礎(chǔ);②兩期風(fēng)化殼疊合程度是控制巖溶儲層品質(zhì)好壞的關(guān)鍵因素;③巖溶期斷裂系統(tǒng)的發(fā)育規(guī)模是促使疊合巖溶發(fā)育的有利因素;④沉積期到巖溶期的構(gòu)造翻轉(zhuǎn)加劇了巖溶儲層發(fā)育的非均質(zhì)性。疊合巖溶差異溶蝕的儲層發(fā)育特征導(dǎo)致完鉆氣井在平面上具有明顯的分區(qū)特征,可以有效指導(dǎo)開發(fā)建產(chǎn)區(qū)篩選和井位部署。
[1] 馬新華,楊雨,文龍,等.四川盆地海相碳酸鹽巖大中型氣田分布規(guī)律及勘探方向[J].石油勘探與開發(fā),2019,46(1):1-13.
Ma Xinhua,Yang Yu,Wen Long,et al.Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2019,46(1):1-13.
[2] 趙文智,沈安江,胡素云,等.中國碳酸鹽巖儲集層大型化發(fā)育的地質(zhì)條件與分布特征[J].石油勘探與開發(fā),2012,39(1):1-12.
Zhao Wenzhi,Shen Anjiang,Hu Suyun,et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J].Petroleum Exploration and Development,2012,39(1):1-12..
[3] 張寶民,劉靜江.中國巖溶儲集層分類與特征及相關(guān)的理論問題[J]. 石油勘探與開發(fā),2009,36(1):12-29.
Zhang Baomin,Liu Jingjiang. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development,2009,36(1):12-29.
[4] 何治亮,馬永生,朱東亞,等.深層-超深層碳酸鹽巖儲層理論技術(shù)進(jìn)展與攻關(guān)方向[J].石油與天然氣地質(zhì),2021,42(3):533-546.
He Zhiliang,Ma Yongsheng,Zhu Dongya,et al.Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,2021,42(3):533-546.
[5] 張慶玉,梁彬,淡永,等. 塔中北斜坡奧陶系鷹山組巖溶儲層特征及古巖溶發(fā)育模式[J]. 中國巖溶,2016,35(2):106-113.
Zhang Qingyu,Liang Bin,Dan Yong,et al.Research of karst reservoirs characteristics and paleokarst development pattern of the Ordovician Yingshan formation north-slope of Tazhong,Tarim basin area[J]. Carsologica Sinica,2016,35(2):106-113.
[6] 夏日元,唐健生.黃驊坳陷奧陶系古巖溶發(fā)育演化模式[J].石油勘探與開發(fā),2004,31(1):51-53.
Xia Riyuan,Tang Jiansheng. The development and evaluated patterns of Ordovician palaeo-karst in the Huanghua depression[J]. Petroleum Exploration and Development,2004,31(1):51-53.
[7] Xiao Di,Tan Xiucheng,Xi Aihua,et al.An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation,southern Sichuan Basin,SW China[J]. Marine and Petroleum Geology,2016,72:218-233.
[8] 宋金民,劉樹根,李智武,等.四川盆地上震旦統(tǒng)燈影組微生物碳酸鹽巖儲層特征與主控因素[J].石油與天然氣地質(zhì),2017,38(4):741-752.
Song Jinmin,Liu Shugen,Li Zhiwu,et al.Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin,China[J]. Oil & Gas Geology,2017,38(4):741-752.
[9] 沈安江,趙文智,胡安平,等.海相碳酸鹽巖儲集層發(fā)育主控因素[J].石油勘探與開發(fā),2015,42(5):545-554.
Shen Anjiang,Zhao Wenzhi,Hu Anping,et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development,2015,42(5):545-554.
[10]沈安江,陳婭娜,張建勇,等.中國古老小克拉通臺內(nèi)裂陷特征及石油地質(zhì)意義[J].石油與天然氣地質(zhì),2020,41(1):15-25.
Shen Anjiang,Chen Yana,Zhang Jianyong,et al.Characteristics of intra-platform rift in ancient small-scale craton platform of China and its implications for hydrocarbon exploration[J]. Oil & Gas Geology,2020,41(1):15-25.
[11]漆立新,云露.塔河油田奧陶系碳酸鹽巖巖溶發(fā)育特征與主控因素[J].石油與天然氣地質(zhì),2010,31(1):1-12.
Qi Lixin,Yun Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe oilfield[J]. Oil & Gas Geology,2010,31(1):1-12.
[12] Xiao Di,Tan Xiucheng,Zhang Daofeng,et al.Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin (central China) and their heterogeneous impact on reservoir quality[J]. Marine and Petroleum Geology,2019,99:190-207.
[13]譚秀成,聶勇,劉宏,等.陸表海碳酸鹽巖臺地沉積期微地貌恢復(fù)方法研究—以四川盆地磨溪氣田嘉二2亞段A層為例[J].沉積學(xué)報,2011,39(3):486-494.
Tan Xiucheng,Nie Yong,Liu Hong,et al.Research on the method of recoverying microtopography of Epeiric Carbonate platform in depositional stage: a case study from the layer A of Jia 22Member in Moxi gas field,Sichuan Basin[J]. Acta Sedimentologica Sinica,2011,29(3):486-494.
[14] Xiao Di,Zhang Benjian,Tan Xiucheng,et al.Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation northwestern Sichuan Basin,Southwest China[J]. Energy Exploration & Exploitation,2018,36(4):686-704.
[15]肖波,白曉亮,呂海濤.塔中隆起鷹山組巖溶儲層特征及主控因素[J].西南石油大學(xué)學(xué)報(自然科學(xué)版),2018,40(5):59-70.
Xiao Bo,Bai Xiaoliang,Lv Haitao. Karst reservoir characteristics and main controlling factors of the Yingshan Formation in the Tarim basin central uplift[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2018,40 (5):59-70.
[16] Zhong Yuan,Tan XiuCheng,Zhao Limin,et al.Identification of facies-controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity[J]. Geological Journal,2019,54(1):450-465.
[17] Paola Ronchi,Andrea Ortenzi,Ornella Borromeo,et al.Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin,Kazakhstan)[J]. AAPG Bulletin,2010,94(9):1313-1348.
[18] Wang Baoqing,Ihsan S.Al-Aasm. Karst-controlled diagenesis and reservoir development: Example from the Ordovician main reservoir carbonate rocks on the eastern margin of the Ordos basin,China[J]. AAPG Bulletin,2002,86(9):1639-1658.
[19]呂修祥,陳佩佩,陳坤,等.深層碳酸鹽巖差異成巖作用對油氣分層聚集的影響——以塔里木盆地塔中隆起北斜坡鷹山組為例[J].石油與天然氣地質(zhì),2019,40(5):957-971.
Lyu Xiuxiang,Chen Peipei,Chen Kun,et al.Effects of differential diagenesis of deep carbonate rocks on hydrocarbon zonation and accumulation:A case study of Yingshan Formation on northern slope of Tazhong uplift,Tarim Basin[J].Oil & Gas Geology,2019,40(5):957-971.
[20]袁曉飛. 斷裂向下輸導(dǎo)油氣成藏分布的主控因素[J].大慶石油地質(zhì)與開發(fā),2020,39(2):36-41.
Yuan Xiaofei. Main controlling factors of the oil-gas accumulation distribution by the downward transportation of the faults[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):36-41.
[21]張亞金,張湘娟,張振偉,等. 古城地區(qū)奧陶系鷹山組白云巖儲層特征及其控制因素[J].大慶石油地質(zhì)與開發(fā),2020,39(4):1-8.
Zhang Yajin,Zhang Xiangjuan,Zhang Zhenwei,et al.Characte?ristics and their controlling factors of Ordovician dolomite reservoir in Yingshan Formation in Gucheng area[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):1-8.
[22]賈俊. 敘利亞Tishirine油田復(fù)雜碳酸鹽巖儲層有效性綜合評價[J].油氣藏評價與開發(fā),2020,10(2): 30-36.
Jia Jun. Comprehensive evaluation for effectiveness of complex carbonate reservoir: A case from Tishirine Oilfield in Syria[J]. Reservoir Evaluation and Development,2020,10
[23]張春林,姚涇利,李程善,等.鄂爾多斯盆地深層寒武系碳酸鹽巖儲層特征與主控因素[J].石油與天然氣地質(zhì),2021,42(3):604-614.
Zhang Chunlin,Yao Jingli,Li Chengshan,et al.Characteristics of deep Cambrian carbonate reservoirs in the Ordos Basin and main control factors[J].Oil & Gas Geology,2021,42(3):604-614.
[24]赫俊民,王小垚,孫建芳等.塔里木盆地塔河地區(qū)中-下奧陶統(tǒng)碳酸鹽巖儲層天然裂縫發(fā)育特征及主控因素[J].石油與天然氣地質(zhì),2019,40(5):1022-1030.
Hao Junmin,Wang Xiaoyao,Sun Jianfang,et al.Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area,Northern Tarim Basin[J].Oil & Gas Geology,2019,40(5):1022-1030.
[25]李成剛,李英強(qiáng). 碳酸鹽巖斷溶體油藏模型識別圖版及其應(yīng)用[J].大慶石油地質(zhì)與開發(fā),2020,39(4):87-93.
Li Chenggang,Li Yingqiang. Identifying chart boards and their applications of the models for the fault-karst carbonate oil reservoir[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):87-93.
[26]王向榮,李潮流,鄧?yán)^新,等. 塔里木盆地鷹山組致密碳酸鹽巖地震巖石物理特征[J].大慶石油地質(zhì)與開發(fā),2020,39(5):117-126.
Wang Xiangrong,Li Chaoliu,Deng Jixin,et al.Seismic petrophysical properties of Yingshan-Formation tight carbonate rock in Tarim Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):117-126.
[27]蔡珺君,占天慧,鄧莊,等. “動態(tài)法”產(chǎn)能方程在高壓氣藏開發(fā)中的應(yīng)用:以四川盆地安岳氣田為例[J].大慶石油地質(zhì)與開發(fā),2020,39(5):72-79.
Cai Junjun,Zhan Tianhui,Deng Zhuang,et al.Application of the productivity equation dynamic method based on in high-pressure gas reservoir development: Taking Anyue Gas Field in Sichuan Basin as an example[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):72-79.
[28]李小波,劉學(xué)利,楊敏,等.縫洞型油藏不同巖溶背景注采關(guān)系優(yōu)化研究[J]. 油氣藏評價與開發(fā),2020,10(2): 37-42.
Li Xiaobo,Liu Xueli,Yang Ming,et al.Study on relationship optimization of injection and production in fractured-vuggy reservoirs with different karst background[J]. Reservoir Evaluation and Development,2020,10(2): 37-42.(2): 30-36.
[29]林煜,李相文,陳康,等.深層海相碳酸鹽巖儲層地震預(yù)測關(guān)鍵技術(shù)與效果——以四川盆地震旦系-寒武系與塔里木盆地奧陶系油氣藏為例[J].石油與天然氣地質(zhì),2021,42(3):717-727.
Lin Yu,Li Xiangwen,Chen Kang,et al.Key seismic techniques for predicting deep marine carbonate reservoirs and the effect analysis:A case study on the Sinian-Cambrian reservoirs in the Sichuan Basin and the Ordovician reservoirs in the Tarim Basin[J].Oil & Gas Geology,2021,42(3):717-727.
[30]康志江,李陽,計秉玉,等.碳酸鹽巖縫洞型油藏提高采收率關(guān)鍵技術(shù)[J].石油與天然氣地質(zhì),2020,41(2):434-441.
Kang Zhijiang,Li Yang,Ji Bingyu,et al.Key technologies for EOR in fractured-vuggy carbonate reservoirs[J].Oil & Gas Geo?logy,2020,41(2):434-441.
[31]馬新華,胡勇,王富平.四川盆地天然氣產(chǎn)業(yè)一體化發(fā)展創(chuàng)新與成效[J].天然氣工業(yè),2019,39(7):1-8.
Ma Xinhua,Hu Yong,Wang Fuping. An integrated production-supply-storage-marketing system for natural gas development in the Sichuan Basin: Innovation and achievements[J]. Natural Gas Industry,2019,39(7):1-8.
[32]魏國齊,楊威,張健,等.四川盆地中部前震旦系裂谷及對上覆地層成藏的控制[J]. 石油勘探與開發(fā),2018,45(2):179-189.
Wei Guoqi,Yang Wei,Zhang Jian,et al.The pre-Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata[J]. Petroleum Exploration and Development,2018,45(2):179-189.
[33]杜金虎,鄒才能,徐春春,等.川中古隆起龍王廟組特大型氣田戰(zhàn)略發(fā)現(xiàn)與理論技術(shù)創(chuàng)新[J]. 石油勘探與開發(fā),2014,41(3):268-277.
Du Jinhu,Zou Caineng,Xu Chunchun,et al.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao formation of central Sichuan paleo-uplift,Sichuan basin[J].Petroleum Exploration and Development,2014,41(3):268-277.
[34]魏國齊,杜金虎,徐春春,等.四川盆地高石梯-磨溪地區(qū)震旦系-寒武系大型氣藏特征與聚集模式[J].石油學(xué)報,2015,36(1):1-12.
Wei Guoqi,Du Jinhu,Xu Chunchun,et al.Characteristics and accumulation modes of large gas reservoir in Sinian-Cambrian of Gaoshiti-Moxi region,Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(1):1-12.
[35]魏國齊,楊威,杜金虎,等. 四川盆地高石梯-磨溪古隆起構(gòu)造特征及對特大型氣田形成的控制作用[J].石油勘探與開發(fā),2015,42(3):257-265.
Wei Guoqi,Yang Wei,Du Jinhu,et al.Tectonic features of Gaoshiti-moxi paleo-uplift and its controls on the formation of a giant gas field,Sichuan basin,SW China[J]. Petroleum Exploration and Development,2015,42(3):257-265.
[36]徐哲航,蘭才俊,楊偉強(qiáng),等.四川盆地震旦系燈影組微生物丘沉積演化特征[J].大慶石油地質(zhì)與開發(fā),2018,37(2):15-25.
Xu Zhehang,Lan Caijun,Yang Weiqiang,et al.Sedimentary and evolutionary characteristics of Sinian Dengying formation microbial mound in Sichuan Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2018,37(2):15-25.
[37]宋金民,羅平,劉樹根,等.四川盆地西部震旦系燈影組沉積儲層特征[J].成都理工大學(xué)學(xué)報(自然科學(xué)版),2018,45(1):27-44.
Song Jinmin,Luo Ping,Liu Shugen,et al.The deposition and reservoir characteristics of Dengying Formation in western Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(1):27-44.
[38]陳婭娜,沈安江,潘立銀,等.微生物白云巖儲集層特征、成因和分布—以四川盆地震旦系燈影組四段為例[J].石油勘探與開發(fā),2017,44(5):704-715.
Chen Yana,Shen Anjiang,Pan Liyin,et al.Features,origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2017,44(5):704-715.
[39]翟秀芬,汪澤成,羅平,等.四川盆地高石梯東部地區(qū)震旦系燈影組微生物白云巖儲層特征及成因[J].天然氣地球科學(xué),2017,28(8):1199-1210.
Zhai Xiufen,Wang Zecheng,Luo Ping,et al.Characteristics and origin of microbial dolomite reservoirs in Upper Sinian Dengying Formation,eastern Gaoshiti area,Sichuan Basin,SW China[J]. Natural Gas Geoscience,2017,28(8):1199-1210.
[40]強(qiáng)深濤,沈平,張健,等.四川盆地川中地區(qū)震旦系燈影組碳酸鹽沉積物成巖作用與孔隙流體演化[J].沉積學(xué)報,2017,35(4):797-811.
Qiang Shentao,Shen Ping,Zhang Jian,et al.The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation,central Sichuan Basin[J]. Acta Sedimentologica Sinica,2017,35(4):797-811.
[41]馮明友,強(qiáng)子同,沈平,等.四川盆地高石梯-磨溪地區(qū)震旦系燈影組熱液白云巖證據(jù)[J]. 石油學(xué)報,2016,37(5):587-598.
Feng Mingyou,Qiang Zitong,Shen Ping,et al.Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin[J]. Acta Petrolei Sinica,2016,37(5):587-598.
[42]單秀琴,張靜,張寶民,等.四川盆地震旦系燈影組白云巖巖溶儲層特征及溶蝕作用證據(jù)[J].石油學(xué)報,2016,37(1):17-29.
Shan Xiuqin,Zhang jin,Zhang Baomin,et al.Dolomite karst reservoir characteristics and distribution evidences of Sinian Dengying Formation,Sichuan Basin[J]. Acta Petrolei Sinica,2016,37(1):17-29.
[43]金民東,譚秀成,童明勝,等.四川盆地高石梯-磨溪地區(qū)等四段巖溶古地貌恢復(fù)及地質(zhì)意義[J].石油勘探與開發(fā),2017,44(1):58-68.
Jin Mindong,Tan Xiucheng,Tong Mingsheng,et al.Karst paleogeomorphology of the fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin,SW China: Restoration and geological significance[J]. Petroleum Exploration and Development,2017,44(1):58-68.
[44]劉宏,羅思聰,譚秀成,等.四川盆地震旦系燈影組古巖溶地貌恢復(fù)及意義[J].石油勘探與開發(fā),2015,42(3):283-293.
Liu Hong,Luo Sicong,Tan Xiucheng,et al.Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance,SW China[J]. Petroleum Exploration and Development,2015,42(3):283-293.
[45]李啟桂,李克勝,周卓鑄,等.四川盆地桐灣不整合面古地貌特征與巖溶分布預(yù)測[J].石油天然氣與地質(zhì),2013,34(4):516-521.
Li Qigui,Li Kesheng,Zhou Zhuozhu,et al.Palaeogeomorphology and karst distribution of Tongwan unconformity in Sichuan Basin[J]. Oil & Gas Geology,2013,34(4):516-521.
[46]汪澤成,姜華,王銅山,等.四川盆地桐灣期古地貌特征及成藏意義[J].石油勘探與開發(fā),2014,41(3):305-312.
Wang Zecheng,Jiang Hua,Wang Tongshan,et al.Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development,2014,41(3):305-312.
[47]楊雨,黃先平,張健,等.四川盆地寒武系沉積前震旦系頂界巖溶古地貌特征及其地質(zhì)意義[J].天然氣工業(yè),2014,34(3):38-43
Yang Yu,Huang Xianping,Zhang Jian,et al.Features and geological significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry,2014,34(3):38-43.
[48]閆海軍,彭先,夏欽禹,等.高石梯—磨溪地區(qū)燈影組四段巖溶古地貌分布特征及其對氣藏開發(fā)的指導(dǎo)意義[J].石油學(xué)報,2020,41(6):658-670+752.
Yan Haijun,Peng Xian,Xia Qinyu,et al.Distribution features of ancient karst landform in the fourth Member of the Dengying Formation in the Gaoshiti-Moxi region and its guiding significance for gas reservoir development[J]. Acta Petrolei Sinica,2020,41(6):658-670+752.
[49]朱東亞,張殿偉,李雙建,等.四川盆地下組合碳酸鹽巖多成因巖溶儲層發(fā)育特征及機(jī)制[J].海相油氣地質(zhì),2015,20(1):33-44.
Zhu Dongya,Zhang Dianwei,Li Shuangjian,et al.Development genesis and characteristics of karst reservoirs in Lower assemblage in Sichuan Basin[J]. Marine Origin Petroleum Geology,2015,20(1):33-44.
[50]李熙喆,郭振華,胡勇,等.中國超深層構(gòu)造型大氣田高效開發(fā)策略[J].石油勘探與開發(fā),2018,45(11):111-118.
Li Xizhe,Guo Zhenhua,Hu Yong,et al.Efficient development strategies for large ultra-deep structural gas fields in China[J]. Petroleum Exploration and Development,2018,45(11):111-118.
[51]賈愛林,閆海軍,郭建林,等.不同類型碳酸鹽巖氣藏開發(fā)特征[J].石油學(xué)報,2013,34(5):914-923.
Jia Ailin,Yan Haijun,Guo Jianlin,et al.Development characteristics for different types of carbonate gas reservoirs[J]. Acta Petrolei Sinica,2013,34(5):914-923.
[52]賈愛林,閆海軍. 不同類型典型碳酸鹽巖氣藏開發(fā)面臨問題與對策[J].石油學(xué)報,2014,35(3):519-527.
Jia Ailin,Yan Haijun. Problems and Countermeasures for various types of typical carbonate gas reservoirs development[J]. Acta Petrolei Sinica,2014,35(3):519-527.
[53]賈愛林,閆海軍,郭建林,等.全球不同類型大型氣藏的開發(fā)特征及經(jīng)驗[J].天然氣工業(yè),2014,34(10):33-46.
Jia Ailin,Yan Haijun,Guo Jianlin,et al.Characteristics and experiences of the development of various giant gas fields all over the world[J]. Natrual Gas Industry,2014,34(10):33-46.
[54]閆海軍,何東博,許文壯,等.古地貌恢復(fù)及對流體分布的控制作用—以鄂爾多斯盆地高橋區(qū)氣藏評價階段為例[J].石油學(xué)報,2016,37(12):1483-1494.
Yan Haijun,He Dongbo,Xu Wenzhuang,et al.Paleotopography restoration method and its controlling effect on fluid distribution: A case study of the gas reservoir evaluation stage in Gaoqiao,Ordos Basin[J]. Acta Petrolei Sinica,2016,37(12):1483-1494.
[55]方義生,徐樹寶,李士倫.烏連戈伊氣田開發(fā)實踐和經(jīng)驗[J].天然氣工業(yè),2005,25(6):90-93.
Fang Yisheng,Xu Shubao,Li Shilun. Development practice and experience of Urengoy gas field[J]. Natural Gas Industry,2005,25(6):90-93.
[56]閆海軍,賈愛林,冀光,等. 巖溶風(fēng)化殼型含水氣藏氣水分布特征及開發(fā)技術(shù)對策——鄂爾多斯盆地高橋區(qū)下古氣藏為例[J]. 天然氣地球科學(xué),2017,28(5):801-811.
Yan Haijun,Jia Ailin,Ji Guang,et al.Gas-water distribution characteristic of the karst weathering crust type water-bearing gas reservoirs and its development countermeasures: case study of Lower Paleozoic gas reservoir in Gaoqiao,Ordos Basin[J]. Natural Gas Geoscience,2017,28(5):801-811.
[57]馬新華.創(chuàng)新助推磨溪區(qū)塊龍王廟組大型含硫氣藏高效開發(fā)[J].天然氣工業(yè),2016,36(2):1-8.
Ma Xinhua. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block,Sichuan Basin[J]. Natural Gas Industry,2016,36(2):1-8.
[58]閆海軍,鄧惠,萬玉金,等.四川盆地磨溪區(qū)塊燈影組四段強(qiáng)非均質(zhì)性碳酸鹽巖氣藏氣井產(chǎn)能分布特征及其對開發(fā)的指導(dǎo)意義[J].天然氣地球科學(xué),2020,31(8):1152-1160.
Yan Haijun,Deng Hui,Wan Yujin,et al.The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth Member of Dengying Formation in Moxi area,Sichuan Basin[J]. Natural Gas Geoscience,2020,31(8):1152-1160.
[59]馬新華.四川盆地天然氣發(fā)展進(jìn)入黃金時代[J].天然氣工業(yè),2017,37(2):1-10.
Ma Xinhua. A golden era for natural gas development in the Sichuan Basin[J]. Natural Gas Industry,2017,37(2):1-10.
Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation,Anyue gas field,Sichuan Basin
Ma Xinhua1,Yan Haijun1,Chen Jingyuan2,He Dongbo1,Xu Wei2
(1,,100083,;2,,610051,)
Comprehensive analyses of karst reservoir development characteristics and productivity testing of completed wells in the reservoirs of the Sinian Dengying Formation,Anyue gas field,Sichuan Basin,are combined with the development mechanisms for carbonate karst reservoirs to propose a concept and development model of superimposed karst and clarify their main controlling factors and effect on gas well performance. According to core,imaging data,reservoir space type,size and the configuration between fractures and cavities,the karst reservoirs are classified into three types: fracture-cavity type,pore-cavity type and pore type. High-quality reservoirs in the fourth member of the Dengying Formation in the field mostly belong to the first two types. Influenced by the differences in the initial lithology and physical properties of sedimentary strata and in paleogeomorphology characteristics during karst period,the karst reservoirs vary in terms of dissolution depth,vertical development locations and plane distribution range. A development model with differential dissolution for superimposed karst is thus proposed. It is also suggested that the sedimentary characteristics of microbial mounds and shoals,the overlapping two-stage weathering crust,the development scale of fault-fracture systems and the geological process of tectonic inversion control the development of superimposed karst reservoirs. Apart from that,superimposed karst development intensity also controls gas well performance. Based on these understandings,it is suggested a development priority on superimposed karst reservoirs in the basin. The study of development model and the controlling factors of these reservoirs is helpful in gas reservoir development evaluation,production area screening and well emplacement in the area.
development characteristic,development model,superimposed karst,carbonate gas reservoir,Dengying Formation,Sinian system,Anyue gas field,Sichuan Basin
TE122.2
A
0253-9985(2021)06-1281-14
10.11743/ogg20210604
2020-04-14;
2021-10-12。
馬新華(1962—),男,博士、教授級高級工程師,石油天然氣地質(zhì)綜合研究及油氣勘探開發(fā)管理。E?mail: xinhuam@petrochina.com.cn。
國家科技重大專項(2016ZX05015);中國石油集團(tuán)重大科技專項(2016E-0606,2021DJ1504)。
(編輯 張亞雄)