袁小偉,楊雙平,金若成,趙黎煒,道爾吉才仁,鄭 楠,付溫平
·農(nóng)業(yè)裝備工程與機(jī)械化·
雙螺旋對(duì)輥式辣椒收獲裝置的設(shè)計(jì)與試驗(yàn)
袁小偉1,2,楊雙平2,金若成3※,趙黎煒3,道爾吉才仁1,鄭 楠3,付溫平4
(1. 巴音郭楞職業(yè)技術(shù)學(xué)院,庫(kù)爾勒 841000; 2. 新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052;3. 巴音郭楞蒙古自治州農(nóng)業(yè)農(nóng)村機(jī)械化發(fā)展中心,庫(kù)爾勒 841000; 4. 庫(kù)爾勒源豐農(nóng)機(jī)有限公司,庫(kù)爾勒 841000)
針對(duì)色素辣椒采收需求大,人工采收困難,采收效率低,破損率高等問(wèn)題,該研究設(shè)計(jì)了一種雙螺旋對(duì)輥式辣椒收獲裝置。首先通過(guò)對(duì)辣椒與螺旋鋼棒接觸點(diǎn)進(jìn)行受力分析,確定影響采收性能的主要因素,并通過(guò)單因素試驗(yàn)確定優(yōu)化試驗(yàn)中各因素選取范圍。并以打完脫葉劑2 d后,辣椒莖稈含水率≤40%的新疆巴州焉耆縣色素辣椒為試驗(yàn)對(duì)象,以采凈率和破損率為試驗(yàn)指標(biāo),以工作速度、對(duì)輥轉(zhuǎn)速、對(duì)輥間距和對(duì)輥螺距為試驗(yàn)因素,進(jìn)行四因素五水平正交中心組合優(yōu)化試驗(yàn);運(yùn)用Design-expert 10軟件對(duì)試驗(yàn)結(jié)果進(jìn)行參數(shù)優(yōu)化,通過(guò)驗(yàn)證試驗(yàn)對(duì)優(yōu)化后的參數(shù)進(jìn)行驗(yàn)證。試驗(yàn)結(jié)果表明:當(dāng)工作速度為2.1 km/h,對(duì)輥轉(zhuǎn)速為142 r/min,對(duì)輥間距為24.3 mm,對(duì)輥螺距為10 cm時(shí),采凈率為98.7%,破損率為3.46%,滿足色素辣椒收獲機(jī)田間作業(yè)要求。研究結(jié)果可為色素辣椒收獲機(jī)的設(shè)計(jì)和優(yōu)化提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);辣椒收獲;螺旋對(duì)輥
辣椒是一年或有限多年生草本植物,是中國(guó)蔬菜產(chǎn)業(yè)中重要大產(chǎn)業(yè)[1]。近年來(lái)辣椒種植面積不斷擴(kuò)大,截止到2018年國(guó)內(nèi)辣椒的種植面積已達(dá)160萬(wàn)hm2。新疆地區(qū)辣椒種植總面積約12萬(wàn)hm2,其中色素辣椒約10.6萬(wàn)hm2[1]。色素辣椒中含有辣椒紅色素和辣椒玉紅素等天然色素,經(jīng)濟(jì)價(jià)值較高[2-4]。色素辣椒生長(zhǎng)期全程用工量較大,人工采收成本高,效率低,若不能及時(shí)收獲和晾曬,極易造成產(chǎn)品浪費(fèi),商品轉(zhuǎn)化率降低[1],因此,亟需高效的色素辣椒收獲機(jī)械。
目前色素辣椒收獲機(jī)主要有梳齒式和螺旋輥式兩種,作業(yè)過(guò)程均為先采收后進(jìn)行收集和清雜[1,4],這兩種收獲機(jī)采收方式不同。梳齒式辣椒收獲機(jī)主要以牧神為代表[5-6],采用橫置帶有梳齒的滾筒對(duì)辣椒進(jìn)行梳理和拉拔采收,該結(jié)構(gòu)采收時(shí)不需要對(duì)辣椒進(jìn)行對(duì)行,因此收獲速度快、效率高[7-8],但該裝置采收面大,采摘過(guò)程為無(wú)差別采收,將部分枝葉一并采收,含雜率較高,且由于其結(jié)構(gòu)特殊性,在滾筒高速運(yùn)轉(zhuǎn)采收時(shí),梳齒極易對(duì)辣椒造成花皮損傷[9],使得辣椒色價(jià)下降,影響辣椒的收購(gòu)價(jià)格。
螺旋輥式辣椒收獲機(jī)主要以中農(nóng)博遠(yuǎn)和美國(guó)Boese為代表[10-13],該機(jī)型模擬人手撥動(dòng)物體動(dòng)作,通過(guò)高速旋轉(zhuǎn)的螺旋輥產(chǎn)生的撥動(dòng)力實(shí)現(xiàn)辣椒采收。由于螺旋輥?zhàn)饔梅秶?,可有效減少斷莖,且采收時(shí)螺旋鋼棒對(duì)辣椒的接觸為點(diǎn)接觸,接觸面積小,可降低辣椒采收破損率,但該機(jī)型在采收時(shí)需要對(duì)行采收[14-15],相比梳齒式采收效率降低。
韓國(guó)研發(fā)了一種基于機(jī)器視覺(jué)的辣椒采收裝置[16],其通過(guò)多攝像頭對(duì)辣椒進(jìn)行識(shí)別定位,再利用剪切機(jī)構(gòu)對(duì)辣椒進(jìn)行剪切采收,該裝置目前處于試驗(yàn)階段,采收效率較低,不適用于新疆地區(qū)統(tǒng)收的色素辣椒。
為降低采收過(guò)程對(duì)辣椒的損傷,本文裝置設(shè)計(jì)參考了玉米螺旋收獲裝置螺旋對(duì)輥?zhàn)鳂I(yè)方式[17-18],但考慮到將辣椒從莖稈脫離需要向上的力,為適應(yīng)辣椒收獲,將玉米收獲裝置對(duì)輥旋向進(jìn)行調(diào)換,改變了力的作用方向,通過(guò)相互向外轉(zhuǎn)動(dòng)的對(duì)輥,對(duì)辣椒產(chǎn)生向上的撥動(dòng)力,使得辣椒與固定在地面的莖稈分離,完成采收,且將原螺旋對(duì)輥設(shè)計(jì)為雙螺旋對(duì)輥,以期提高辣椒采收效率。擬通過(guò)四因素五水平參數(shù)優(yōu)化試驗(yàn),得出最優(yōu)結(jié)構(gòu)和作業(yè)參數(shù),并通過(guò)試驗(yàn)進(jìn)行驗(yàn)證,以期為特色作物收獲機(jī)具設(shè)計(jì)提供參考依據(jù)。
雙螺旋對(duì)輥式辣椒收獲裝置為自走式,主要包括駕駛艙、扶禾器、雙螺旋對(duì)輥、輸送帶、收集箱等。扶禾器安裝在機(jī)具最前端,用于對(duì)行,對(duì)辣椒進(jìn)行采收前預(yù)整理。雙螺旋對(duì)輥呈一定傾斜角度安裝在扶禾器后方,對(duì)辣椒進(jìn)行采收。輸送帶安裝在雙螺旋對(duì)輥的側(cè)下方,與側(cè)邊擋板配合,通過(guò)安裝在后方的升運(yùn)器將采收下來(lái)的辣椒輸送到收集箱。
圖2所示部分為雙螺旋對(duì)輥式辣椒收獲裝置前端采收部分,工作時(shí),機(jī)具對(duì)行向前行進(jìn),安裝在機(jī)具前端的扶禾器對(duì)未采收的辣椒進(jìn)行預(yù)整理,使得并排放置的兩個(gè)雙螺旋對(duì)輥?lái)樌M(jìn)入指定辣椒采收位置。對(duì)輥高速轉(zhuǎn)動(dòng),旋向向外,對(duì)它們之間接觸到的辣椒產(chǎn)生向上的拉拔力,將辣椒從固定在地面的莖稈上脫離。同時(shí),由于機(jī)具始終向前行進(jìn),雙螺旋對(duì)輥并排傾斜布置,對(duì)莖稈任意結(jié)椒位置均可完成采收。從莖稈脫離下來(lái)的辣椒掉落到輸送帶上,由輸送帶運(yùn)到后方,進(jìn)行清雜和收集,完成辣椒采收作業(yè)。
雙螺旋對(duì)輥是雙螺旋對(duì)輥式辣椒收獲裝置的關(guān)鍵部件,直接影響裝置的采收性能。其螺旋角是反映螺旋葉片對(duì)辣椒作用力方向的主要參數(shù),螺旋角過(guò)大,葉片對(duì)辣椒的作用力方向過(guò)前,不能及時(shí)對(duì)辣椒形成向上的拉拔力,易造成采收不充分;螺旋角過(guò)小,在直徑一定時(shí),會(huì)造成螺距增大,增加空行程,螺旋鋼板不能及時(shí)對(duì)辣椒作用,容易造成采收擁堵,降低采凈率,因此在設(shè)計(jì)雙螺旋對(duì)輥時(shí)螺旋角是主要參考依據(jù)。若設(shè)計(jì)為單頭螺旋,則在保證螺旋角的前提下,螺距較大,不能充分對(duì)辣椒進(jìn)行采收,若設(shè)計(jì)為三頭及以上,則在保證螺旋角的前提下,螺距較小,影響辣椒進(jìn)入采收位置,螺旋鋼棒無(wú)法對(duì)辣椒施加作用。因此選用雙螺旋對(duì)輥設(shè)計(jì)對(duì)辣椒進(jìn)行采收。
如圖3所示,考慮到螺旋葉片的加工安裝和結(jié)構(gòu)強(qiáng)度,按照實(shí)際經(jīng)驗(yàn)取螺旋葉片厚度為3 mm。螺旋葉片直徑是對(duì)辣椒采收直接作用的尺寸,若螺旋葉片直徑較小,則螺旋鋼棒對(duì)辣椒的作用距離較短,采收效果較差,若螺旋葉片直徑較大,則會(huì)增大裝置結(jié)構(gòu),造成采收時(shí)采收位置不足,無(wú)法充分對(duì)辣椒進(jìn)行采收。
如圖4a所示,辣椒最初在點(diǎn)接觸到螺旋鋼棒上端頂點(diǎn),瞬時(shí)跟隨螺旋鋼棒做圓周運(yùn)動(dòng),假定跟隨轉(zhuǎn)動(dòng)到點(diǎn)時(shí),辣椒即將脫離莖稈,此時(shí)螺旋鋼棒轉(zhuǎn)過(guò)的角度為(°),莖稈緊貼螺旋鋼棒點(diǎn)最外側(cè),順著莖稈方向,及方向上,莖稈對(duì)辣椒的作用力為2,則此時(shí)莖稈對(duì)辣椒水平方向的作用力為
2x=2cos(90°-/2) (1)
在作用力2一定時(shí),要求對(duì)輥帶動(dòng)辣椒轉(zhuǎn)過(guò)的角度不易過(guò)大,因?yàn)槿羟o稈對(duì)辣椒水平方向的分力過(guò)大,則會(huì)導(dǎo)致辣椒側(cè)滑,至下一螺旋鋼棒采收,造成二次擊打,損傷辣椒。為確保辣椒能夠單次順利完成采收作業(yè),應(yīng)使得對(duì)輥轉(zhuǎn)過(guò)的角度不大于,即對(duì)輥轉(zhuǎn)到點(diǎn)位置。若螺旋鋼棒與辣椒之間的摩擦系數(shù)為,則在理想狀態(tài)下有
2x≤2y(2)
2y=2sin(90°-/2) (3)
查閱相關(guān)資料[19-20],類比選取螺旋鋼棒與辣椒之間的摩擦系數(shù)為0.4,代入上式計(jì)算得到,理想狀態(tài)下,當(dāng)對(duì)輥帶著辣椒至少轉(zhuǎn)過(guò)的角度為43.6°時(shí),辣椒采凈率較高。
對(duì)不同植株上不同高度的辣椒進(jìn)行拉拔采摘試驗(yàn),測(cè)量得到從辣椒接觸到螺旋鋼棒到從莖稈脫落所需的最大行程平均值為30 mm,則所需的螺旋葉片的最小直徑為
代入數(shù)值計(jì)算得到所需的螺旋葉片最小直徑為87.1 mm,考慮螺旋鋼棒尺寸作用,本次設(shè)計(jì)螺旋葉片直徑為90 mm。螺旋葉片外側(cè)與辣椒直接接觸的螺旋鋼棒直徑若取值過(guò)大,則無(wú)法有效對(duì)辣椒作用產(chǎn)生向上的拉拔力,且會(huì)造成裝置體積質(zhì)量增加,若直徑過(guò)小,則會(huì)使得采收對(duì)辣椒損傷嚴(yán)重,因此螺旋鋼棒在允許范圍內(nèi)直徑越大越好。辣椒尾端直徑約為30 mm,螺旋鋼棒直徑不應(yīng)大于接觸部位辣椒直徑的一半,否則不能有效與辣椒接觸,考慮到辣椒果梗直徑大小,本次設(shè)計(jì)取鋼棒直徑為10 mm。
在采收作業(yè)時(shí),辣椒處于雙螺旋對(duì)輥之間,共有兩種情況,辣椒與左側(cè)螺旋輥接觸或辣椒與右側(cè)螺旋輥接觸。無(wú)論在哪一側(cè),辣椒在接觸到雙螺旋對(duì)輥上螺旋葉片邊緣的鋼棒時(shí),為點(diǎn)接觸。因此將該問(wèn)題簡(jiǎn)化到單邊螺旋鋼棒上進(jìn)行辣椒受力分析,如圖4所示,辣椒瞬時(shí)跟隨鋼棒運(yùn)動(dòng),此時(shí)在該接觸點(diǎn)上,鋼棒對(duì)辣椒產(chǎn)生垂直向上,即在軸方向的力為:
=1cos(+) (5)
對(duì)于雙螺旋對(duì)輥的螺旋角有
注:1為螺旋葉片與辣椒接觸點(diǎn)線速度,m/s;1為工作速度,km/h;v為工作速度在軸方向的分速度,m/s。
Note:1is the linear velocity of the contact point between the spiral blade and the pepper, m/s;1is the working speed, km/h;vis the sub-velocity of the working speed in the-axis direction, m/s.
圖5 辣椒在對(duì)輥上的速度分析
Fig.5 Velocity analysis of pepper on the pair roller
辣椒接觸螺旋鋼棒,瞬時(shí)產(chǎn)生的速度,m/s,方向與軸方向一致,由螺旋葉片旋轉(zhuǎn)產(chǎn)生的線速度與機(jī)具向前行進(jìn)的工作速度合成,即:
=1+v(7)
其中
(8)
根據(jù)動(dòng)量守恒定律,辣椒受到的沖擊力大小與其作用時(shí)間的乘積與辣椒動(dòng)量的變化量相等,即:
1=Δ(9)
式中為辣椒受到?jīng)_擊力的作用時(shí)間,s;為受到?jīng)_擊的單個(gè)辣椒的質(zhì)量,g,為辣椒瞬時(shí)的速度,m/s;Δ為辣椒速度的變化量。
對(duì)于辣椒受到?jīng)_擊力的作用時(shí)間,根據(jù)設(shè)計(jì)要求,辣椒從接觸螺旋鋼棒到脫離,雙螺旋對(duì)輥轉(zhuǎn)過(guò)的角度為,則沖擊力作用時(shí)間(s)為
結(jié)合上述,可計(jì)算得到鋼棒對(duì)辣椒產(chǎn)生的豎直向上的作用力大小,即辣椒受到的拉拔力大小為
辣椒在采收時(shí),接觸點(diǎn)瞬時(shí)受到的豎直向上的作用力大小直接反映辣椒的采收效果,作用力過(guò)大,單次碰撞即可完成采收,采收充分,但會(huì)造成辣椒損傷嚴(yán)重;拉拔力過(guò)小,需要二次碰撞完成采收,采收不充分且會(huì)加劇辣椒損傷。
由式(11)可知,當(dāng)螺旋葉片直徑為90 mm,螺旋鋼棒直徑為10 mm,工作角度一定時(shí),影響辣椒所受拉拔力的主要因素有機(jī)具前進(jìn)的工作速度1、對(duì)輥轉(zhuǎn)速2、對(duì)輥螺旋角;通過(guò)公式(11)可得知,工作速度1和對(duì)輥轉(zhuǎn)速2越大,則辣椒受到的作用力越大,對(duì)輥螺旋角越小,鋼棒對(duì)辣椒的作用力就越小。同時(shí),由式(6)可知,對(duì)輥螺距4越大,對(duì)輥螺旋角就越大,辣椒受到作用力越小。因此,通過(guò)辣椒受力分析可以進(jìn)一步確定影響裝置采收性能的主要因素為工作速度1、對(duì)輥轉(zhuǎn)速2和對(duì)輥螺距4。為驗(yàn)證理論分析,提高裝置采收性能,需要通過(guò)單因素和多因素試驗(yàn)對(duì)雙螺旋對(duì)輥式辣椒收獲裝置進(jìn)行試驗(yàn)驗(yàn)證。
2.1.1 試驗(yàn)材料
2020年7月在新疆巴州地區(qū)進(jìn)行田間試驗(yàn),試驗(yàn)材料選取采收期內(nèi),打完脫葉劑2 d后,辣椒莖稈含水率≤40%的色素辣椒,此時(shí)辣椒在采收時(shí)易于從莖稈脫落,采收過(guò)程對(duì)辣椒損傷較小,且脫葉之后采收的辣椒含雜率較低。
試驗(yàn)儀器為自主研制的雙螺旋對(duì)輥式辣椒收獲裝置,單次可采收8行。對(duì)待采收的辣椒并排8行每100 m進(jìn)行分段處理,在試驗(yàn)時(shí),每采收100 m作為一次獨(dú)立試驗(yàn)。
2.1.2 試驗(yàn)指標(biāo)
本次試驗(yàn)主要研究雙螺旋對(duì)輥式辣椒采收裝置前端部分的采收性能,因此取試驗(yàn)指標(biāo)為辣椒采凈率和破損率,通過(guò)重復(fù)試驗(yàn)測(cè)定主要指標(biāo)的變化規(guī)律,用于選擇合適的工作參數(shù)和結(jié)構(gòu)參數(shù)。
采凈率1(%)
破損率2(%)
式中S為采收完成后收集裝置中所有的辣椒總質(zhì)量,g;S為采收后裝置收集的辣椒與地面散落、莖稈上殘留辣椒質(zhì)量的總和,g;S為采收后裝置收集的中存在破損的辣椒質(zhì)量,g。
2.2.1 單因素試驗(yàn)設(shè)計(jì)
雙螺旋對(duì)輥在采收辣椒時(shí),辣椒處于兩對(duì)輥之間,對(duì)輥間距越小,螺旋鋼棒越容易對(duì)辣椒作用,采摘越充分,但同時(shí)會(huì)造成辣椒二次擠壓損傷,對(duì)輥間距越大,對(duì)辣椒損傷越小,但容易形成漏采。根據(jù)前文分析,本次試驗(yàn)選取4個(gè)影響裝置采收性能的關(guān)鍵參數(shù):工作速度、對(duì)輥轉(zhuǎn)速、對(duì)輥間距和對(duì)輥螺距,工作速度和對(duì)輥轉(zhuǎn)速可在駕駛室控制面板調(diào)節(jié),對(duì)輥間距需要調(diào)節(jié)對(duì)輥安裝位置,對(duì)輥螺距需要更換雙螺旋對(duì)輥進(jìn)行調(diào)節(jié)。
2.2.2 單因素結(jié)果與分析
對(duì)選取的4個(gè)參數(shù)分別進(jìn)行單因素試驗(yàn),驗(yàn)證各因素對(duì)裝置采收性能影響。對(duì)某個(gè)因素進(jìn)行單因素試驗(yàn)時(shí),取其余參數(shù)的值為理論設(shè)計(jì)最小值,每次試驗(yàn)做3次,結(jié)果取平均值,試驗(yàn)結(jié)果如圖6所示。
1)工作速度
工作速度1是裝置工作時(shí)的行進(jìn)速度,它直接反映裝置的工作效率。工作速度過(guò)大,會(huì)導(dǎo)致采收不充分,且由式(11)可知,辣椒受到瞬時(shí)作用力增大,會(huì)增加辣椒損傷;工作速度過(guò)小,采收效率較低,不能滿足生產(chǎn)要求。結(jié)合圖6a中試驗(yàn)結(jié)果,工作速度在2~4 km/h范圍內(nèi),對(duì)裝置采收性能影響明顯,因此結(jié)合類似作物農(nóng)機(jī)具的工作效率[21-22],本次選取工作速度為2~4 km/h進(jìn)行優(yōu)化試驗(yàn)。
2)對(duì)輥轉(zhuǎn)速
對(duì)輥轉(zhuǎn)速2是雙螺旋對(duì)輥的轉(zhuǎn)動(dòng)速度,對(duì)輥轉(zhuǎn)速提高,采凈率會(huì)明顯增大,但由式(11)可知,辣椒受到的作用力急劇增大,會(huì)造成辣椒損傷嚴(yán)重,因此選擇較優(yōu)的對(duì)輥轉(zhuǎn)速是本次研究的重點(diǎn)。試驗(yàn)結(jié)果如圖6b所示,當(dāng)對(duì)輥轉(zhuǎn)速小于110 r/min時(shí),辣椒采凈率低于95%,當(dāng)對(duì)輥轉(zhuǎn)速大于190 r/min時(shí),辣椒采凈率有降低趨勢(shì),且辣椒破損率持續(xù)增大,因此本次選取對(duì)輥轉(zhuǎn)速為110~190 r/min進(jìn)行優(yōu)化試驗(yàn)。
3)對(duì)輥間距
對(duì)輥間距3是兩個(gè)雙螺旋對(duì)輥之間的最小間距,這個(gè)間距值影響著裝置的采收性能。對(duì)輥間距較小時(shí),采收效果較好,采凈率較高,但易造成辣椒損傷,且采收后的辣椒含雜率較高。對(duì)輥間距較大漏采現(xiàn)象嚴(yán)重,且會(huì)造成單次碰撞不能有效采收,形成二次碰撞,增大損傷率。試驗(yàn)結(jié)果如圖6c所示,隨著對(duì)輥間距的增大,采凈率和破損率逐漸降低,在10~30 mm范圍內(nèi)影響顯著,因此本次試驗(yàn)選取對(duì)輥間距為10~30 mm進(jìn)行優(yōu)化試驗(yàn)。
4)對(duì)輥螺距
對(duì)輥螺距4是雙螺旋對(duì)輥的重要結(jié)構(gòu)參數(shù),由式(6)和式(11)可知,當(dāng)對(duì)輥螺距增大,辣椒瞬時(shí)受到的作用力增大,采收效率提高,但同時(shí)破損率也隨之增大。當(dāng)對(duì)輥螺距減小時(shí),破損率明顯減小,但也會(huì)導(dǎo)致采收效率下降。試驗(yàn)結(jié)果如圖6d所示,隨著對(duì)輥螺距增大,采凈率和破損率逐漸增大,對(duì)輥螺距大于30 cm時(shí),采凈率和破損率逐漸穩(wěn)定,因此本次選取對(duì)采收性能影響較為顯著的對(duì)輥螺距為10~30 cm進(jìn)行優(yōu)化試驗(yàn)。
通過(guò)單因素試驗(yàn)對(duì)影響雙螺旋對(duì)輥式辣椒收獲裝置采收性能的顯著因素進(jìn)行驗(yàn)證,得到各因素影響的顯著范圍,擬通過(guò)對(duì)各影響因素在顯著范圍內(nèi)進(jìn)行交互試驗(yàn)分析,以期得到雙螺旋對(duì)輥式辣椒收獲裝置較優(yōu)的工作及結(jié)構(gòu)參數(shù)組合,提高裝置采收性能。
2.3.1 交互試驗(yàn)設(shè)計(jì)
試驗(yàn)選取工作速度1、對(duì)輥轉(zhuǎn)速2、對(duì)輥間距3、對(duì)輥螺距4為影響因素,設(shè)計(jì)四因素五水平正交中心組合優(yōu)化試驗(yàn)[23-24],試驗(yàn)方案如表1所示,共進(jìn)行30組試驗(yàn),每組試驗(yàn)重復(fù)進(jìn)行3次,取3次測(cè)試結(jié)果的均值作為試驗(yàn)結(jié)果,試驗(yàn)設(shè)計(jì)及結(jié)果分析應(yīng)用的Design-expert 10軟件完成。
表1 試驗(yàn)因素水平編碼表
2.3.2 交互試驗(yàn)結(jié)果與分析
試驗(yàn)結(jié)果如表2所示。
由表3采凈率1的方差分析可知,因素和因素的交互作用對(duì)于采凈率影響的主次順序依次為1、32、2、4、22、3、12、14、42、12、34,其中1、2、3、4、14、12、22、32影響極顯著(<0.01),12、34、42影響顯著(0.05≤<0.01),其他因素影響不顯著(>0.1)。失擬項(xiàng)=0.326 9,不顯著,證明不存在其他影響試驗(yàn)指標(biāo)的主要因素。
利用Design-expert 10軟件對(duì)試驗(yàn)結(jié)果進(jìn)行分析,并對(duì)各試驗(yàn)指標(biāo)進(jìn)行多元回歸擬合,剔除不顯著因素,得到各因素水平對(duì)采凈率的回歸方程為
1=98.38?0.711+0.482?0.293?0.314?0.1612+
0.1814?0.1434?0.1912?0.2722?0.5232?
0.1242(14)
表2 二次旋轉(zhuǎn)正交組合試驗(yàn)方案及結(jié)果
注:1、2、3、4分別為1、2、3、4的水平值。
Note:1,2,3, and4are the horizontal values of1,2,3, and4, respectively.
表3 采凈率方差分析
注:***表示極顯著(<0.01);**表示顯著(0.01≤<0.05);*表示較顯著(0.05≤<0.1),下同。
Note: *** means highly significant (<0.01); ** means significant (0.01≤<0.05); * means generally significant (0.05≤<0.1), the same below.
表4為破損率2的方差分析表可知,對(duì)于破損率,影響因素的主次順序依次為2、3、4、1、12、32、34、12,其中1、2、3、4、34、12、32影響極顯著(<0.01),12影響顯著(0.05≤<0.01),其他因素影響不顯著(>0.1)。失擬項(xiàng)=0.1512,不顯著,證明不存在其他影響試驗(yàn)指標(biāo)的主要因素。
表4 破損率方差分析
利用Design-expert 10軟件對(duì)試驗(yàn)結(jié)果進(jìn)行分析,并對(duì)各試驗(yàn)指標(biāo)進(jìn)行多元回歸擬合,剔除不顯著因素,得到各因素水平對(duì)破損率的回歸方程為
2=4.50+0.221+0.512?0.303+0.284?0.1112+
0.1234+0.1212?0.1232(15)
2.3.3 響應(yīng)曲面分析
通過(guò)采凈率和破損率方差分析表可知,工作速度1、對(duì)輥轉(zhuǎn)速2、對(duì)輥間距3、對(duì)輥螺距4對(duì)辣椒采凈率和破損率均有顯著影響,但其交互作用存在不顯著項(xiàng),利用Design-expert 10軟件得出顯著交互作用對(duì)采凈率和破損率的響應(yīng)曲面,如圖7、圖8所示。
對(duì)于采凈率,當(dāng)對(duì)輥間距為20 mm,對(duì)輥螺距為20 cm時(shí),工作速度與對(duì)輥轉(zhuǎn)速的交互作用如圖7a所示:當(dāng)工作速度一定時(shí),采凈率隨對(duì)輥轉(zhuǎn)速的增大而增大,且增大趨勢(shì)逐漸減小。對(duì)輥轉(zhuǎn)速大于140 r/min時(shí),隨著螺旋轉(zhuǎn)速的增大,采凈率≥97%。對(duì)輥轉(zhuǎn)速超160 r/min時(shí),由響應(yīng)曲面可知,采凈率的增幅較小,增大對(duì)輥轉(zhuǎn)速會(huì)極大的增加裝置的不穩(wěn)定性,因此在達(dá)到設(shè)計(jì)采凈率要求的前提下,優(yōu)先選用該范圍內(nèi)較小的對(duì)輥轉(zhuǎn)速;對(duì)輥轉(zhuǎn)速一定時(shí),采凈率隨著工作速度的減小而增大,工作速度低于3.1 km/h時(shí),隨著工作速度降低,采凈率≥97%。工作速度是反映裝置工作效率的重要指標(biāo),因此在滿足采凈率要求的前提下,優(yōu)先選用該范圍內(nèi)較大的工作速度。
當(dāng)對(duì)輥轉(zhuǎn)速為150 r/min,對(duì)輥間距為20 cm時(shí),工作速度與對(duì)輥螺距的交互作用對(duì)采凈率的影響如圖7b所示:當(dāng)對(duì)輥螺距一定時(shí),采凈率隨著工作速度的減小而增大,但增幅較小。工作速度低于3.1 km/h時(shí),隨著工作速度降低,采凈率≥98%。當(dāng)工作速度一定時(shí),采凈率隨著對(duì)輥間距的增大,先增大后減小,當(dāng)對(duì)輥螺距約為19 mm時(shí),采凈率取得極大值。
當(dāng)工作速度為3 km/h,對(duì)輥轉(zhuǎn)速為150 r/min時(shí),對(duì)輥間距和對(duì)輥螺距的交互作用對(duì)采凈率的影響規(guī)律如圖7c所示:當(dāng)對(duì)輥螺距一定時(shí),在對(duì)輥間距15~19 mm的范圍內(nèi),采凈率隨著對(duì)輥間距的增大而增大,在對(duì)輥間距19~25 mm的范圍內(nèi),采凈率隨著對(duì)輥間距的增大而降低。對(duì)輥間距在17~21 mm范圍內(nèi),采凈率≥98%。當(dāng)對(duì)輥間距一定時(shí),采凈率隨著對(duì)輥螺距的減小而增大,對(duì)輥螺距在15~21 cm范圍內(nèi),采凈率≥98%。當(dāng)對(duì)輥螺距小于17 cm時(shí),由響應(yīng)曲面可知,采凈率增幅較小,且在對(duì)輥轉(zhuǎn)速一定時(shí)對(duì)輥螺距較小會(huì)導(dǎo)致采收效率降低,因此在滿足采凈率的前提下,在因素水平范圍內(nèi)優(yōu)先選擇較大的對(duì)輥螺距。
對(duì)于破損率,當(dāng)對(duì)輥間距為20 mm,對(duì)輥螺距為20 cm時(shí),工作速度與對(duì)輥轉(zhuǎn)速的交互作用如圖8a所示:當(dāng)工作速度一定時(shí),破損率隨著對(duì)輥轉(zhuǎn)速的增大而增大,對(duì)輥轉(zhuǎn)速在130~150 r/min范圍內(nèi),破損率≤4%,由于對(duì)輥轉(zhuǎn)速直接影響采收效率,因此在該范圍內(nèi)優(yōu)先選用較大的對(duì)輥轉(zhuǎn)速。當(dāng)對(duì)輥轉(zhuǎn)速一定時(shí),破損率隨著工作速度的增大而增大,工作速度在2.5~2.9 km/h范圍內(nèi),破損率≤4%,且隨著工作速度增大,破損率增幅較小,為提高采收效率,在該范圍內(nèi)選擇較大的工作速度。
當(dāng)工作速度為3 km/h,對(duì)輥轉(zhuǎn)速為150 r/min時(shí),對(duì)輥間距和對(duì)輥螺距的交互作用對(duì)破損率的影響規(guī)律如圖8b所示:當(dāng)對(duì)輥間距一定時(shí),破損率隨著對(duì)輥螺距的增大而增大,對(duì)輥螺距在15~20 cm范圍內(nèi),破損率≤4%。當(dāng)對(duì)輥螺距一定時(shí),破損率隨著對(duì)輥間距減小而增大,對(duì)輥間距在19~25 mm范圍內(nèi),破損率≤4%。
2.4.1 參數(shù)優(yōu)化
為了獲得雙螺旋對(duì)輥式辣椒收獲裝置的最佳性能參數(shù)和結(jié)構(gòu)參數(shù),利用Design-expert 10軟件中的優(yōu)化模塊對(duì)2個(gè)回歸模型進(jìn)行求解,約束條件為
通過(guò)優(yōu)化求解得工作速度為2.14 km/h,對(duì)輥轉(zhuǎn)速為142 r/min,對(duì)輥間距為24.3 mm,對(duì)輥螺距為10 cm時(shí),雙螺旋對(duì)輥式辣椒收獲裝置的作業(yè)效果最后,其模型預(yù)測(cè)采凈率為99%,破損率為3.37%。
2.4.2 驗(yàn)證試驗(yàn)
2020年9月在新疆巴州地區(qū)進(jìn)行田間試驗(yàn)驗(yàn)證,試驗(yàn)材料選取采收期內(nèi),打完脫葉劑2天后,辣椒莖稈含水率≤40%的色素辣椒。以工作速度2.1 km/h,對(duì)輥轉(zhuǎn)速142 r/min,對(duì)輥間距24.3 mm,對(duì)輥螺距10 cm,進(jìn)行試驗(yàn),試驗(yàn)現(xiàn)場(chǎng)如圖9所示。
每100 m間隔采收為一組試驗(yàn),共進(jìn)行5次重復(fù)試驗(yàn)驗(yàn)證,對(duì)試驗(yàn)結(jié)果取平均值得出,采凈率為98.7%,破損率為3.46%,與理論預(yù)測(cè)值絕對(duì)誤差值均低于1%,辣椒采收效果良好。
針對(duì)色素辣椒人工采收效率低,現(xiàn)有機(jī)型破損率高等問(wèn)題,采用雙螺旋葉片安裝布置方式,研制了一種雙螺旋對(duì)輥式辣椒收獲裝置。
對(duì)采收過(guò)程和辣椒采收時(shí)的受力進(jìn)行分析,確定了工作速度、對(duì)輥轉(zhuǎn)速、對(duì)輥間距和對(duì)輥螺距為影響采收效果的試驗(yàn)因素,以采凈率和破損率為試驗(yàn)指標(biāo)進(jìn)行試驗(yàn)。
利用Design-expert 10軟件對(duì)試驗(yàn)結(jié)果進(jìn)行數(shù)據(jù)分析,得出最優(yōu)參數(shù)后,選擇工作速度2.1 km/h,對(duì)輥轉(zhuǎn)速142 r/min,對(duì)輥間距24.3 mm,對(duì)輥螺距10 cm,進(jìn)行驗(yàn)證試驗(yàn),得到采凈率為98.7%,破損率為3.46%,采收效果良好。
[1] 馬金星. 色素辣椒機(jī)械收獲的現(xiàn)狀及發(fā)展建議[J]. 農(nóng)村實(shí)用技術(shù),2019(8):37-38.
Ma Jinxing. The current situation and development suggestions of mechanical harvesting of pigmented peppers[J]. Rural Practical Technology, 2019(8): 37-38. (in Chinese with English abstract)
[2] 丁皓,董陽(yáng)陽(yáng),趙凱旋. 淺談色素辣椒收獲過(guò)程中收獲機(jī)械的選擇及其優(yōu)缺點(diǎn)[J]. 河北農(nóng)機(jī),2019(6):21-22.
Ding Hao, Dong Yangyang, Zhao Kaixuan. Talking about the choice of harvesting machinery and its advantages and disadvantages in the process of harvesting pigment peppers[J]. Hebei Agricultural Machinery, 2019(6): 21-22. (in Chinese with English abstract)
[3] 薛世民,李謙緒,黃強(qiáng)斌,等. 影響辣椒機(jī)械化收獲效果的因素分析[J]. 新疆農(nóng)機(jī)化,2020(4):9-11.
Xue Shimin, Li Qianxu, Huang Qiangbin, et al. Analysis of factors affecting the mechanized harvesting effect of pepper[J]. Xinjiang Agricultural Mechanization, 2020(4): 9-11. (in Chinese with English abstract)
[4] Bac C W, Roorda T, Reshef R, et al. Analysis of a motion planning problem for sweet pepper harvesting in a dense obstacle environment[J]. Biosyst. Eng. 2016, 146: 85-97.
[5] 張俊三,阿力木·買(mǎi)買(mǎi)提吐?tīng)栠d,李謙緒,等. 牧神4JZ-3600A型自走式辣椒收獲機(jī)的研制[J]. 新疆農(nóng)機(jī)化,2020(3):5-7.
Zhang Junsan, Alimu·Maimaiti Tuerxun, Li Qianxu, et al. Development of Mushen 4JZ-3600A self-propelled pepper harvester[J]. Xinjiang Agricultural Mechanization, 2020(3): 5-7. (in Chinese with English abstract)
[6] 趙飛龍,趙永滿. 辣椒收獲機(jī)風(fēng)機(jī)清選液壓系統(tǒng)的設(shè)計(jì)研究[J]. 新疆農(nóng)機(jī)化,2019(4):18-19,23.
Zhao Feilong, Zhao Yongman. Design and research on the hydraulic system of the fan cleaning of the pepper harvester[J]. Xinjiang Agricultural Mechanization, 2019(4): 18-19, 23. (in Chinese with English abstract)
[7] 趙永滿,刁雪洋,陳永成,等. 辣椒收獲機(jī)復(fù)摘裝置的研究[J]. 農(nóng)機(jī)化研究,2018,40(7):105-110.
Zhao Yongman, Diao Xueyang, Chen Yongcheng, et al. Research on the re-picking device of pepper harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(7): 105-110. (in Chinese with English abstract)
[8] 段以磊. 辣椒機(jī)械采摘損傷機(jī)理及試驗(yàn)研究[D]. 石河子:石河子大學(xué),2014.
Duan Yilei. Mechanical Picking Damage Mechanism and Experimental Research on Pepper[D]. Shihezi:Shihezi University, 2014. (in Chinese with English abstract)
[9] 雷明舉,王飛,王夢(mèng),等. 彈齒滾筒式辣椒采摘裝置性能的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2018,40(5):142-146,152.
Lei Mingju, Wang Fei, Wang Meng, et al. Experimental study on the performance of spring-tooth drum pepper picking device[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 142-146, 152. (in Chinese with English abstract)
[10] 吳玲敏. 4LZ-3.0型自走式辣椒收獲機(jī)的工作原理及試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2017,39(11):136-139.
Wu Lingmin. The working principle and experimental research of 4LZ-3.0 self-propelled pepper harvester[J]. Journal of Agricultural Mechanization Research, 2017, 39(11): 136-139. (in Chinese with English abstract)
[11] Tae H K, Dae C K, Cho Y J. Performance comparison and evaluation of two small chili pepper harvester prototypes that attach to Walking Cultivators[J]. Applied Sciences, 2020, 10(7): 2570.
[12] 劉高,林蜀云,吳荻,等. 朝天椒收獲裝置的設(shè)計(jì)、分析與驗(yàn)證[J]. 機(jī)械制造,2021,59(1):29-33,62.
Liu Gao, Lin Shuyun, Wu Di, et al. Design, analysis and verification of Chaotian pepper harvesting device[J]. Machinery Manufacturing, 2021, 59(1): 29-33, 62. (in Chinese with English abstract)
[13] 劉高,林蜀云,梁勇,等. 斜置雙螺旋梳指式辣椒收獲試驗(yàn)臺(tái)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2020,42(8):133-137.
Liu Gao, Lin Shuyun, Liang Yong, et al. Design of an oblique double spiral comb-finger pepper harvesting test bench[J]. Journal of Agricultural Mechanization Research, 2020, 42(8): 133-137. (in Chinese with English abstract)
[14] 張敏,許東生. 線辣椒收獲機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 機(jī)械研究與應(yīng)用,2019,32(6):103-105.
Zhang Min, Xu Dongsheng. The design and experiment of the line pepper harvester[J]. Mechanical Research and Application, 2019, 32(6): 103-105. (in Chinese with English abstract)
[15] 曹新芳. 螺旋振動(dòng)自走式辣椒采收機(jī)的研究開(kāi)發(fā)[J]. 時(shí)代農(nóng)機(jī),2018,45(4):199.
Cao Xinfang. Research and development of spiral vibration self-propelled pepper harvester[J]. Times Agricultural Machinery, 2018, 45(4): 199. (in Chinese with English abstract)
[16] Lee B K, Kam D H, Min B R, et al. A vision servo system for automated harvest of sweet pepper in korean greenhouse environment[J]. Applied Sciences, 2019, 9(12): 2395.
[17] 耿愛(ài)軍,楊建寧,張姬,等. 玉米摘穗收獲機(jī)械損傷影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(22):56-62.
Geng Aijun, Yang Jianning, Zhang Ji, et al. Analysis on influencing factors of corn ear picking and harvesting machinery damage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (22): 56-62. (in Chinese with English abstract)
[18] 辛尚龍,趙武云,戴飛,等. 全膜雙壟溝播玉米穗莖兼收對(duì)行聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):21-28.
Xin Shanglong, Zhao Wuyun, Dai Fei, et al. Development of double ridge furrow sowing corn ear stem combine harvester [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 21-28. (in Chinese with English abstract)
[19] 王勇,李建東,楊薇,等. 小麥種子物理特性參數(shù)測(cè)定及在播種機(jī)排種器設(shè)計(jì)中的應(yīng)用[J]. 農(nóng)業(yè)工程,2021,11(6):109-114.
Wang Yong, Li Jiandong, Yang Wei, et al. Determination of the physical properties of wheat seeds and their application in the design of planters and meters[J]. Agricultural Engineering, 2021, 11(6): 109-114. (in Chinese with English abstract)
[20] 李杞超. 舀勺式小粒徑蔬菜種子精量排種器機(jī)理分析與試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2020.
Li Qichao. Mechanism Analysis and Experimental Study of A Scoop Type Small Particle Size Vegetable Seed Precision Metering Device[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract)
[21] 戚江濤,蒙賀偉,李成松,等. 馬鈴薯收獲機(jī)的設(shè)計(jì)與研制[J]. 農(nóng)機(jī)化研究,2018,40(2):124-127.
Qi Jiangtao, Meng Hewei, Li Chengsong, et al. Design and development of potato harvester[J]. Agricultural Mechanization Research, 2018, 40(2): 124-127. (in Chinese with English abstract)
[22] 呂金慶,孫玉凱,李季成,等. 立式有機(jī)肥螺旋撒肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):19-28.
Lyu Jinqing, Sun Yukai, Li Jicheng, et al. Design and experiment of vertical organic fertilizer screw spreading device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 19-28. (in Chinese with English abstract)
[23] 蔣德莉,陳學(xué)庚,顏利民,等. 隨動(dòng)式殘膜回收機(jī)清雜系統(tǒng)作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(19):1-10.
Jiang Deli, Chen Xuegeng, Yan Limin, et al. Operational parameter optimization of the cleaning system of the follow-up residual film recovery machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 1-10. (in Chinese with English abstract)
[24] 張秀花,趙慶龍,王澤河,等. 可調(diào)五輥式對(duì)蝦剝殼機(jī)剝殼參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):247-254.
Zhang Xiuhua, Zhao Qinglong, Wang Zehe, et al. Optimization experiment on peeling parameters of adjustable five-roller prawn peeling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 247-254. (in Chinese with English abstract)
Design and experiment of double helix pair roller pepper harvesting device
Yuan Xiaowei1,2, Yang Shuangping2, Jin Ruocheng3※, Zhao Liwei3, Dao Erjicairen1, Zheng Nan3, Fu Wenping4
(1.841000; 2.830052; 3.841000; 4.841000)
Pigment pepper is a highly valued plant containing natural pigments, such as capsanthin and chili Rubin. Pepper production has been one of the largest vegetable industries in China. The total area of pepper planting in Xinjiang in 2018 was about 120 000 hm2, of which pigment pepper was about 106 000 hm2. Therefore, the output is likely to be reduced, if the pigmented pepper cannot be harvested in time by hand. It is highly urgent for the efficient and mechanized harvesting of pepper at present. Two types of pepper harvesting machinery included the comb tooth and spiral roller type. In the comb tooth type, an alternative comb tooth roller is placed horizontally to comb and pull pepper. This structure presents a high harvesting speed and high efficiency, but a high impurity rate was found in the pepper after harvesting, while it is easy to cause damage to the pepper. In the spiral roller type, two high-speed rotating spiral rollers generate a toggle force for pepper harvesting. This structure reduces the damage and impurity rate of peppers, but the harvesting efficiency is lower than that of comb tooth type. In this study, a new roller-type pepper harvesting device with a double helix pattern was designed for a higher harvesting efficiency, while low damage rate, thereby meeting the large production demand for pigmented peppers. The stress of pepper at the contact point of the spiral steel bar was also analyzed to determine the main factors of harvesting performance. The pigment pepper in Yanqi County of Xinjiang was used as the test object, where the moisture content was less than 40% after two days of being beaten with defoliant. A single factor test was carried out to explore the effect of each factor on the harvest performance, further to determine the significance range of influencing factors. A four-factor five-level orthogonal optimization was then conducted, where the removal and damage rates were taken as the experimental indexes, whereas, the working speed, roller speed, gap, and pitch as the experimental factors. A regression equation of each factor was achieved on the removal and damage rate, the primary and secondary order of influencing factors, as well as the interaction of each factor. The surface graph was analyzed to obtain the interaction of various factors. Design-expert 10 software was used to optimize the parameters, and the resulting parameters were then verified via the verification test. Optimal performance was achieved, when the working speed was 2.1 km/h, the roller speed was 142 r/min, the roller distance was 24.3 mm, and the roller pitch was 10 cm. A combination of parameters was that the removal rate was 98.7%, and the damage rate was 3.46%, meeting the field operation requirements of a pigment pepper harvester. This finding can provide a sound reference to design and optimize the pigmented pepper harvester.
agricultural machinery; design; experiments; pepper harvesting; helix pair roller
袁小偉,楊雙平,金若成,等. 雙螺旋對(duì)輥式辣椒收獲裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):1-9.doi:10.11975/j.issn.1002-6819.2021.15.001 http://www.tcsae.org
Yuan Xiaowei, Yang Shuangping, Jin Ruocheng, et al. Design and experiment of double helix pair roller pepper harvesting device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 1-9. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.001 http://www.tcsae.org
2021-06-10
2021-08-01
新疆維吾爾自治區(qū)“天山青年計(jì)劃”項(xiàng)目(2019Q136);新疆維吾爾自治區(qū)自然基金基層項(xiàng)目(2021D01F30)
袁小偉,博士生,研究方向?yàn)檗r(nóng)業(yè)機(jī)械工程。Email:ywei5199@163.com
金若成,高級(jí)工程師,研究方向?yàn)檗r(nóng)業(yè)技術(shù)推廣。Email:404111390@qq.com
10.11975/j.issn.1002-6819.2021.15.001
S147.2
A
1002-6819(2021)-15-0001-09