国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

火山活動(dòng)影響下的堿湖優(yōu)質(zhì)烴源巖成因及其對(duì)頁(yè)巖油氣勘探和開發(fā)的啟示

2021-12-16 06:28:26李長(zhǎng)志郭佩柯先啟馬妍
石油與天然氣地質(zhì) 2021年6期
關(guān)鍵詞:烴源湖泊火山

李長(zhǎng)志,郭佩,柯先啟,馬妍

火山活動(dòng)影響下的堿湖優(yōu)質(zhì)烴源巖成因及其對(duì)頁(yè)巖油氣勘探和開發(fā)的啟示

李長(zhǎng)志1,郭佩1,柯先啟2,馬妍3

(1.成都理工大學(xué) 油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059;2.中國(guó)石油 長(zhǎng)慶油田分公司 第五采油廠,陜西 榆林 718600;3.中國(guó)石油 長(zhǎng)慶油田分公司 第十一采油廠,甘肅 西峰 745000)

為明確火山活動(dòng)控制陸相含油氣盆地優(yōu)質(zhì)烴源巖發(fā)育的作用機(jī)制,對(duì)古今火山、堿湖以及優(yōu)質(zhì)烴源巖這三者的相互聯(lián)系進(jìn)行廣泛的文獻(xiàn)調(diào)研,認(rèn)為堿湖是聯(lián)系火山活動(dòng)與優(yōu)質(zhì)烴源巖發(fā)育的中間場(chǎng)所?;鹕交顒?dòng)噴發(fā)的CO2進(jìn)入熱液、地下水或河流中,加速硅酸鹽水解,產(chǎn)生大量HCO3-,輸入湖泊中導(dǎo)致水體pH值升高,形成堿湖。而堿湖中高pH值可以活化Mo、磷酸鹽和硅酸鹽等多種營(yíng)養(yǎng)元素和化合物,提高水體的初級(jí)生產(chǎn)力;同時(shí)也可以使硅質(zhì)在水體中的溶解度呈指數(shù)增大,這種溶解的硅質(zhì)在有機(jī)質(zhì)初始降解等pH值降低過程中易發(fā)生沉淀,形成硅質(zhì)保護(hù)層,避免有機(jī)質(zhì)的進(jìn)一步降解。由此提出火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖的成因鏈模式,該模式形成的頁(yè)巖油氣儲(chǔ)集層微晶白云石等礦物含量高,凝灰物質(zhì)易發(fā)生蒙脫石—沸石—鉀長(zhǎng)石—鈉長(zhǎng)石轉(zhuǎn)變,可以有效增加頁(yè)巖油氣儲(chǔ)集層的脆性和微孔隙。

初級(jí)生產(chǎn)力;硅化;優(yōu)質(zhì)烴源巖;火山活動(dòng);堿湖

火山活動(dòng)噴發(fā)的火山灰物質(zhì),降落到附近的湖泊或海洋表面能迅速發(fā)生水解,釋放大量營(yíng)養(yǎng)物質(zhì)和金屬元素,短時(shí)間內(nèi)可以引起水體中浮游藻類勃發(fā)[1-5],提高水體的初級(jí)生產(chǎn)力。沉積盆地優(yōu)質(zhì)烴源巖的發(fā)育,往往需要異常豐富的有機(jī)質(zhì)來源,因此火山-熱液活動(dòng)常被認(rèn)為是優(yōu)質(zhì)烴源巖發(fā)育的有利條件之一[6-7]。這種理論背景下,火山灰對(duì)應(yīng)的沉積層內(nèi)應(yīng)具有較高的有機(jī)質(zhì)含量。然而,絕大多數(shù)湖相沉積巖中純凝灰?guī)r層的有機(jī)質(zhì)含量并不豐富,如美國(guó)西部始新統(tǒng)綠河組云質(zhì)油頁(yè)巖有機(jī)質(zhì)非常豐富(高達(dá)20 %),但其中的凝灰?guī)r夾層幾乎不含有機(jī)質(zhì)[8]。沉積盆地中與火山巖同期的沉積地層也并非極富有機(jī)質(zhì)。這些都說明了火山-熱液活動(dòng)造成的同期短暫生物勃發(fā)并不是湖盆優(yōu)質(zhì)烴源巖發(fā)育的主要原因,上述模式忽略了火山活動(dòng)對(duì)伴生或相鄰湖泊性質(zhì)的改變。事實(shí)上,火山灰噴發(fā)具有事件性、間歇性,而沉積盆地優(yōu)質(zhì)烴源巖的形成是由季節(jié)性生物發(fā)育積累而成,需要長(zhǎng)期穩(wěn)定、利于生物勃發(fā)和有機(jī)質(zhì)保存的湖泊環(huán)境。研究火山-熱液活動(dòng)與優(yōu)質(zhì)烴源巖的聯(lián)系,應(yīng)重點(diǎn)關(guān)注火山活動(dòng)對(duì)湖盆性質(zhì)的長(zhǎng)期改變。

對(duì)現(xiàn)代火山巖區(qū)的文獻(xiàn)調(diào)研發(fā)現(xiàn),火山活躍區(qū)常伴生一類特殊的湖泊,其湖水呈堿性(pH>9),鹽度較高,是世界上初級(jí)生產(chǎn)力(含碳)最高的水生環(huán)境之一[9-13]。一般河流和湖泊的初級(jí)生產(chǎn)力平均值僅為0.6 g /m2·d,而堿湖的初級(jí)生產(chǎn)力卻可超過10 g /m2·d[14-15]。地質(zhì)歷史上,發(fā)育優(yōu)質(zhì)烴源巖的堿性湖盆亦往往與火山活動(dòng)密切相關(guān),如世界著名的美國(guó)綠河組(=4.1 %~19.0 %)[16]、南襄盆地泌陽(yáng)凹陷核桃園組(平均>1.82 %)[17]、準(zhǔn)噶爾盆地西北緣二疊系風(fēng)城組(平均>1.0 %)[18]等。為此本文提出堿湖可能是火山活動(dòng)與陸相優(yōu)質(zhì)烴源巖關(guān)聯(lián)的中間介質(zhì),火山活動(dòng)借助于形成堿湖造就了優(yōu)質(zhì)烴源巖的形成。

1 堿湖的界定及古老堿湖識(shí)別

自然界湖泊水體中主要有8種離子:Na+,K+,Mg2+,Ca2+,Cl-,SO42-,CO32-,HCO3-。前蘇聯(lián)科學(xué)家瓦里亞什科根據(jù)湖水中主要離子的相對(duì)含量將湖泊劃分為硫酸鹽型(Na-K-Mg-Cl-SO4)、氯化物型(Na-K-Mg-Ca-Cl)和碳酸鹽型(Na-K-Mg-Cl-SO4-CO3)3種類型。堿湖屬于碳酸鹽型湖泊,湖水pH值大于9,陰離子主要為CO32-和HCO3-。自然界中鹽湖多以硫酸鹽型為主,碳酸鹽型和氯化物型較為少見。硫酸鹽型湖泊在地質(zhì)記錄中同樣數(shù)量上占優(yōu)勢(shì),因此以往研究也多關(guān)注于該類咸化湖盆。始新世中國(guó)大陸發(fā)育多個(gè)咸化湖盆,如柴達(dá)木盆地,東營(yíng)凹陷、東濮凹陷、潛江凹陷以及泌陽(yáng)凹陷等,僅泌陽(yáng)凹陷發(fā)育碳酸鹽型湖泊,其余均發(fā)育硫酸鹽型湖泊。相對(duì)于硫酸鹽礦物而言,堿性礦物非常罕見[19]。雖然堿湖數(shù)量很少,但其不僅發(fā)育優(yōu)質(zhì)烴源巖,而且還發(fā)育具有重要經(jīng)濟(jì)價(jià)值的天然堿礦和硼礦,因而極具研究?jī)r(jià)值。

古老堿湖的識(shí)別主要基于沉積物中鹽類礦物類型。水體中離子的活性順序是K+>Na+>Mg2+>Ca2+,Cl-> SO42-> HCO3->CO32-,離子活性越大,越不易從水體中析出沉淀。硫酸鹽型和碳酸鹽型湖泊在蒸發(fā)早期,沉淀礦物均以方解石和白云石為主;中期兩者開始顯現(xiàn)差異,硫酸鹽型湖泊的碳酸根離子消耗殆盡,開始沉淀硫酸鹽礦物,而堿湖由于碳酸根離子仍然富存,待Ca2+和Mg2+消耗完后,開始沉降Na的碳酸鹽礦物;蒸發(fā)晚期兩種鹽湖均以氯鹽和鉀鹽為主。因此,富鈉碳酸鹽礦物(Na-carbonate)為堿湖的特征礦物,常見類型見表1。泡堿(Na2CO3·10H2O)、天然堿[(Na3(HCO3)(CO3)2H2O)]和蘇打石(NaHCO3)是3類主要的富鈉碳酸鹽礦物,其形成環(huán)境存在差異:蘇打石形成于高CO2分壓環(huán)境下,對(duì)溫度要求不高;天然堿形成于低溫、低CO2分壓背景中;而泡堿形成于略高溫、低CO2分壓背景中。因此,堿湖沉積物中不同的富鈉碳酸鹽礦物富集,可以指示溫度和大氣中的CO2分壓。除了上述富鈉碳酸鹽礦物外,堿湖沉積物中還發(fā)育碳酸鈉鈣石[(Na2Ca2(CO3)3·H2O)]、鈣水堿[(Na2Ca(CO3)2·2H2O)]、單斜鈉鈣石[(Na2Ca(CO3)2·5H2O)][20]、氯碳鈉鎂石[(Na3MgCl(CO3)2)]、碳鈉鎂石[(Na2Mg(CO3)2)]以及磷鈉鎂石[(Na3Mg(PO4)(CO3))]等其他類型富鈉碳酸鹽礦物。

表1 古老堿湖中常見的富鈉碳酸鹽礦物

注:以美國(guó)綠河盆地Green River組、土耳其Beypazari盆地Beypazari組和中國(guó)準(zhǔn)噶爾盆地風(fēng)城組為例。

對(duì)于尚未達(dá)到飽和、沒有富鈉碳酸鹽和氯鹽沉淀的堿性湖泊,如土耳其現(xiàn)代湖泊Lake Van和早白堊世南大西洋處的裂谷湖泊,主要處于Ca-Mg碳酸鹽沉淀的早期蒸發(fā)階段,富鎂粘土礦物的出現(xiàn)和富集可以作為重要識(shí)別標(biāo)志。堿湖環(huán)境中常出現(xiàn)的富鎂粘土礦物包括:坡縷石[palygorskite,(Mg,Al)5(Si,Al)8O20(OH)2·8H2O)]、海泡石[(sepiolite,Mg4Si6O15(OH)2·6H2O)]、皂石[(saponite,Ca0.25(Mg,F(xiàn)e)3(Si,Al)4O10)(OH)2·H2O)]、硅鎂石[(stevensite,(Ca,Na)xMg3-x(Si4O10)(OH)2)]、蠟蛇紋石(kerolite,Mg3Si4O10(OH)2·H2O)等。這些鎂粘土礦物主要在地表或近地表環(huán)境下形成,并且除坡縷石和皂石外,其余鎂粘土礦物均不含鋁。這主要是由于在粘土礦物晶體結(jié)構(gòu)中,Mg-O鏈比Si-O和Al-O鏈更易遭受破壞,因此鎂粘土礦物相較鋁粘土礦物更易遭受溶解風(fēng)化[28-29]。

2 火山活動(dòng)控制堿湖的形成

2.1 現(xiàn)今堿湖與火山活動(dòng)的聯(lián)系

現(xiàn)今世界上大多數(shù)堿湖均分布于受火山活動(dòng)影響的亞熱帶副高壓干旱或半干旱區(qū)域(圖1;表2),并且主要聚集在以下3個(gè)火山活躍帶[30]。1)東非裂谷系:堿湖主要分布于東非裂谷系東部分支富年輕火山巖區(qū)(噴發(fā)時(shí)間為漸新世至今,以第四紀(jì)以來為主),大多為淺水湖,直接接受熱液供給,沉積物中含有豐富的火山物質(zhì),如Lake Bogaria湖泊,其湖緣斷裂周圍發(fā)育約200處熱泉[31],溫度在36~100 ℃,鹽度為1 ~ 15 g/L,pH值為7 ~ 9.9,水體為NaHCO3型[32];而東非裂谷西部分支新近紀(jì)期間火山活動(dòng)弱,湖泊以淡水深湖為主,湖底沉積物中沒有火山物質(zhì)[33]。2)北美西南部和南美安第斯造山帶:堿湖主要位于太平洋東部火山活動(dòng)活躍區(qū),如Mono Lake,Albert Lake,Lake Atlacoy等。3)亞洲中部:堿湖聚集區(qū)向西延伸到里海,向東延伸到中國(guó)西藏和青海地區(qū),如中國(guó)西藏羌南碳酸鹽型鹽湖帶。青藏高原湖泊根據(jù)水化學(xué)性質(zhì)可分為5個(gè)帶,最南部是堿湖帶,其形成與地?zé)崴苯友a(bǔ)給有關(guān)[34],且該區(qū)域新近紀(jì)火山巖分布廣泛[35],水體中B,Li,Cs,K元素表現(xiàn)為高異常。除了上述區(qū)域外,其他火山活躍區(qū)也零星存在堿湖。世界上最大的堿湖Lake Van位于土耳其Eastern Anatolia高原,面積3 522 km2,最深處可達(dá)460 m[36],湖水pH值為9.5~9.9,鹽度為21 ‰~24 ‰,堿度為155 mmol/L[37]。Lake Van湖泊的堿化與附近Nemrut火山噴發(fā)密切相關(guān),湖底沉積物廣泛記錄了Nemrut 火山噴發(fā)事件,含有至少12層熔結(jié)凝灰?guī)r和40層火山碎屑[28-39]。

圖1 全球堿湖分布(據(jù)文獻(xiàn)[30]繪制)

表2 國(guó)內(nèi)外典型堿湖發(fā)育背景及巖礦信息

注:除Lake Van和南大西洋早白堊世裂谷湖泊外,其余堿湖鹽度均達(dá)到富鈉碳酸鹽沉淀鹽度。

為方便檢索和識(shí)別,國(guó)外盆地、湖泊及層位名稱未翻譯成中文,礦物英文名稱對(duì)應(yīng)的中文及組成見表1和表3。

2.2 地質(zhì)歷史時(shí)期堿湖與火山活動(dòng)的聯(lián)系

地質(zhì)歷史時(shí)期,堿性含油氣湖盆同樣與火山或熱液活動(dòng)有關(guān)(表2)。世界上研究程度最高的堿性湖盆位于美國(guó)西部,主要地層為始新統(tǒng)綠河組,該組發(fā)育世界上最大堿礦,含有6層標(biāo)志性凝灰?guī)r層[55]。雖然在綠河組湖盆鄰近地區(qū)并未發(fā)現(xiàn)同時(shí)期的火山活動(dòng),但Hammond 等人(2019)利用碎屑鋯石進(jìn)行物源分析時(shí)發(fā)現(xiàn),距離湖盆約200 km的Colorado Mineral Belt是湖盆的主物源之一,該造山帶在始新世火山活動(dòng)強(qiáng)烈,可為湖盆提供巖漿和熱液水[63]。世界上第二大堿礦發(fā)育于土耳其Beypazari盆地的中新統(tǒng),該套地層中同樣含有多套凝灰?guī)r夾層[26]。中國(guó)準(zhǔn)噶爾盆地瑪湖凹陷下二疊統(tǒng)風(fēng)城組為含堿地層,其下部地層發(fā)育玄武巖、安山巖以及熔結(jié)凝灰?guī)r,上部地層同樣發(fā)育有豐富的凝灰物質(zhì)[64-65]。

2.3 火山活動(dòng)控制下堿湖的形成機(jī)制

堿湖與火山活動(dòng)的密切聯(lián)系說明,除氣候因素外,火山活動(dòng)是造成湖泊水體呈堿性的主要原因。堿湖的主要特征是水體中(HCO3-+CO32-)含量高于Ca2+的含量?;◢徺|(zhì)和流紋質(zhì)巖石化學(xué)風(fēng)化可生成HCO3-,流入湖泊后發(fā)生水解生成OH-,提高水體的pH值。然而,在漫長(zhǎng)的地質(zhì)歷史中,以花崗質(zhì)或流紋質(zhì)巖石為物源的湖泊并不少見,但堿湖卻較為罕見[19]。

CO2+ H2O +流紋巖(鈉長(zhǎng)石、鉀長(zhǎng)石、石英)→粘土礦物+K++Na++2HCO3-(1)

化學(xué)反應(yīng)式(1)中,CO2含量的大量增加可以加速流紋質(zhì)母巖的化學(xué)風(fēng)化,提高物源水體中HCO3-含量,進(jìn)而導(dǎo)致湖泊水體大幅度堿化。Earman 等人(2005)通過對(duì)比北美洲San Bernardino盆地與周圍盆地的地下水化學(xué)物質(zhì)組成,發(fā)現(xiàn)僅San Bernardino盆地的地下水呈堿性,而該盆地與周圍盆地經(jīng)歷了相同的構(gòu)造-氣候演化,唯一區(qū)別在于San Bernardino盆地周圍山體發(fā)育新近紀(jì)—第四紀(jì)玄武火山活動(dòng),由此提出了大量CO2的輸入是自然界湖泊呈堿性和天然堿形成的必要條件[66]。幔源或巖漿CO2溶解到熱液、地下水或河流中,加速硅酸鹽礦物的化學(xué)風(fēng)化,產(chǎn)生大量HCO3-,進(jìn)而提高了地下水和地表水中Na+和CO32-的含量[23,54-55,66]。美國(guó)加利福利亞Searles Lake 700 m的巖心中,291 m以下部分以硫酸鹽礦物為主,發(fā)育硬石膏、鈣芒硝和石鹽,而291 m以上部分以含鈉碳酸鹽礦物為主,發(fā)育鈣水堿、天然堿和石鹽。Lowenstein 等人(2016)通過研究石鹽包裹體成分證明了291 m 處湖泊類型的轉(zhuǎn)變與當(dāng)時(shí)熱泉和巖漿活動(dòng)攜帶的大量CO2溶解到湖水中有關(guān)[52]。巖漿成因的CO2溶解到源頭水系,同樣也是美國(guó)綠河組湖泊呈堿性的主要原因。中國(guó)泌陽(yáng)凹陷核桃園組沉積時(shí)期,凹陷附近沒有火山巖,可能是凹陷北部的源區(qū)秦嶺造山帶存在同期火山活動(dòng),噴發(fā)的大量CO2溶解到源頭水系,造成湖水堿化。

火山活動(dòng)常伴隨地層的局部抬升,造成湖泊水體封閉,這是湖泊水體能夠保持堿性的另一重要原因。土耳其Lake Van 一直以淡水沉積為主,大約0.03 Ma,由于湖泊西部的Nemrut 火山強(qiáng)烈噴發(fā),火山口及其周圍的穹隆強(qiáng)烈隆升,造成Van Basin封閉,Lake Van水體才發(fā)生堿化[39]。東非裂谷處的11個(gè)湖泊也正因?yàn)槭莾?nèi)流型湖盆,無水體流出才演變?yōu)閴A湖[67]。

3 堿湖控制優(yōu)質(zhì)烴源巖的形成

相對(duì)于其他類型湖盆,堿湖中沉積的烴源巖具有有機(jī)質(zhì)豐度高、類型好的特點(diǎn),筆者通過分析研究認(rèn)為這主要源于堿湖下列獨(dú)有的特征。

3.1 異常高的初級(jí)生產(chǎn)力

堿湖被看為自然界最富營(yíng)養(yǎng)的水庫(kù)[68]。堿湖異常高的初級(jí)生產(chǎn)力與其獨(dú)特的高pH水體化學(xué)性質(zhì)密切相關(guān),其控制機(jī)制如下:①CO2在堿湖水體中較為豐富,生物的光合作用可以不受CO2濃度限制[9,69];②Mo是有機(jī)體固定N2的固氮酶的重要組成元素,由于Mo在堿性環(huán)境下溶解度更大,因而在堿湖中含量更高[70];③高的可溶性碳酸鹽堿度和無機(jī)碳濃度更有利于自養(yǎng)生物的生存[67];④堿湖環(huán)境中游離硫化物以HS-狀態(tài)存在,對(duì)生物的毒性遠(yuǎn)小于H2S和多硫化合物[71];⑤由于CaCO3在堿性條件下迅速沉淀,因此堿湖水體中Ca2+濃度遠(yuǎn)低于海水,從而大大減少了磷酸鹽因Ca2+結(jié)合造成的損失,有利于形成磷酸鹽生物聚合物[21,72];⑥堿性環(huán)境能提高氰化氫聚合效率,促進(jìn)氨基酸、核酶及多肽的合成[73-74],因而有利于甲醛聚糖反應(yīng)形成非生物碳水化合物;⑦堿湖中含有較高含量的溶解硅酸鹽,有利于硅藻的富營(yíng)養(yǎng)化和勃發(fā)[67,74]。因此,在相同的營(yíng)養(yǎng)條件下,堿湖可活化營(yíng)養(yǎng)元素,中和有害物質(zhì),極大提高初級(jí)生產(chǎn)力,這也是綠河組、核桃園組極富有機(jī)質(zhì)的主要原因之一。

3.2 有效的淺水有機(jī)質(zhì)保存機(jī)制

一般湖泊中有機(jī)質(zhì)的保存需要深水還原環(huán)境,而堿湖的特殊性還在于能有效保存淺水區(qū)的有機(jī)質(zhì)。

3.2.1早期硅化

pH是湖水中控制硅質(zhì)溶解度最為重要的因素,當(dāng)pH值小于9時(shí),硅質(zhì)的溶解度較低,與pH值關(guān)系較??;當(dāng)pH值大于9時(shí),硅質(zhì)溶解度隨pH值呈指數(shù)增加。水體的pH值會(huì)隨季節(jié)發(fā)生變化:在潮濕季節(jié),生物新陳代謝強(qiáng)烈,會(huì)消耗水體中的CO2,使水體呈堿性,造成碎屑石英和硅酸鹽礦物溶解;而在干旱季節(jié),植物死亡及降解生成的有機(jī)酸,會(huì)降低水體pH值,造成硅質(zhì)的沉淀。對(duì)堿湖而言,一次大規(guī)模的降水也會(huì)引起湖水pH值迅速降低,造成硅質(zhì)大量沉淀。硅質(zhì)的大量沉淀對(duì)有機(jī)質(zhì)的保存,尤其是淺水區(qū)有機(jī)質(zhì)的保存具有重要的意義,前期富有機(jī)質(zhì)層若被硅質(zhì)大量覆蓋,可以有效阻止有機(jī)質(zhì)的進(jìn)一步降解[75]。在很多中新世的湖泊環(huán)境中,微生物席經(jīng)歷了早期的硅化作用,其中的細(xì)胞和EPS物質(zhì)得到較好保存[76-77]。在Orcadian 盆地的Middle Old Red Sandstone湖相沉積中,最富有機(jī)質(zhì)的層位中常常含有燧石沉積[78]。瑪湖凹陷下二疊統(tǒng)風(fēng)城組富有機(jī)質(zhì)層也常見被層狀硅質(zhì)覆蓋。

3.2.2熱泉輸入

發(fā)育于火山活躍區(qū)的堿湖,湖盆周圍常伴有常年性熱泉的輸入。如位于肯尼亞中央裂谷的Bogoria湖,其周圍分布有220個(gè)熱泉。熱泉的輸入與河流不同,河流流量在氣候干旱時(shí)期會(huì)大大減少,使得湖泊面積縮小,造成邊緣地區(qū)的有機(jī)質(zhì)暴露于地表而遭受氧化破壞。而熱泉的流量基本不受氣候的控制,即便在干旱時(shí)期仍能為湖泊輸入水量,使得堿湖的熱液輸入?yún)^(qū)很少經(jīng)歷大規(guī)模的暴露剝蝕,有利于有機(jī)質(zhì)的保存。東非裂谷區(qū)的Baringo湖,受熱泉輸入的控制[79],雖然湖水僅6 m深,但在過去的0.3 Ma期間,卻只經(jīng)歷了2次暴露剝蝕[80]。同樣受熱泉影響的準(zhǔn)噶爾盆地瑪湖凹陷風(fēng)城組湖盆,即使位于東北部邊緣區(qū)域,也很少發(fā)育紅層。

4 火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖成因鏈模式

經(jīng)過上述火山活動(dòng)-堿湖、堿湖-優(yōu)質(zhì)烴源巖這兩部分的綜述研究,可以很清晰地形成一種火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖成因鏈模式(圖2)。

圖2 火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖成因鏈模式

優(yōu)質(zhì)烴源巖的形成至少需要兩個(gè)要素:第一是異常高的初級(jí)生產(chǎn)力;第二是良好的有機(jī)質(zhì)保存條件?;鹕交顒?dòng)噴發(fā)的大量CO2,通過加速硅酸鹽母巖的風(fēng)化產(chǎn)生大量HCO3-,通過熱液、地下水或者河流輸入到湖泊水體中;HCO3-水解形成OH-,造成湖泊特有的堿性化學(xué)性質(zhì)。在pH值增加的情況下,水中部分離子、化合物的化學(xué)性質(zhì)發(fā)生變化,使得堿湖水體富營(yíng)養(yǎng)化而具備異常高的初級(jí)生產(chǎn)力;同時(shí),噴發(fā)的火山物質(zhì)也會(huì)造成短暫性水體富營(yíng)養(yǎng)化,引起藻類等微生物勃發(fā),進(jìn)一步提高了水體的初級(jí)生產(chǎn)力?;鹕礁浇某D晷詿崛WC了堿湖具有穩(wěn)定的水量輸入,不會(huì)隨著旱季的到來而急劇萎縮,為部分淺水區(qū)有機(jī)質(zhì)的保存提供了穩(wěn)定的水下環(huán)境;另外淺水區(qū)硅質(zhì)的沉降也為堿湖有機(jī)質(zhì)的保存增添了一份保障。

由此可見,火山活動(dòng)可以通過堿湖這一介質(zhì)場(chǎng)所為優(yōu)質(zhì)烴源巖的發(fā)育提供有利的物質(zhì)保障和保存條件。因此,火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖這條成因鏈可以較好的細(xì)化認(rèn)識(shí)火山活動(dòng)和優(yōu)質(zhì)烴源巖的聯(lián)系,指導(dǎo)油氣勘探中優(yōu)質(zhì)烴源巖的成因及展布研究。

5 堿湖烴源巖特征

在全球油氣需求量日益高漲的背景下,常規(guī)油氣資源后繼乏力,使得非常規(guī)油氣資源特別是原本扮演烴源巖角色的泥頁(yè)巖受到了越來越多的關(guān)注。堿湖烴源巖有著巨大的資源潛力和開發(fā)遠(yuǎn)景,其除了有機(jī)質(zhì)豐度高、類型好外,還具有獨(dú)特的礦物組成和相對(duì)較高的可壓裂性和孔滲性。

5.1 獨(dú)特的礦物組成

5.1.1(泥)微晶白云石

陸相堿湖烴源巖中普遍發(fā)育泥(微)晶白云石。中國(guó)泌陽(yáng)凹陷核桃園組[81]、酒泉盆地青西凹陷下白堊統(tǒng)下溝組[82]、二連盆地下白堊統(tǒng)[83-84]、準(zhǔn)噶爾盆地吉木薩爾和沙帳以及瑪湖凹陷二疊系[85]以及美國(guó)Piceance盆地始新統(tǒng)綠河組[86],均含有一定量的(泥)微晶白云石。泥頁(yè)巖中(泥)微晶白云石含量與方解石、文石的含量無相關(guān)性,反而與有機(jī)質(zhì)含量具有一定的正相關(guān)性[87-88]。美國(guó)綠河組泥頁(yè)巖中有機(jī)質(zhì)含量高的層位白云石尤其豐富[89],中國(guó)準(zhǔn)噶爾盆地風(fēng)城組藻紋層發(fā)育段是微晶白云石分布最密集的層段,酒泉盆地下溝組泥質(zhì)白云巖相比白云質(zhì)泥巖發(fā)育更多的有機(jī)紋層(藻紋層)且具有更高的生烴潛量[90-91]。上述現(xiàn)象說明堿湖烴源巖中白云石的含量與有機(jī)質(zhì)關(guān)系密切。

堿湖烴源巖中白云石的成因爭(zhēng)議較大。Desbo?rough(1978)認(rèn)為有機(jī)質(zhì)層中的白云石是生物有機(jī)成因,湖泊中的藍(lán)綠藻在新陳代謝過程中會(huì)優(yōu)先吸收Mg2+,而在湖底降解過程中會(huì)釋放Mg2+促進(jìn)自生或交代白云石的形成[92]。Slaughter和Hill(1991)提出有機(jī)成因白云化作用(organogenic dolomitization),認(rèn)為有機(jī)質(zhì)降解過程中產(chǎn)生的CO2,提高了孔隙水中的碳酸鹽堿度,使文石和方解石發(fā)生白云石化作用;這種白云石化作用產(chǎn)生的白云石與有機(jī)質(zhì)含量相關(guān)[93]。Zhu 等人(2017,2019,2020)觀察到堿湖沉積物中普遍含有火山灰及其蝕變產(chǎn)物(如方沸石),并且與白云石聯(lián)系緊密,因而提出產(chǎn)甲烷菌新陳代謝活動(dòng)產(chǎn)生的CO2參與到蒙脫石伊利石化和綠泥石化過程,產(chǎn)生Fe2+和Mg2+,促使(鐵)白云石形成[83-84,94-95]。

5.1.2火山物質(zhì)蝕變產(chǎn)物

堿湖環(huán)境獨(dú)特的高鹽度和富HCO3-水體環(huán)境使得火山玻璃以及不穩(wěn)定的陸源硅酸鹽礦物進(jìn)入堿湖后很快發(fā)生水解作用,形成次穩(wěn)定的粘土礦物和沸石。在后期埋藏過程中,這些礦物會(huì)發(fā)生溶蝕或被穩(wěn)定礦物如石英、堿性長(zhǎng)石和白云母替換交代[49,64-65,96]。因此,沸石常在前中生代的堿湖烴源巖中普遍缺失[96-97]。不同的堿性環(huán)境,火山物質(zhì)的成巖演化產(chǎn)物亦不同(表3)。

在古老堿湖烴源巖中,受沉積環(huán)境的影響,自生硅酸鹽礦物的空間分布具有分帶性[31,98],如科羅拉多高原上侏羅統(tǒng)Morrison組的Brushy Basin Member,從盆地邊緣到中心,分別為蒙脫石-斜發(fā)沸石-方沸石-鉀長(zhǎng)石-鈉長(zhǎng)石帶[99]。堿湖烴源巖中不穩(wěn)定的火山玻璃在堿性環(huán)境下可轉(zhuǎn)變成沸石,沸石可轉(zhuǎn)變?yōu)殁涢L(zhǎng)石和硅硼鈉石,而鉀長(zhǎng)石可進(jìn)一步轉(zhuǎn)變?yōu)殁c長(zhǎng)石[49,100]。

表3 古老堿湖沉積物中常見的自生硅酸鹽礦物

5.2 相對(duì)較高的可壓裂性和孔滲性

脆性礦物含量越高的泥頁(yè)巖脆性越強(qiáng),越容易在外力作用下產(chǎn)生天然裂縫和誘導(dǎo)裂縫,越有利于泥頁(yè)巖油氣的開采[102]。李曉萌等(2016)對(duì)川南地區(qū)下古生界的筇竹寺組與龍馬溪組頁(yè)巖氣儲(chǔ)層進(jìn)行對(duì)比研究,認(rèn)為筇竹寺組脆性礦物含量高于龍馬溪組,因而具有更大的開采潛力[103]。Jarvie等(2007)認(rèn)為對(duì)于頁(yè)巖油氣儲(chǔ)層研究來說,礦物學(xué)分析是不可缺少的,脆性礦物含量是決定美國(guó)得克薩斯州中北部的密西西比亞系Barnett 頁(yè)巖以及其他泥頁(yè)巖層系天然氣產(chǎn)量的重要因素[104]。堿湖烴源巖中白云石以及后期由凝灰物質(zhì)轉(zhuǎn)變形成的穩(wěn)定礦物如石英、堿性長(zhǎng)石等的富集,使得該類烴源巖脆性礦物含量較高,因此天然裂縫以及受壓裂后產(chǎn)生的人工裂縫發(fā)育程度高,油氣初始產(chǎn)能高。泌陽(yáng)凹陷核桃園組泥頁(yè)巖中脆性礦物含量高,碳酸鹽、長(zhǎng)石、黃鐵礦等脆性礦物含量為49.4 %,石英平均含量為19.5 %,因此裂縫非常發(fā)育,泌頁(yè)HF1井初期產(chǎn)能達(dá)到了23.6 m3/d[105]。

此外,堿湖沉積物中的不穩(wěn)定礦物和火山灰在成巖過程中會(huì)經(jīng)歷復(fù)雜的轉(zhuǎn)變,這些過程會(huì)產(chǎn)生大量的無機(jī)孔,增加了泥頁(yè)巖的孔滲性和含油氣性。朱世發(fā)等(2011)認(rèn)為準(zhǔn)噶爾盆地西北緣二疊系風(fēng)城組中大量火山玻璃物質(zhì)在經(jīng)歷蝕變和多期轉(zhuǎn)化后會(huì)形成沸石類、鈉長(zhǎng)石等礦物,而沸石類礦物在成巖期酸性環(huán)境中普遍發(fā)生溶蝕,極大改善了儲(chǔ)層的質(zhì)量[106]。巴西近海區(qū)域白堊系鹽下的Barra Velha組是典型的堿湖沉積,受火山噴發(fā)物質(zhì)的影響,初期含有大量的富鎂粘土礦物。Tosca 和Wright (2015)認(rèn)為Barra Velha組儲(chǔ)層中發(fā)育的大量次生孔隙就是富鎂粘土礦物后期溶蝕形成的[28]。

6 結(jié)論

1)堿湖的形成與火山活動(dòng)密切相關(guān)。在干旱-半干旱氣候及湖泊封閉的背景下,湖泊水體pH值升高的主要原因是間歇性火山活動(dòng)噴發(fā)的大量CO2進(jìn)入熱液、地下水或河流中,加速硅酸鹽母巖的化學(xué)風(fēng)化而產(chǎn)生大量的HCO3-,進(jìn)而輸入到湖泊中造成水體堿化。

2)堿湖特有的水體性質(zhì)(高pH值)可以活化多種營(yíng)養(yǎng)元素和化合物,促進(jìn)水體富營(yíng)養(yǎng)化,使得堿湖具有異常高的初級(jí)生產(chǎn)力。同時(shí)火山附近的常年性熱泉保證了堿湖具有穩(wěn)定的水量輸入,再加上堿湖特有的淺水硅化保存機(jī)制,使得有機(jī)質(zhì)在堿湖中具有較好的保存條件。

3)火山活動(dòng)-堿湖-優(yōu)質(zhì)烴源巖的成因鏈模式,有助于深入認(rèn)識(shí)火山活動(dòng)和優(yōu)質(zhì)烴源巖的聯(lián)系;該模式形成的烴源巖同樣為優(yōu)質(zhì)的頁(yè)巖油氣儲(chǔ)集層,微晶白云石、沸石、石英、堿性長(zhǎng)石等礦物含量高,具有相對(duì)較高的可壓裂性和孔滲性。

[1] Sarmiento J L. Atmospheric CO2stalled[J].Nature,1993,365:697-698.

[2] Watson A. Volcanic Fe,CO2,ocean productivity and climate[J]. Nature,1997,385:587-588.

[3] Frogner P,Gislason S R,Oskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology,2001,29:487-490.

[4] Duggen S,Croot P,Schacht U,et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth:evidence from biogeochemical experiments and satellite data[J]. Geophysical. Research Letters,2007,34:L01612.

[5] Smith M A,White M J. Observations on Lakes near Mount St. Helens:phytoplankton[J]. Archiv fur Hydrobiologie,2007,104:345-362.

[6] 劉池洋,黃雷,張東東,等. 石油貧富懸殊的成因:來自華北克拉通東部南北新生代盆地的啟示[J]. 中國(guó)科學(xué):地球科學(xué),2018,48:1506-1526.

Liu Chiyang,Huang Lei,Zhang Dongdong,et al. Genetic causes of oil-rich and-poor reservoirs: Implications from two Cenozoic basins in the eastern North China Craton[J]. Science China:Earth Science,2018,48:1506-1526.

[7] 劉池洋,趙俊峰,馬艷萍,等. 富烴凹陷特征及其形成研究現(xiàn)狀與問題[J]. 地學(xué)前緣,2014,21(1):75-88.

Liu Chiyang,Zhao Junfeng,Ma Yanping,et al. The advances and problems in the study of the characteristics and formation of hydrocarbon?rich sag[J]. Earth Science Frontiers,2014,21(1):75-88.

[8] Gooowin J H. Analcime and K?Feldspar in tuffs of the Green River Formation,Wyoming[J]. American Mineralogist,1973,58:93-105.

[9] Grant W D,Tindall B J. The alkaline,saline environment[C]//Herbert R A,Codd G A,eds.Microbes in Extreme Environments,Dundee,1984.London:Academic Press,1986:22-54.

[10] Grant W D. Introductory chapter:half a lifetime in soda lakes[M]//Ventosa A. Halophilic Microorganisms.Berlin,Heidelberg:Springer?Verlag,2004:17-32.

[11] Melack J M. Primary producer dynamics associated with evaporative concentration in a shallow,equatorial soda lake(Lake Elmenteita,Kenya)[J]. Hydrobiologia,1988,158(1):1-14.

[12] Jones B E,Grant W D,Duckworth A W,et al. Microbial diversity of soda lakes[J]. Extremophiles,1998,2(3):191-200.

[13] Sorokin D Y,Kuenen J G,Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes[J]. Frontiers in Microbiology,2011,2(1):1-16.

[14] Talling J F,Wood R B,Prosser M V,et al. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes[J]. Freshwater Biology,1973,3(1):53-76.

[15] Melack J M,Kilham P. Photosynthetic rates of phytoplankon in East African alkaline,saline lakes[J]. Limnology and Oceanography,1974,19:743-755.

[16] Carroll A R,Bohacs K M. Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin,2001,85:1033-1053.

[17]妥進(jìn)才,曾凡剛,黃杏珍,等. 泌陽(yáng)凹陷-湖相碳酸鹽巖生油的一個(gè)實(shí)例[J]. 沉積學(xué)報(bào),1997,15(S):64-69.

Tuo Jincai,Zeng Fangang,Huang Xingzhen,et al. Biyang Depression?An Example of Lacustrine Carbonate As Source Rocks of Petroleum[J]. Acta Sedmentologica Sinica,1997,15(S): 64-69.

[18]曹劍,雷德文,李玉文,等.古老堿湖優(yōu)質(zhì)烴源巖:準(zhǔn)噶爾盆地下二疊統(tǒng)風(fēng)城組[J].石油學(xué)報(bào),2015,36(7):781-790.

Cao Jian,Lei Dewen,Li Yuwen,et al. Ancient high?quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation,Junggar Basin[J]. Acta Petrolei Sinica,2015,36(7):781-790.

[19] Smoot J P,Lowenstein T K. Depositional environments of non?marine evaporates[M]//Melvin J L.Evaporites,Petroleum and Mineral Resources.Amsterdam:Elsevier Science Publishers,1991:189-347.

[20] Suner F. Shortite formation in Turkey:its geochemical properties[C]//Nishiyama T,F(xiàn)isher G W,eds.Proceedings of the 29th International Geological Congress,Kyoto,1992. Zeist,Netherlands:VSP International Science Publishers,1994:237-244.

[21] Bradley W H,Eugster H P. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[J]. USGS Professional Paper,1969,496-B:71-86.

[22] Smith J W. The chemistry which created Green River Formation oil shale[C]//Miknis,F(xiàn)rancis P,eds. ACS Symposium Series,Washington DC,1983. Seattle:American Chemical Society,Division of Petroleum Chemistry,1983:76-84.

[23] Lowenstein T K,Demicco R V. Elevated Eocene Atmospheric CO? and Its Subsequent Decline[J]. Science,2006,313(5795):1928.

[24] Jagniecki E A,Jenkins D M,Lowenstein T K,et al. Experimental study of shortite (Na2Ca2(CO3)3)formation and application to the burial history of the Wilkins Peak Member,Green River Basin,Wyoming,USA[J]. Geochimica et Cosmochimica Acta,2013,115(5):31-45.

[25]鄭喜玉. 內(nèi)蒙古鹽湖[M]. 北京:科學(xué)出版社,1992:196-247.

Zheng Xiyu. Salt lake in Inner Mongolia[M]. Beijing:Science Press,1992:196-247.

[26] García Veigas J,?brahim G,Helvac? C,et al. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazar? trona deposit,Ankara province,Turkey[J]. Sedimentary Geology,2013,294(3):315-327.

[27] Dyni J R. Sodium Carbonate Resources of the Green River Formation[J]. US Geology Survey US Geological,1996:1-42.

[28] Tosca N J,Wright V P. Diagenetic pathways linked to labile Mg?clays in lacustrine carbonate reservoirs:A model for the origin of secondary porosity in the Cretaceous pre?salt Barra Velha Formation,offshore Brazil[J]. Geological Society Special Publication,2015,435(1):33-46.

[29] Wright V P,Barnett A J. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbo?nates[J]. Geological Society Special Publications,2015,418:209-219.

[30] Pecoraino G,D’Alessandro W,Inguaggiato S. The Other Side of the Coin Geochemistry of Alkaline Lakes in Volcanic Areas[M]. Berlin,Heidelberg:SpringerVerlag,2015:219-237.

[31] Renaut R W,Tiercelin J J. Alimentation,hydrologie[M]//Tiercelin J J,Vincens A. Le demi-graben de Baringo-Bogoria,Rift Gregory,Kenya. Pau:Centres Recherches Exploration?Production Elf?Aquitaine,Bulletin,1987:284-309.

[32] Renaut R W,Bernhart Owen R. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria,Kenya Rift valley[J]. Geology,1988,16(8):699-702.

[33] Schagerl M,Renaut R W. Dipping into the Soda Lakes of East Africa[M]//Schagerl M.Soda Lakes of East Africa. Berlin,Heidelberg: Springer,2016:9-14.

[34]鄭綿平,劉喜方. 青藏高原鹽湖水化學(xué)及其礦物組合特征[J]. 地質(zhì)學(xué)報(bào),2010,84(11):1585-1600.

Zheng Jinping,Liu Xifang. Hydrochemistry and Minerals Assemblages of Salt Lakes in the Qinghai?Tibet Plateau,China[J]. Acta Geologica Sinica,2010,84(11):1585-1600.

[35]鄭綿平,陳文西,齊文. 青藏高原火山-沉積硼礦找礦的新發(fā)現(xiàn)與遠(yuǎn)景分析[J]. 地球?qū)W報(bào),2016,37(4):407-418.

Zheng Jinping,Chen Wenxi,Qi Wen. New Findings and Perspective Analysis of Prospecting for Volcanic Sedimentary Boron Deposits in the Tibetan Plateau[J]. Acta Geoscientica Sinica,2016,37(4):407-418.

[36] Reimer A,Landmann G,Kempe S. Lake Van,Eastern Anatolia,Hydrochemistry and History[J]. Aquatic Geochemistry,2009,15(1-2):195-222.

[37] Huguet C,F(xiàn)ietz S,Stockhecke M,et al. Biomarker seasonality study in Lake Van,Turkey[J]. Organic Geochemistry,2012,42(11):1289-1298.

[38] Sumita M,Schmincke H U. Impact of volcanism on the evolution of Lake Van I: evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia)during the past ca. 0.4 Ma[J]. Bulletin of Volcanology,2013,75(5):1-32.

[39] Sumita M,Schmincke H U. Impact of volcanism on the evolution of Lake Van II:Temporal evolution of explosive volcanism of Nemrut Volcano(eastern Anatolia)during the past ca. 0.4 Ma[J]. Journal of Volcanology & Geothermal Research,2013,253:15-34.

[40] Cukur D,Krastel S,Schmincke H U,et al. Water level changes in Lake Van,Turkey,during the past ca. 600 ka:climatic,volcanic and tectonic controls[J]. Journal of Paleolimnology,2014,52(3):201-214.

[41] Landmann G,Kempe S. Annual deposition signal versus lake dynamics:Microprobe analysis of Lake Van(Turkey)sediments reveals missing varves in the period 11.2-10.2 ka BP[J]. Facies,2005,51:135-145.

[42] Schmincke H U,Sumita M. Impact of volcanism on the evolution of Lake Van(eastern Anatolia)III:Periodic (Nemrut)vs. episodic(Süphan)explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka[J]. Journal of Volcanology and Geothermal Research,2014,285:195–213.

[43] Scoon R N. Lake Natron and the Oldoinyo Lengai Volcano[M]//Scoon R N.Geology of National Parks of Central/Southern Kenya and Northern Tanzania.Berlin,Heidelberg:Springer,Cham,2018: 193-206.

[44] Cioni R,F(xiàn)anelli G,Guidi M,et al. Lake Bogoria hot springs(Kenya):geochemical features and geothermal implications[J]. Journal of Volcanology & Geothermal Research,1992,50(3):231-246.

[45] Renaut R W. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin,Kenya Rift Valley[J]. Sedimentology,1993,40(2):271-301.

[46] Jones B,Renaut R W. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria,Kenya[J]. Journal of Sedimentary Research,1995,65(1):154-169.

[47] McCall J. Lake Bogoria,Kenya: Hot and warm springs,geysers and Holocene stromatolites[J]. Earth Science Reviews,2010,103(1):71-79.

[48] Nikonova E L. Authigenic Clay Formation and Diagenetic Reactions,Lake Magadi,Kenya[D]. Atlanta:Georgia State University,2016.

[49] Hay R L,Guldman S G. Diagenetic alteration of silicic ash in Searles Lake,California[J]. Clays and Clay Minerals,1987,35(6):449-457.

[50] Savage D,Benbow S,Watson C,et al. Natural systems evidence for the alteration of clay under alkaline conditions: an example from Searles Lake,California[J]. Applied Clay Science,2010,47(1):72-81.

[51] Guo X,Chafetz H S. Large tufa mounds,Searles Lake,California[J]. Sedimentology,2012,59(5):1509-1535.

[52] Lowenstein T K,Dolginko L A C,García Veigas J. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake,California[J]. Geological Society of America Bulletin,2016,128(9):1555-1568.

[53] Helvaci C. The Beypazari trona deposit,Ankara Province,Turkey[M]. Wyoming:Wyoming State Geological Survey Public Information Circular,1998:67-104.

[54] Lowenstein T K,Jagniecki E A,Carroll A R,et al. The Green River salt mystery:What was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews,2017,173:295-306.

[55] Jagniecki E A,Lowenstein T K,Jenkins D M,et al. Eocene atmospheric CO2from the nahcolite proxy[J]. Geology,2015,43(12):1075-1078.

[56] Zhang C. The natural soda deposits of China[C]//Dyni J R,Jones R W,eds. Proceedings of the First International Soda Ash Conference,Laramie,1997. Wyoming:Public Information Circular,1998:57-66.

[57] Ma L,Liu C,Zhao Y,et al. Depositional facies and environments of Eocene evaporites of the Hetaoyuan Formation(the Anpeng Deposits),Biyang Depression,Nanyang Basin,China[J]. Geological Society of America Abstracts with Programs,2013,45:817.

[58] Yang J H,Yi C L,Du Y S,et al. Geochemical significance of the Paleogene soda?deposits bearing strata in Biyang Depression,Henan Province[J]. Science China Earth Sciences,2015,58(1):129-137.

[59] Teboul P A,Kluska J M,Marty N C M,et al. Volcanic rock alterations of the Kwanza Basin,offshore Angola?Insights from an integrated petrological,geochemical and numerical approach[J]. Marine Petroleum Geology,2017,80:394-411.

[60] Mercedes Martín R,Ayora C,Tritlla J. The hydrochemical evolution of alkaline volcanis lakes:A model to understand the South Atlantic Pre?salt mineral assemblages[J]. Earth?Science Review,2019,198:1-19.

[61]余寬宏,操應(yīng)長(zhǎng),邱隆偉,等.準(zhǔn)噶爾盆地瑪湖凹陷早二疊世風(fēng)城組沉積時(shí)期古湖盆鹵水演化及碳酸鹽礦物形成機(jī)理[J]. 天然氣地球科學(xué),2016,27(7):1248-1263.

Yu Kuanhong,Cao Yingchang,Qiu Longwei,et al. Brine evolution of ancient lake and mechanismof carbonate minerals during the sedimentation of Early Permian Fengcheng Formation in Mahu Depression,Junggar Basin,China[J]. Natural Gas Geoscience,2016,27(7):1248-1263.

[62]余寬宏,操應(yīng)長(zhǎng),邱隆偉,等. 準(zhǔn)噶爾盆地瑪湖凹陷下二疊統(tǒng)風(fēng)城組含堿層段韻律特征及成因[J]. 古地理學(xué)報(bào),2016,18(6):1012-1029.

Yu Kuanhong,Cao Yingchang,Qiu Longwei,et al. Characteristics of alkaline layer cycles and origin of the Lower Permian Fengcheng Formation in Mahu sag,Junggar Basin[J]. Journal of Palaeogeography,2016,18(6):1012-1029.

[63] Hammond A P,Carroll A R,Smith M E,et al. Bicarbonate Rivers:Connecting Eocene Magmatism to the World􀆳s Largest Na?Carbona?te Evaporite[J]. Geology,2019,47: 1020-1024.

[64]朱世發(fā),朱筱敏,劉學(xué)超,等. 油氣儲(chǔ)層火山物質(zhì)蝕變產(chǎn)物及其對(duì)儲(chǔ)集空間的影響-以準(zhǔn)噶爾盆地克-夏地區(qū)下二疊統(tǒng)為例[J]. 石油學(xué)報(bào),2014,35(2):276-285.

Zhu Shifa,Zhu Xiaomin,Liu Xuechao,et al. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs: evidence from Lower Permian strata in Ke?Xia region,Junggar Basin[J]. Acta Petrolei Sinica,2014,35(2):276-285.

[65]朱世發(fā),朱筱敏,吳冬,等. 準(zhǔn)噶爾盆地西北緣下二疊統(tǒng)油氣儲(chǔ)層中火山物質(zhì)蝕變及控制因素[J]. 石油與天然氣地質(zhì),2014,35(1):77-85.

Zhu Shifa,Zhu Xiaomin,Wu Dong,et al. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar Basin[J]. Oil and Gas Geology,2014,35(1):77-85.

[66] Earman S,Phillips F M,Mcpherson B J O L. The role of “excess” CO2in the formation of trona deposits[J]. Applied Geochemistry,2005,20(12):2217-2232.

[67] Fazi S,Butturini A,Tassi F,et al. Biogeochemistry and biodiversity in a network of saline?alkaline lakes:Implications of ecohydrological connectivity in the Kenyan Rift Valley[J]. Ecohydrology & Hydrobiology,2018,18:96-106.

[68] Zavarzin G A,Zhilina T N,Kevbrin V V. The alkaliphilic microbial community and its functional diversity[J]. Microbiology,1999,68(5):503-521.

[69] Melack JM,Kilham P. Photosynthetic rates of phytoplankton in East African alkaline,saline lakes[J]. Limnol Oceanogr,1974,19:743-755.

[70] Helz G R,Bura Naki? E,Mikac N,et al. New model for molybdenum behavior in euxinic waters[J]. Chemical Geology,2011,284(3):323-332.

[71] Sorokin D Y,Banciu H L,Muyzer G. Functional microbiology of soda lakes[J]. Current Opinion in Microbiology,2015,25:88-96.

[72] Kempe S,Kazmierczak J. Soda ocean hypothesis[M]//Reitner J,Thiel V.Encyclopedia of Geobiology.Berlin,Heidelberg: Springer,2011:765-870.

[73] Ferris J P,Jr W J H. HCN and chemical evolution:The possible role of cyano compounds in prebiotic synthesis[J]. Tetrahedron,1984,40(7):1093-1120.

[74] Verschuren D,Edgington D N,Kling H J,et al. Silica Depletion in Lake Victoria:Sedimentary Signals at Offshore Stations[J]. Journal of Great Lakes Research,1998,24(1):118-130.

[75] Sanz Montero,M E,Rodríguez Aranda J P,Pérez Soba C. Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system[J]. European Journal of Mineralogy,2008,21:163-175.

[76] Renaut R W,Jones B,Tiercelin J J. Rapid in situ silicification of microbes at Loburu hot springs,Lake Bogoria,Kenya rift valley[J]. Sedimentology,1998,45:1083-1103.

[77] Konhauser K O,Phoenix V R,Bottrell S H,et al. Microbial?silica interactions in Icelandic hot spring sinter:Possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology,2001,48:415-433.

[78] Parnell J. Significance of lacustrine cherts for the environment of source-rock deposition in the Orcadian Basin,Scotland[M]//Fleet A J,Kelts K,Talbot M R.Lacustrine Petroleum Source Rocks.London:Geological Society Special Publication,1988:205-217.

[79] Jirsa F,Gruber M,Stojanovic A,et al. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru,Kenya,during extreme draught[J]. Chemie der Erde Geochemistry,2013,73:275-282.

[80] Kiage L M,Liu K. Palynological evidence of climate change and land degradation in the Lake Baringo area,Kenya,East Africa,since AD 1650[J]. Palaeogeography Palaeoclimatology Palaeoe?cology,2009,279:60-72.

[81]王敏,陳祥,嚴(yán)永新,等. 南襄盆地泌陽(yáng)凹陷陸相頁(yè)巖油地質(zhì)特征與評(píng)價(jià)[J]. 古地理學(xué)報(bào),2013,15(5):103-111.

Wang Min,Chen Xiang,Yan Yongxin,et al. Geological characteri?stics and evaluation of continental shale oil in Biyang sag of Nanxi?ang Basin[J]. Journal of Palaeogeography,2013,15(5):103-111.

[82]文華國(guó),鄭榮才,HaiRuo QING,等.青藏高原北緣酒泉盆地青西凹陷白堊系湖相熱水沉積原生白云巖[J]. 中國(guó)科學(xué):地球科學(xué),2014,44(4):591-604.

Wen Huaguo,Zheng Rongcai,Qing Hairuo,et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag,Jiuquan Basin on the northern Tibetan Plateau[J]. Science China:Earth Sciences,56:2080-2093.

[83] Zhu S F,Jia Y,Cui H,et al. Alteration and burial dolomitization of fine-grained,intermediate volcaniclastic rocks under saline?alkaline conditions:Bayindulan Sag in the Er􀆳Lian Basin,China[J]. Marine and Petroleum Geology,2019,110:621-637.

[84] Zhu S F,Jue H,Zhu X M,et al. Dolomitization of felsic volcaniclastic rocks in continental strata: A study from the Lower Cretaceous of the A’nan Sag in Er’lian Basin,China[J]. Sedimentary Geolo?gy,2017,353:13-27.

[85]匡立春,唐勇,雷德文,等. 準(zhǔn)噶爾盆地二疊系咸化湖相云質(zhì)巖致密油形成條件與勘探潛力[J]. 石油勘探與開發(fā),2012,27(6):20-30.

Kuang Lichun,Tang Yong,Lei Dewen,et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2012,27(6):20-30.

[86] Katz B J. Clastic and carbonate lacustrine systems:An organic geochemical comparison(Green River Formation and East African lake sediments)[M]. London:Geological Society Special Publication,1988:81-90.

[87] Smoot J P. Origin of the Carbonate Sediments in the Wilkins Peak Member of the Lacustrine Green River Formation (Eocene),Wyoming,USA[M]//Matter A,Tucker M E. Modern and Ancient Lake Sediments. Algiers:Special Publications in The International Association of Sedimentologists,1978:109-127.

[88] Guo P,Liu C,Wang L,et al. Mineralogy and organic geochemistry of the terrestrial lacustrine pre?salt sediments in the Qaidam Basin:Implications for good source rock development[J]. Marine Petroleum Geology,2019,107:149-162.

[89] Desborough G A. Authigenic albite and potassium feldspar in the Green River Formation,Colorado and Wyoming[J].American Mineralogist: Journal of Earth and Planetary Materials,1975,60: 235-239.

[90]熊英,程克明,馬力元. 酒西坳陷下白堊統(tǒng)湖相碳酸鹽巖生烴研究[J]. 石油勘探與開發(fā),2006,33(6):687-691.

Xiong Ying,Cheng Keming,Ma Liyuan. Hydrocarbon generation of Lower Cretaceous lacustrine carbonate in Jiuxi Depression[J]. Petroleum Exploration and Development,2006,33(6):687-691.

[91]李婷婷,朱如凱,白斌,等. 酒泉盆地青西凹陷下溝組湖相細(xì)粒沉積巖紋層特征及研究意義[J]. 中國(guó)石油勘探,2015,20(1):38-47.

Li Tingting,Zhu Rukai,Bai Bin,et al. Characteristics and research significance of fine lacustrine sedimentary rock laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration,2015,20(1):38-47.

[92] Desborough G A. A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation An alternative to the playa-lake model[J]. Geological Society of America Bulletin,1978,89:961-971.

[93] Slaughter M,Hill RJ. The influence of organic matter in organogenic dolomitization: Perspective[J]. Journal of Sedimentary Research,1991,61:296-303.

[94] Zhu S F,Cui H,Jia Y,et al. Occurrence,composition,and origin of analcime in sedimentary rocks of non-marine petroliferous basins in China[J]. Marine and Petroleum Geology,2020,113,104164.

[95] Zhu S F,Qin Y,Liu X,et al. Origin of dolomitic rocks in the Lower Permian Fengcheng Formation,Junggar Basin,China: Evidence from petrology and geochemistry[J]. Mineralogy and Petrolo?gy,2017,112(2):267-282.

[96] Hay R L. Zeolites and zeolitic reactions in sedimentary rocks[J]. Geological Society of America Special Paper,1966,85:130.

[97] Langella A,Cappelletti P,Gennaro M. Zeolites in closed hydrologic systems[J].Reviews in Mineralogy and Geochemistry,2001,45:235-260.

[98] Larsen D. Revisiting silicate authigenesis in the Pliocene?Pleistocene Lake Tecopa beds,southeastern California: Depositional and hydrological controls[J]. Geosphere,2008,4(3):612-639.

[99] Tank R W. Clay Minerals of the Green River Formation (Eocene) of Wyoming[J].Clay Minerals,1972,9: 297-308.

[100] Hay R L,Moiola R J. Authigenic silicate minerals in Searles Lake,California[J]. Sedimentology,1963,2(4):312-332.

[101] Worden R H. Dawsonite cement in the Triassic Lam Formation,Shabwa Basin,Yemen:A natural analogue for a potential mineral product of subsurface CO2storage for greenhouse gas reduction[J]. Marine and Petroleum Geology,2006,23:61-77.

[102]紀(jì)友亮,蔣裕強(qiáng),張世奇. 油氣儲(chǔ)層地質(zhì)學(xué)[M]. 北京:石油工業(yè)出版社,2015:258.

Ji Youliang,Jiang Yuqiang,Zhang Shiqi. Reservoir geology[M]. Beijing:Petroleum Industry Press,2015:258.

[103]李曉萌,潘仁芳,武文競(jìng),等. 川南地區(qū)下古生界筇竹寺組與龍馬溪組頁(yè)巖氣縱向?qū)Ρ燃霸u(píng)價(jià)[J]. 石油化工應(yīng)用,2016,35(10):87-92.

Li Xiaomeng,Pan Renfang,Wu Wenjing,et al. Shale gas comparision and evaluation of Longmaxi formation and Qiongzhusi formation of lower Palaeozoic in the area of southern Sichuan[J]. Petrochemical Industry Application,2016,35(10): 87-92.

[104] Jarvie D M,Hill R J,Ruble T E,et al. Unconventional shale?gas systems:The Mississippian Barnett Shale of north?central Texas as one model for thermogenic shale?gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.

[105]柯思. 泌陽(yáng)凹陷頁(yè)巖油賦存狀態(tài)及可動(dòng)性探討[J]. 石油地質(zhì)與工程,2017,31(1):80-83.

Ke Si. Discussion on the occurrence and mobility of shale oil in the Biyang Depression[J]. Petroleum Geology and Engineering,2017,31(1): 80-83.

[106]朱世發(fā),朱筱敏,王緒龍,等. 準(zhǔn)噶爾盆地西北緣二疊系沸石礦物成巖作用及對(duì)油氣的意義[J].中國(guó)科學(xué)(地球科學(xué)版),2011,41(11):1602-1612.

Zhu Shifa,Zhu Xiaomin,Wang Xulong,et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of JunggarBasin[J]. Science China:Earth Scie?nces,41(11):1602-1612.

Genesis of high-quality source rocks in volcano-related alkaline lakes and implications for the exploration and development of shale oil and gas

Li Changzhi1,Guo Pei1,Ke Xianqi2,Ma Yan3

(1,,,610059,;25,,,,718600,;311,,,,745000,)

In order to clarify the controlling mechanisms of volcanic activities on the development of high-quality source rocks in non-marine petroliferous basins,this study summarizes the relationships between volcanic activity,alkaline lakes and high-quality source rocks through an extensive review of previous studies and proposes that alkaline lakes act as a vital link between volcanic activities and source rocks. It is suggested that large amount of CO2emitted by volcanic activities would enter hydrothermal fluids,underground waters or rivers and then produce a large amount of HCO3-through accelerated silicate hydrolysis process,leading to the formation of alkaline lakes. The high pH in alkaline lakes would activate a variety of nutrient elements and compounds such as Mo,phosphate and silicate,thus improving the primary productivity of water body. In addition,the high pH also would lead to an exponential increase of silica solubility in alkaline waters. During the process of pH decrease by initial degradation of organic matter,the dissolved silica would precipitate and form a siliceous layer,which could effectively prevent further degradation of organic matter. Based on these assumptions,this study proposes a genetic model for volcanism-alkaline lake-high-quality source rocks chain,which is the main reason of the occurrence of brittle and porous shale reservoirs for oil due to a high content of microcrystalline dolomite and tuff materials that are easily converted from montmorillonite to zeolite,potassium feldspar,and sodium feldspar.

primary productivity,silicification,high-quality source rock,volcanic activity,alkaline lake

TE122.1

A

0253-9985(2021)06-1423-12

10.11743/ogg20210616

2020-04-20;

2021-10-19。

李長(zhǎng)志(1991—),男,博士,陸相蒸發(fā)巖與烴源巖。E?mail:nwulcz@126.com。

郭佩(1990—),女,博士、副研究員,咸化湖盆沉積與成烴。E?mail: guopei18@cdut.edu.cn。

國(guó)家自然科學(xué)基金項(xiàng)目(42002116)。

(編輯 董立)

猜你喜歡
烴源湖泊火山
海底火山群
有趣的火山圖
你相信嗎?湖泊也可以“生死輪回”
火山
東濮凹陷西南部晚古生代—早新生代烴源研究
“害羞”的湖泊
我是火山
奇異的湖泊
中國(guó)近海湖相優(yōu)質(zhì)烴源巖形成的主要控制因素
柴達(dá)木盆地柴北緣侏羅系烴源巖特征分析
香格里拉县| 临潭县| 康平县| 闽侯县| 关岭| 招远市| 南涧| 庆元县| 丹凤县| 白城市| 简阳市| 宁德市| 山东省| 区。| 万载县| 孟州市| 资溪县| 祁东县| 南乐县| 固镇县| 同江市| 东山县| 霍州市| 安国市| 新沂市| 临洮县| 大英县| 嫩江县| 九龙坡区| 新野县| 大名县| 凤庆县| 萍乡市| 桃江县| 游戏| 潜山县| 周至县| 清河县| 南开区| 伊通| 岑巩县|