有名輝,孫 霞
一個(gè)含有復(fù)合核的Hilbert型不等式
有名輝,孫 霞
(浙江機(jī)電職業(yè)技術(shù)學(xué)院數(shù)學(xué)教研室,浙江杭州 310053)
通過(guò)引入恰當(dāng)參數(shù),構(gòu)建一個(gè)與對(duì)數(shù)函數(shù)相關(guān)聯(lián)并同時(shí)包含齊次和非齊次兩種情形的核函數(shù).借助實(shí)分析的相關(guān)技巧,建立一個(gè)含最佳常數(shù)因子的Hilbert型積分不等式.特別地,作為結(jié)論的應(yīng)用,通過(guò)對(duì)參數(shù)賦予特殊值,文末還建立了若干推論.
Hilbert型不等式;復(fù)合核;H?lder不等式;最佳因子
近年來(lái),研究者們通過(guò)對(duì)(1)式中的核函數(shù)進(jìn)行參數(shù)化,并考慮其對(duì)應(yīng)的離散情形、半離散情形、高維推廣以及系數(shù)加強(qiáng),構(gòu)建了大量富有價(jià)值的新成果[3-12].此外,通常還有與(1)式類似的含有對(duì)數(shù)函數(shù)的不等式:
(2)式通常稱為Hilbert型不等式,其相關(guān)推廣和類比可參見(jiàn)文獻(xiàn)[13-17].另外,通過(guò)構(gòu)造一個(gè)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)復(fù)合而成的核函數(shù),劉瓊等[18]建立了如下Hilbert型不等式:
本文將建立如下核函數(shù)與對(duì)數(shù)函數(shù)關(guān)聯(lián)的Hilbert型不等式:
更一般地,我們將構(gòu)造一個(gè)含對(duì)數(shù)函數(shù)的多參數(shù)積分核函數(shù),并同時(shí)兼顧齊次和非齊次兩種形式,借助統(tǒng)一的處理方法,建立(4)式的推廣形式.
由分部積分,可得:
同理可得
把(8)式和(9)式的結(jié)果代入到(7)式,則可得(6)式.
證明:由H?lder不等式[20]得:
類似的方法可得:
把(15)式及(16)式代入到(14)式,則
即
且有
[1] Mintrinovic D S, Pecaric J E, Fink A M.Inequalities Involving Functions and Their Integrals and Derivatives [M]. Boston: Kluwer Academic, 1991: 17-35.
[2] Hardy G H, Littlewood J E, Polya G. Inequalities [M]. London: Cambridge University Press, 1952: 255.
[3] 楊必成. 算子范數(shù)與Hilbert型不等式[M]. 北京: 科學(xué)出版社, 2009: 2-17.
[4] Yang B C. On Hilbert’s Integral Inequality [J]. J Math Anal Appl, 1998, 220(2): 778-785.
[5] Yang B C, Brnetic I, Krnic M, et al. Generalization of Hilbert and Hardy-Hilbert Integral Inequalities [J]. Math Inequal Appl, 2005, 8: 259-272.
[6] Yang B C. On an Extension of Hilbert’s Integral Inequality with Some Parameters [J]. Aus J Math Anal Appl, 2004, 1(1): 1-8.
[7] Krnic M, Pecaric J, Peric I, et al. Renct Advances in Hilbert-type Inequalities [M]. Zagreb: Element Press, 2012: 2-43.
[8] Krnic M, Pecaric J. Extension of Hilbert’s Inequality [J]. J Math Anal Appl, 2006, 324: 150-160.
[9] Krnic M, Pecaric J. General Hilbert’s and Hardy’s Inequalities [J]. Math Inequal Appl, 2005, 60: 29-51.
[10] kuang J, Debnath L. On New Generalizations of Hilbert’s Inequality and Their Applications [J]. J Math Anal Appl, 2000, 245: 248-265.
[11] You M H.On a New Discrete Hilbert-type Inequality and Its Application [J]. Math Inequal Appl, 2015, 18(4): 1575-1587.
[12] 楊必成. 一個(gè)新的零齊次核的Hilbert型積分不等式[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2012, 39(4): 390-392.
[13] Yang B C. An Extension on the Hilbert-type Inequality and Its Reverse [J]. J Math Inequal, 2005, 43(5): 580-584.
[14] 有名輝. 一個(gè)與Euler數(shù)有關(guān)的Hilbert型不等式的推廣[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2016, 43(2): 144-148.
[15] 有名輝. 一個(gè)含特殊常數(shù)因子的非齊次核Hilbert型不等式[J]. 溫州大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 37(4): 17-24.
[16] 付向紅, 和炳. 具有兩個(gè)參數(shù)的Hilbert型積分不等式[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2010, 48(4): 595-599.
[17] 周昱, 高明哲. 一個(gè)新的帶參數(shù)的Hilbert型積分不等式[J]. 數(shù)學(xué)雜志, 2011, 31(3): 575-581.
[18] 劉瓊, 黃琳. 一個(gè)參量化復(fù)合核Hilbert型積分不等式[J]. 華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 60(1): 51-57.
[19] 余家榮. 復(fù)變函數(shù)[M]. 3版. 北京: 高等教育出版社, 2000: 96.
[20] 匡繼昌. 常用不等式[M]. 濟(jì)南: 山東科學(xué)技術(shù)出版社, 2003: 5.
On a Hilbert-type Inequality Involving a Composite Kernel
YOU Minghui, SUN Xia
(Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou, China 310053)
By introducing several parameters, this paper constructs a composite kernel function which is associated with logarithmic function and contains both homogeneous and non-homogeneous cases. With the help of real analysis techniques, a Hilbert- type integral inequality with optimal constant factor is established. In particular, as an application of the conclusion, some inferences are established by assigning special values to parameters.
Hilbert-type Inequality; Composite Kernel; H?lder Inequality; Best Constant Factor
O178
A
1674-3563(2021)04-0012-06
10.3875/j.issn.1674-3563.2021.04.002 本文的PDF文件可以從www.wzu.edu.cn/wzdxxb.htm獲得
2020-08-13
浙江省教育廳科研項(xiàng)目(Y201737260);浙江機(jī)電職業(yè)技術(shù)學(xué)院科教融合項(xiàng)目(A-0271-20-007)
有名輝(1982― ),男,浙江安吉人,講師,碩士,研究方向:算子逼近與不等式
(英文審校:黃璐)
(編輯:王一芳)
溫州大學(xué)學(xué)報(bào)(自然科學(xué)版)2021年4期