徐麗明,趙詩(shī)建,馬 帥,牛 叢,閆成功,盧彩云
葡萄株間除草機(jī)精準(zhǔn)避障控制系統(tǒng)優(yōu)化設(shè)計(jì)與試驗(yàn)
徐麗明,趙詩(shī)建,馬 帥,牛 叢,閆成功,盧彩云
(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
現(xiàn)有籬架式栽培葡萄雙邊作業(yè)株間自動(dòng)避障除草機(jī)避障系統(tǒng)采用開(kāi)關(guān)控制避障動(dòng)作,由于避障行程固定,無(wú)法根據(jù)障礙物位置精確控制避障動(dòng)作行程,導(dǎo)致除草效果不佳。針對(duì)上述問(wèn)題,該研究在先前研究的基礎(chǔ)上,依據(jù)仿形控制原理對(duì)避障控制系統(tǒng)進(jìn)行優(yōu)化,設(shè)計(jì)一種由避障信號(hào)采集部分、程序控制部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分等組成的精準(zhǔn)避障控制系統(tǒng)?;诰珳?zhǔn)避障工作要求,確定避障動(dòng)作閉環(huán)控制方案;優(yōu)化液壓回路結(jié)構(gòu),液壓與電控結(jié)合實(shí)現(xiàn)精準(zhǔn)避障控制;對(duì)精準(zhǔn)避障控制程序進(jìn)行靜態(tài)標(biāo)定和PID參數(shù)整定;利用Recurdyn對(duì)障礙物呈直線(xiàn)排列狀態(tài)下除草機(jī)的精準(zhǔn)避障作業(yè)進(jìn)行模擬仿真,并通過(guò)分析除草刀盤(pán)運(yùn)動(dòng)軌跡選取較優(yōu)除草刀盤(pán)轉(zhuǎn)速;以機(jī)器作業(yè)速度為試驗(yàn)因素,除草作業(yè)覆蓋率和果樹(shù)損傷率為評(píng)價(jià)指標(biāo)進(jìn)行田間試驗(yàn)。試驗(yàn)結(jié)果表明,當(dāng)機(jī)器作業(yè)速度為380 mm/s時(shí),除草作業(yè)覆蓋率與作業(yè)效率綜合效果最佳,試驗(yàn)得到平均除草作業(yè)覆蓋率為93.97%,較先前研究提高4.39%,果樹(shù)損傷率為1.92%,除草機(jī)可良好實(shí)現(xiàn)避障除草作業(yè)。該研究可為果園株間除草機(jī)的進(jìn)一步優(yōu)化提供參考。
農(nóng)業(yè)機(jī)械;機(jī)械化;精準(zhǔn)避障;PID控制;株間除草機(jī);優(yōu)化設(shè)計(jì)
在葡萄種植過(guò)程中,雜草生長(zhǎng)與葡萄搶奪資源,導(dǎo)致植株病蟲(chóng)害問(wèn)題加劇,品質(zhì)降低,產(chǎn)量減少可達(dá)10%~20%[1]。為保證葡萄有較高的品質(zhì),葡萄園雜草清除是至關(guān)重要的環(huán)節(jié)[2-3]?,F(xiàn)存除草技術(shù)可分為兩大類(lèi):化學(xué)除草與非化學(xué)除草[4]。施用除草劑是化學(xué)除草的主要形式,具有高效方便、除草效果較好等優(yōu)點(diǎn)。但長(zhǎng)期使用除草劑會(huì)對(duì)作物產(chǎn)生藥害,對(duì)環(huán)境造成污染,并且會(huì)使雜草產(chǎn)生抗藥性[5-8]。非化學(xué)除草技術(shù)中的機(jī)械除草能夠?qū)崿F(xiàn)綠色除草,提高作物質(zhì)量,同時(shí)對(duì)作物、環(huán)境無(wú)污染[9]。行間除草發(fā)展較為成熟,由于株間除草作業(yè)為非連續(xù)區(qū)域,識(shí)別和定位難度較大,作業(yè)時(shí)容易誤傷植株,株間除草研究進(jìn)展緩慢[10-11]。因此,根據(jù)葡萄樹(shù)干和籬架的位置信息,在避免損傷葡萄植株的前提下,實(shí)現(xiàn)除草部件精準(zhǔn)仿形避障是發(fā)展株間除草的關(guān)鍵。
國(guó)內(nèi)外對(duì)于株間機(jī)械除草技術(shù)展開(kāi)了深入的研究,現(xiàn)已將自動(dòng)化、智能化以及現(xiàn)代信息技術(shù)運(yùn)用到現(xiàn)代農(nóng)業(yè)果園除草機(jī)上[12]。波蘭JAGODAJPS生產(chǎn)了一款人工操縱手柄調(diào)整除草裝置與果樹(shù)的相對(duì)位置,實(shí)現(xiàn)避障除草作業(yè)的除草機(jī),但其對(duì)工人技術(shù)要求較高,且工作效率較低[13]。意大利AEDES與ARRIZZA公司生產(chǎn)的果園株間自動(dòng)避障除草機(jī),其除草裝置多樣,可實(shí)現(xiàn)一機(jī)多用,但其機(jī)具較大且株間除草作業(yè)覆蓋率較低[14]。Norremark[15-16]研究了一款采用GPS定位技術(shù)實(shí)現(xiàn)障礙物識(shí)別、避障路徑規(guī)劃的株間除草機(jī),除草作業(yè)覆蓋率、避障率良好,但總體受限于GPS精度和使用成本。Cordill等[17]研究了一種采用光電傳感器檢測(cè)玉米植株的自動(dòng)避障玉米株間除草機(jī),但傳感器檢測(cè)準(zhǔn)確度會(huì)受作業(yè)環(huán)境、植株外形的影響,進(jìn)而導(dǎo)致株間除草作業(yè)覆蓋率降低。國(guó)外針對(duì)株間除草機(jī)械的研究較為成熟,但無(wú)法針對(duì)障礙物位置進(jìn)行仿形避障,且機(jī)具較大,并不適用于中國(guó)傳統(tǒng)果園株間除草作業(yè)[18]。張斌[19]研制了一種果園自動(dòng)讓樹(shù)除草機(jī),通過(guò)機(jī)械感應(yīng)觸桿受力變化控制壓力控制閥響應(yīng),實(shí)現(xiàn)避障除草作業(yè),可同時(shí)除去行間、株間的雜草,但其株間除草作業(yè)覆蓋率有待提高。劉玉潔等[20]將物聯(lián)網(wǎng)技術(shù)、無(wú)線(xiàn)傳感網(wǎng)絡(luò)節(jié)點(diǎn)定位技術(shù)應(yīng)用到除草機(jī)智能化設(shè)計(jì)中,避障效果良好,但避障準(zhǔn)確率受限于自主定位和導(dǎo)航精確性。張朋舉等[21-22]研究了八爪式機(jī)械株間除草裝置,基于LabVIEW設(shè)計(jì)了控制系統(tǒng),但控制系統(tǒng)存在響應(yīng)緩慢、理論與實(shí)際動(dòng)作行程不一致等問(wèn)題,除草效果較差,并容易對(duì)植株造成傷害。何義川等[23]研究了葡萄園避障除草機(jī),通過(guò)避障傳感器感應(yīng)障礙物信號(hào),控制株間避障除草作業(yè),可使行間、株間雜草得到有效清除,但其避障行程固定導(dǎo)致株間除草作業(yè)覆蓋率較低。朱站偉等[24]設(shè)計(jì)了果園株間除草自動(dòng)避障裝置,避障桿觸碰障礙物受力轉(zhuǎn)動(dòng)過(guò)程中觸碰電磁換向閥響應(yīng),進(jìn)而觸發(fā)避障動(dòng)作。一次作業(yè)即可完成疏松行間表層土壤,清除行間雜草、株間雜草等多道工序,功率消耗大且株間除草效果不佳。本團(tuán)隊(duì)先前研究了一種籬架式栽培葡萄雙邊作業(yè)株間自動(dòng)避障除草機(jī),避障控制系統(tǒng)通過(guò)位移傳感器采集障礙物信號(hào),并采用開(kāi)關(guān)控制液壓缸動(dòng)作,具有一定除草效果,但由于避障行程固定,無(wú)法根據(jù)障礙物位置精準(zhǔn)控制避障動(dòng)作行程,導(dǎo)致植株周?chē)嬖诘奈闯s草面積較大,株間除草作業(yè)覆蓋率可進(jìn)一步提高[25]。
針對(duì)上述問(wèn)題,該文在先前研究籬架式栽培葡萄雙邊作業(yè)株間自動(dòng)避障除草機(jī)整體結(jié)構(gòu)的基礎(chǔ)上,擬設(shè)計(jì)一種葡萄株間除草機(jī)精準(zhǔn)避障控制系統(tǒng),依據(jù)仿形控制原理,確定由避障信號(hào)采集部分、程序控制部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分等組成的閉環(huán)控制方案,優(yōu)化設(shè)計(jì)液壓系統(tǒng)回路結(jié)構(gòu)。擬通過(guò)靜態(tài)程序標(biāo)定試驗(yàn)和PID參數(shù)整定,實(shí)現(xiàn)精準(zhǔn)避障控制系統(tǒng)根據(jù)障礙物位置精確控制避障動(dòng)作行程,使除草刀盤(pán)圍繞障礙物快速、穩(wěn)定的避障作業(yè),并在最優(yōu)PID參數(shù)組合下,以機(jī)器作業(yè)速度為試驗(yàn)因素,除草作業(yè)覆蓋率和果樹(shù)損傷率為評(píng)價(jià)指標(biāo)進(jìn)行田間試驗(yàn),在實(shí)現(xiàn)自動(dòng)避障功能的同時(shí)提高除草作業(yè)覆蓋率、避免果樹(shù)損傷。以期為果園株間機(jī)械除草技術(shù)的發(fā)展提供參考。
葡萄株間避障除草機(jī)整體結(jié)構(gòu)如圖1所示,主要包括機(jī)架、液壓系統(tǒng)、電控系統(tǒng)、上下仿形機(jī)構(gòu)、行寬調(diào)節(jié)機(jī)構(gòu)、仿形地輪和避障除草機(jī)構(gòu)。避障除草機(jī)構(gòu)由避障信號(hào)采集部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分和除草刀盤(pán)等組成。
本團(tuán)隊(duì)先前研究的避障控制程序采用開(kāi)關(guān)控制避障動(dòng)作,避障動(dòng)作行程固定在液壓缸最大行程,當(dāng)作物植株位置不呈直線(xiàn)排列時(shí),無(wú)法實(shí)時(shí)根據(jù)障礙物位置精準(zhǔn)控制避障動(dòng)作行程,除草機(jī)避障作業(yè)時(shí)存在空行程(實(shí)際動(dòng)作行程—理論動(dòng)作行程)作業(yè),導(dǎo)致植株周?chē)嬖诘奈闯s草面積較大,株間除草作業(yè)覆蓋率可進(jìn)一步提高。
本文提出一種由避障信號(hào)采集部分、程序控制部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分等組成的精準(zhǔn)避障控制系統(tǒng),通過(guò)避障信號(hào)采集部分實(shí)時(shí)采集作物的精確位置,并將位置信號(hào)傳遞給程序控制部分,經(jīng)程序計(jì)算得出理論動(dòng)作行程信號(hào),進(jìn)而控制液壓執(zhí)行部分的動(dòng)作行程大小與動(dòng)作速度,同時(shí)避障監(jiān)測(cè)反饋部分實(shí)時(shí)監(jiān)測(cè)液壓執(zhí)行部分實(shí)際動(dòng)作行程,反饋至程序控制部分與理論動(dòng)作行程對(duì)比做差,進(jìn)而對(duì)實(shí)際避障動(dòng)作進(jìn)行精確調(diào)整,形成閉環(huán)控制系統(tǒng),實(shí)現(xiàn)避障除草作業(yè)的精準(zhǔn)控制。避障信號(hào)采集部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分之間對(duì)應(yīng)關(guān)聯(lián)式的具體設(shè)計(jì)內(nèi)容見(jiàn)下文。
如圖2a所示,觸桿旋轉(zhuǎn)中心與避障信號(hào)采集位移傳感器安裝點(diǎn)、組成一個(gè)三角形,為觸桿未觸碰障礙物時(shí)避障信號(hào)采集位移傳感器所在邊對(duì)應(yīng)角的初始值。除草機(jī)進(jìn)行避障作業(yè)時(shí),觸桿與障礙物接觸受力轉(zhuǎn)動(dòng)的同時(shí)帶動(dòng)避障信號(hào)采集位移傳感器所在邊變化,也隨之變化,避障信號(hào)采集位移傳感器產(chǎn)生電壓信號(hào)傳遞給控制系統(tǒng),控制系統(tǒng)將信號(hào)轉(zhuǎn)換成理想動(dòng)作行程信號(hào)輸出。避障信號(hào)采集部分幾何關(guān)系對(duì)應(yīng)公式如下
式中為觸桿旋轉(zhuǎn)中心與避障信號(hào)采集位移傳感器安裝點(diǎn)的距離,mm;觸桿旋轉(zhuǎn)中心與避障信號(hào)采集位移傳感器安裝點(diǎn)的距離,mm;為避障信號(hào)采集位移傳感器器安裝點(diǎn)與的距離,mm;為觸桿未觸碰障礙物時(shí)避障信號(hào)采集位移傳感器所在邊對(duì)應(yīng)角的初始值,(°)。
如圖2b所示,液壓執(zhí)行部分中除草刀盤(pán)旋轉(zhuǎn)中心與避障液壓缸安裝點(diǎn)、組成一個(gè)三角形,為除草部件未進(jìn)行避障作業(yè)、株間除草狀態(tài)時(shí)避障液壓缸所在邊對(duì)應(yīng)角的初始值。控制系統(tǒng)轉(zhuǎn)換輸出理想動(dòng)作行程信號(hào)到液壓執(zhí)行部分,避障液壓缸執(zhí)行避障動(dòng)作,避障液壓缸所在邊變化,也隨之變化。避障液壓缸動(dòng)作的同時(shí),同步動(dòng)作的避障監(jiān)測(cè)位移傳感器將實(shí)際動(dòng)作行程信號(hào)實(shí)時(shí)監(jiān)測(cè)反饋到控制系統(tǒng),與理想動(dòng)作行程相比較,實(shí)現(xiàn)精準(zhǔn)避障。液壓執(zhí)行部分幾何對(duì)應(yīng)公式如下
式中為除草刀盤(pán)旋轉(zhuǎn)中心與避障液壓缸安裝點(diǎn)的距離,mm;為除草刀盤(pán)旋轉(zhuǎn)中心與避障液壓缸安裝點(diǎn)的距離,mm;為避障液壓缸安裝點(diǎn)與的距離,mm;為除草部件未進(jìn)行避障作業(yè)、株間除草狀態(tài)時(shí)避障液壓缸所在邊對(duì)應(yīng)角的初始值,(°);為觸桿與障礙物接觸受力轉(zhuǎn)動(dòng)時(shí)避障信號(hào)采集位移傳感器所在邊對(duì)應(yīng)角的變化量。
1.觸桿 2.避障信號(hào)采集位移傳感器 3.氣彈簧 4.避障液壓缸 5.避障信號(hào)監(jiān)測(cè)位移傳感器
1. Contact rod 2. Obstacle avoidance signal acquisition displacement sensor 3. Gas spring 4. Obstacle avoidance hydraulic cylinder 5. Obstacle avoidance signal monitoring displacement sensor
注:為觸桿旋轉(zhuǎn)中心;、為避障信號(hào)采集位移傳感器安裝點(diǎn);為觸桿未觸碰障礙物時(shí)避障信號(hào)采集位移傳感器所在邊對(duì)應(yīng)角的初始值,(°);為除草刀盤(pán)旋轉(zhuǎn)中心;、為避障液壓缸安裝點(diǎn);為除草部件未進(jìn)行避障作業(yè)、株間除草狀態(tài)時(shí)避障液壓缸所在邊對(duì)應(yīng)角的初始值,(°)。
Note:is the rotation center of the contact rod;andare the installation points of the displacement sensor for obstacle avoidance signal acquisition;is the initial value of the angle corresponding to the sidewhere the displacement sensor for obstacle avoidance signal acquisition is located when the contact rod does not touch the obstacle, (°);is the rotation center of the weeding cutter;andare the installation points of the obstacle avoidance hydraulic cylinders;is the initial value of the angle corresponding to the sidewhere the obstacle avoidance hydraulic cylinder is located when the weeding component does not perform obstacle avoidance operations and when weeding between plants, (°).
圖2 閉環(huán)控制系統(tǒng)結(jié)構(gòu)示意圖
Fig.2 Structure of obstacle avoidance closed loop control system
當(dāng)除草刀盤(pán)運(yùn)動(dòng)至接近障礙物位置時(shí),避障信號(hào)采集部分中觸桿與障礙物接觸轉(zhuǎn)動(dòng),同時(shí)帶動(dòng)避障信號(hào)采集位移傳感器所在邊和邊所對(duì)應(yīng)角發(fā)生變化,通過(guò)避障信號(hào)采集位移傳感器將角度變化信號(hào)轉(zhuǎn)換成電壓信號(hào)傳遞給控制系統(tǒng),通過(guò)控制系統(tǒng)計(jì)算液壓執(zhí)行部分理論動(dòng)作行程,并將信號(hào)轉(zhuǎn)換輸出到液壓執(zhí)行部分,控制液壓執(zhí)行部分中角變化大小,實(shí)現(xiàn)除草刀盤(pán)圍繞障礙物避障作業(yè),同時(shí)避障監(jiān)測(cè)反饋位移傳感器反饋實(shí)際動(dòng)作行程到控制系統(tǒng),對(duì)實(shí)際避障動(dòng)作進(jìn)行精確調(diào)整,使除草機(jī)根據(jù)障礙物具體位置快速、準(zhǔn)確的實(shí)現(xiàn)避障作業(yè),減小避障空行程作業(yè)造成的未除雜草面積,實(shí)現(xiàn)避障除草作業(yè)的精確控制,提高除草作業(yè)覆蓋率,避免果樹(shù)損傷。
根據(jù)精準(zhǔn)避障控制系統(tǒng)的工作原理優(yōu)化設(shè)計(jì)液壓系統(tǒng),主要由油箱、液壓增速箱、三聯(lián)泵、比例換向閥、電磁換向閥、溢流閥、液壓馬達(dá)、液壓缸、管式過(guò)濾器、風(fēng)冷卻器等組成。液壓系統(tǒng)原理圖如圖3所示,機(jī)器工作時(shí),拖拉機(jī)PTO輸出的轉(zhuǎn)速經(jīng)液壓增速箱增速后,將動(dòng)力傳遞給三聯(lián)泵,為液壓系統(tǒng)提供動(dòng)力;雙邊液壓馬達(dá)采用2個(gè)相同排量的液壓泵進(jìn)行單獨(dú)流量供應(yīng),電磁換向閥通電時(shí),液壓馬達(dá)驅(qū)動(dòng)除草刀盤(pán)以穩(wěn)定轉(zhuǎn)速轉(zhuǎn)動(dòng),除草作業(yè)時(shí)雙邊除草刀盤(pán)轉(zhuǎn)速相同,且不會(huì)相互干渉;液壓泵流出的油液經(jīng)管式過(guò)濾器過(guò)濾后,再對(duì)行寬調(diào)節(jié)液壓缸、避障液壓缸進(jìn)行流量供應(yīng),行寬調(diào)節(jié)是在機(jī)器進(jìn)行除草作業(yè)之前,根據(jù)葡萄園種植行距,手動(dòng)調(diào)節(jié)液壓閥進(jìn)行作業(yè)行寬的調(diào)節(jié),避障與行寬調(diào)節(jié)動(dòng)作不同步進(jìn)行,故使用同一液壓泵不會(huì)產(chǎn)生相互影響。機(jī)器進(jìn)行除草作業(yè)過(guò)程中,比例換向閥始終得電,根據(jù)電控系統(tǒng)傳遞的信號(hào),控制比例換向閥的開(kāi)口大小和方向,進(jìn)而控制避障液壓缸的伸縮行程和動(dòng)作速度,實(shí)現(xiàn)除草機(jī)準(zhǔn)確、快速的避障動(dòng)作。
精準(zhǔn)避障控制系統(tǒng)主要由直流電源、電控開(kāi)關(guān)、電壓轉(zhuǎn)換模塊、避障信號(hào)采集部分、程序控制部分、液壓執(zhí)行部分和避障監(jiān)測(cè)反饋部分組成,如圖4所示。電源部分采用拖拉機(jī)12V直流電源,增設(shè)12V-5V、12V-24V電壓轉(zhuǎn)換模塊分別用于單片機(jī)、BFWN-02-3C2-7-20-G24K31F1比例換向閥的電壓供應(yīng);避障信號(hào)采集部分中的觸桿為避障系統(tǒng)的感知部分,用于識(shí)別障礙物;避障信號(hào)采集位移傳感器與避障監(jiān)測(cè)反饋位移傳感器分別選用KPM-75、KPM-150,用于避障過(guò)程中信號(hào)采集與反饋。選用ESP32開(kāi)發(fā)板作為主控制器,用于避障信號(hào)采集位移傳感器、比例換向閥、避障液壓缸三者之間的信號(hào)處理與傳遞;避障信號(hào)采集位移傳感器隨觸桿動(dòng)作產(chǎn)生信號(hào)并輸出到主控制器,避障監(jiān)測(cè)反饋位移傳感器與避障液壓缸平行安裝,隨著避障液壓缸的伸縮而伸縮,產(chǎn)生的信號(hào)反饋給主控制器。液壓執(zhí)行部分主要由液壓閥組、液壓油箱和避障液壓缸組成,其根據(jù)主控制器的輸出信號(hào)進(jìn)行避障機(jī)械動(dòng)作。
1.12V-5V降壓模塊 2.12V直流電源 3.12V-24V升壓模塊 4.比例換向閥 5.避障信號(hào)采集位移傳感器 6.ESP32開(kāi)發(fā)板 7.避障監(jiān)測(cè)反饋位移傳感器 8.避障液壓缸
精準(zhǔn)避障控制系統(tǒng)軟件流程如圖5所示,程序開(kāi)始運(yùn)行,首先初始化單片機(jī)內(nèi)部寄存器資源,當(dāng)除草部件遇到障礙物時(shí),觸桿轉(zhuǎn)動(dòng)帶動(dòng)避障信號(hào)采集位移傳感器在0~70 mm范圍內(nèi)動(dòng)作,對(duì)應(yīng)輸出0~5 V電壓信號(hào),主控制器根據(jù)該電壓信號(hào)變化值?進(jìn)行數(shù)值判斷。當(dāng)?>0,主控制器將電壓信號(hào)轉(zhuǎn)換為12~20 mA電流信號(hào),控制比例換向閥的開(kāi)口方向和大小,進(jìn)而控制避障液壓缸縮回行程與速度大小,避障液壓缸縮回0~140 mm距離。當(dāng)?<0,主控制器將電壓信號(hào)轉(zhuǎn)換為4~12 mA電流信號(hào),控制比例換向閥的開(kāi)口方向和大小,進(jìn)而控制避障液壓缸伸出行程與速度大小,避障液壓缸伸出0~140 mm距離。避障監(jiān)測(cè)反饋位移傳感器與避障液壓缸同步動(dòng)作,監(jiān)測(cè)液壓缸實(shí)際動(dòng)作行程,并實(shí)時(shí)反饋到主控制器,主控制器通過(guò)計(jì)算實(shí)際動(dòng)作行程與理論動(dòng)作行程的差值?,對(duì)避障液壓缸的動(dòng)作進(jìn)行精確調(diào)整,實(shí)現(xiàn)精確、快速的避障動(dòng)作。
為保證安全避障,液壓缸伸縮動(dòng)作都應(yīng)留出5 mm剩余行程,防止液壓缸完全伸縮狀態(tài)時(shí),因動(dòng)作速度較快產(chǎn)生沖擊震蕩,對(duì)液壓缸和避障監(jiān)測(cè)反饋位移傳感器造成損壞。即標(biāo)定避障信號(hào)采集位移傳感器的有效行程范圍為0~70 mm,避障液壓缸、避障監(jiān)測(cè)反饋位移傳感器的有效行程范圍均為5~145 mm。有效避障行程標(biāo)定曲線(xiàn)如圖6所示。
圖6 有效避障行程標(biāo)定曲線(xiàn)
PID控制策略已經(jīng)廣泛應(yīng)用于電液比例控制技術(shù)中,使控制系統(tǒng)具有穩(wěn)態(tài)精度高、動(dòng)態(tài)響應(yīng)快、超調(diào)量小、抗負(fù)載干擾能力強(qiáng)等性能[26]。為了提高系統(tǒng)的精準(zhǔn)避障能力,根據(jù)系統(tǒng)閉環(huán)傳遞函數(shù),按照系統(tǒng)穩(wěn)定性的要求,采用PID控制算法對(duì)避障液壓缸的動(dòng)作速度、行程大小進(jìn)行調(diào)節(jié),以實(shí)現(xiàn)精準(zhǔn)避障。
PID算法參數(shù)整定主要包括對(duì)比例、積分、微分系數(shù)及采樣時(shí)間等參數(shù)的整定,實(shí)時(shí)分析避障動(dòng)作響應(yīng)曲線(xiàn),從超調(diào)量、響應(yīng)時(shí)間和穩(wěn)定性等方面評(píng)價(jià)控制性能[27-28]。主控制器的輸入量是避障液壓缸實(shí)際動(dòng)作行程與理論動(dòng)作行程的偏差信號(hào),輸出量是控制比例換向閥開(kāi)口大小和方向的電流信號(hào)。
經(jīng)理論分析可得,機(jī)器作業(yè)速度與避障動(dòng)作的響應(yīng)速度、動(dòng)作頻率緊密相關(guān),參考文獻(xiàn)[25],將機(jī)器作業(yè)速度分為4個(gè)水平:260、320、380 和440 mm/s。當(dāng)機(jī)器在最快作業(yè)速度水平下,避障作業(yè)能良好實(shí)現(xiàn)時(shí),在其他機(jī)器作業(yè)速度水平下也可良好實(shí)現(xiàn)避障作業(yè)。設(shè)置機(jī)器作業(yè)速度為最大值440 mm/s,采用“先比例后積分,最后再微分”的調(diào)整順序,進(jìn)行PID參數(shù)整定,最終確定最優(yōu)PID參數(shù)組合為:比例系數(shù)=0.0343;積分系數(shù)=127.78;微分系數(shù)=0。最優(yōu)PID參數(shù)組合下避障動(dòng)作響應(yīng)曲線(xiàn)如圖7所示,除草機(jī)在4個(gè)機(jī)器作業(yè)速度水平下,避障液壓缸目標(biāo)中心距曲線(xiàn)與實(shí)際中心距曲線(xiàn)擬合效果較好,避障過(guò)程可精準(zhǔn)、快速、穩(wěn)定的實(shí)現(xiàn)。
為了模擬除草機(jī)在精準(zhǔn)避障狀態(tài)下進(jìn)行除草作業(yè)時(shí)除草刀盤(pán)的運(yùn)動(dòng)軌跡,探究不同除草刀盤(pán)轉(zhuǎn)速對(duì)除草作業(yè)覆蓋率的影響,進(jìn)而選取較優(yōu)除草刀盤(pán)轉(zhuǎn)速,利用多體動(dòng)力學(xué)軟件RecurDyn建立除草機(jī)虛擬樣機(jī)仿真模型,設(shè)置各障礙物位置呈直線(xiàn)排列,并通過(guò)設(shè)置各運(yùn)動(dòng)參數(shù)使除草機(jī)實(shí)現(xiàn)精準(zhǔn)避障作業(yè),對(duì)精準(zhǔn)避障除草作業(yè)過(guò)程中除草刀盤(pán)的運(yùn)動(dòng)軌跡進(jìn)行仿真試驗(yàn)與分析。
首先將除草單體三維模型在SolidWorks進(jìn)行簡(jiǎn)化,簡(jiǎn)化后的模型主要包括機(jī)架、避障液壓缸、觸桿、氣彈簧和除草刀盤(pán)等,然后將簡(jiǎn)化后的模型保存為 .igs 格式并導(dǎo)入RecurDyn軟件中,同時(shí)添加相應(yīng)的材料屬性參數(shù),根據(jù)避障過(guò)程中除草單體的實(shí)際運(yùn)動(dòng)形式,在各部件之間添加固定副、移動(dòng)副和旋轉(zhuǎn)副等約束,使除草機(jī)在仿真模型中實(shí)現(xiàn)精準(zhǔn)避障除草作業(yè)。在RecurDyn建立3個(gè)直徑為30 mm、高為1 m的圓柱體模擬葡萄樹(shù)干,材質(zhì)設(shè)為木質(zhì),根據(jù)葡萄株距設(shè)置各圓柱體間距為1 m,為模擬觸桿與葡萄樹(shù)干的碰撞關(guān)系,在觸桿與葡萄樹(shù)干之間添加接觸力,同時(shí)為使觸桿避開(kāi)葡萄樹(shù)干后自動(dòng)復(fù)位,在觸桿與機(jī)架之間添加線(xiàn)性彈簧阻尼器。模型建立完畢后,設(shè)置仿真時(shí)間步為500,總時(shí)間為8 s,進(jìn)行模擬仿真。除草刀盤(pán)前進(jìn)過(guò)程中,觸桿與障礙物接觸受力產(chǎn)生轉(zhuǎn)動(dòng),當(dāng)觸桿相對(duì)于旋轉(zhuǎn)中心的轉(zhuǎn)角大于15° 時(shí),避障液壓缸縮回100 mm,進(jìn)而帶動(dòng)除草刀盤(pán)實(shí)現(xiàn)精準(zhǔn)避障作業(yè),避過(guò)障礙物后,觸桿在彈簧力作用下向反方向轉(zhuǎn)動(dòng),當(dāng)觸桿相對(duì)于旋轉(zhuǎn)中心的轉(zhuǎn)角小于15° 時(shí),避障液壓缸伸出100 mm,除草刀盤(pán)重回株間進(jìn)行除草作業(yè)。
根據(jù)理論分析可得,當(dāng)機(jī)器以最快機(jī)器作業(yè)速度進(jìn)行作業(yè)時(shí)得到的最優(yōu)除草刀盤(pán)轉(zhuǎn)速可良好適用于其他理論機(jī)器作業(yè)速度水平,故設(shè)置機(jī)器作業(yè)速度為最大值440 mm/s,除草刀盤(pán)轉(zhuǎn)速選定100、200、300和400 r/min四個(gè)水平分別進(jìn)行仿真試驗(yàn)[25]。為獲得除草刀盤(pán)的運(yùn)動(dòng)軌跡,在除草刀盤(pán)邊緣呈30°均勻建立12個(gè)Maker點(diǎn),用Maker點(diǎn)的軌跡線(xiàn)近似作為除草刀盤(pán)的運(yùn)動(dòng)軌跡。葡萄株間除草機(jī)除草刀盤(pán)運(yùn)動(dòng)軌跡如圖8所示。
以除草作業(yè)覆蓋率為評(píng)價(jià)指標(biāo),選取較優(yōu)除草刀盤(pán)轉(zhuǎn)速[25]。為保證與前文研究一致性,將評(píng)價(jià)指標(biāo)除草作業(yè)覆蓋率定義為
式中c為除草作業(yè)覆蓋率,%;為應(yīng)除雜草面積,mm2;2為未除雜草面積mm2;
1.機(jī)架 2.避障液壓缸 3.氣彈簧 4.觸桿 5.除草刀盤(pán)
1.Frame 2.Obstacle avoidance hydraulic cylinder 3.Air spring 4.Contact rod 5.Weeding cutter head
注:123為障礙物;為避障液壓缸安裝點(diǎn);矩形為應(yīng)除雜草面積,mm2;1、1分別為Δ、Δ的高,mm;Δ與Δ為未除雜草面積,mm2;為避障過(guò)程中除草刀盤(pán)旋轉(zhuǎn)中心的最大豎直運(yùn)動(dòng)距離,mm。
Note:1,2,3is the obstacle;andis obstacle avoidance hydraulic cylinder installation point; Rectangularis the theoretical weeding area, mm2;1and1are the height of Δand Δrespectively, mm; Δand Δare the unworked area, mm2;is the maximum vertical movement distance of the rotation centerof the weeding cutter head during obstacle avoidance, mm.
圖8 除草刀盤(pán)運(yùn)動(dòng)軌跡
Fig.8 Motion trajectory of weeding cutter head
除草刀盤(pán)直徑為40 cm,為便于結(jié)果分析,將應(yīng)除雜草面積設(shè)定為:以果樹(shù)中心為參考點(diǎn),向除草機(jī)作業(yè)行內(nèi)側(cè)延伸20 cm作為除草作業(yè)寬度,選用2個(gè)株距長(zhǎng)度200 cm為除草作業(yè)長(zhǎng)度,既應(yīng)除雜草面積為4 000 cm2,如圖8矩形所示;因除草刀盤(pán)的避障運(yùn)動(dòng)軌跡圍繞障礙物呈弧形分布,避障除草作業(yè)后障礙物周?chē)奈闯s草面積無(wú)法直接計(jì)算,故將未除雜草區(qū)域近似等效為三角形,如圖8中Δ與Δ所示,將未除雜草區(qū)域中沿機(jī)器前進(jìn)方向的和作為三角形的底邊,垂直與機(jī)器前進(jìn)方向的1和1作為三角形的高,計(jì)算Δ與Δ面積之和作為未除雜草面積。
除草刀盤(pán)轉(zhuǎn)速優(yōu)化仿真試驗(yàn)結(jié)果分析如表1所示。
表1 除草刀盤(pán)轉(zhuǎn)速優(yōu)化仿真試驗(yàn)
由仿真試驗(yàn)結(jié)果分析可得,當(dāng)除草刀盤(pán)轉(zhuǎn)速由100 r/min增加至200 r/min時(shí),除草作業(yè)覆蓋率增幅較大;當(dāng)?shù)侗P(pán)轉(zhuǎn)速≥200 r/min時(shí),除草刀盤(pán)轉(zhuǎn)速增大,除草作業(yè)覆蓋率變化甚微,可忽略不計(jì),因此綜合考慮除草作業(yè)覆蓋率與除草刀盤(pán)功率消耗,選取除草刀盤(pán)轉(zhuǎn)速為200 r/min,除草作業(yè)覆蓋率高、除草刀盤(pán)功率消耗小。
試驗(yàn)于2021年6月在河北省涿州市中國(guó)農(nóng)業(yè)大學(xué)科研試驗(yàn)基地進(jìn)行,避障除草作業(yè)試驗(yàn)現(xiàn)場(chǎng)及樣機(jī)如圖9所示。試驗(yàn)現(xiàn)場(chǎng)包括行距3 m、株距1 m的葡萄果樹(shù)行;試驗(yàn)儀器和設(shè)備包括株間自動(dòng)避障除草機(jī)樣機(jī)、時(shí)風(fēng)風(fēng)云504拖拉機(jī)、卷尺(0~5 m,精度為1 mm)、電腦Dell G3。
1.電控箱 2.風(fēng)冷卻器 3.避障執(zhí)行機(jī)構(gòu) 4.除草刀盤(pán) 5.地輪 6.液壓油箱 7.機(jī)架 8.上下仿形機(jī)構(gòu) 9.監(jiān)測(cè)反饋機(jī)構(gòu) 10.信號(hào)采集機(jī)構(gòu)
由于機(jī)器作業(yè)速度與避障動(dòng)作的響應(yīng)速度、動(dòng)作頻率緊密相關(guān),進(jìn)而對(duì)除草作業(yè)覆蓋率、果樹(shù)損傷率造成影響,故以機(jī)器作業(yè)速度為試驗(yàn)因素,除草作業(yè)覆蓋率、果樹(shù)損傷率為評(píng)價(jià)指標(biāo)進(jìn)行田間試驗(yàn),每個(gè)機(jī)器作業(yè)速度水平進(jìn)行3組有效試驗(yàn),結(jié)果取平均值。為保證田間試驗(yàn)與仿真試驗(yàn)的一致性,除草作業(yè)覆蓋率的計(jì)算方法與仿真試驗(yàn)相同;由果樹(shù)生長(zhǎng)的生物學(xué)特性可知,當(dāng)果樹(shù)樹(shù)干出現(xiàn)韌皮層裸露或斷裂時(shí),果樹(shù)損傷,以此標(biāo)準(zhǔn)驗(yàn)證除草機(jī)避障作業(yè)時(shí)除草刀盤(pán)對(duì)果樹(shù)的損傷情況,計(jì)算果樹(shù)損傷率
式中為果樹(shù)損傷率,%;為損傷果樹(shù)數(shù);為避障除草作業(yè)總果樹(shù)數(shù)。
在除草機(jī)作業(yè)前,結(jié)合籬架式葡萄栽培模式和淺松除草的技術(shù)要求[29-30],對(duì)除草作業(yè)行寬、入土深度進(jìn)行調(diào)節(jié)。為保證相鄰行間應(yīng)除雜草面積相等,防止重復(fù)除草,將應(yīng)除雜草面積設(shè)定為:5個(gè)株距取值為500 cm,以雙邊葡萄樹(shù)干中心為參照點(diǎn),雙邊向工作行內(nèi)側(cè)各取20 cm,應(yīng)除雜草面積為20 000 cm2。將機(jī)器作業(yè)環(huán)境規(guī)劃完成后,開(kāi)始進(jìn)行除草作業(yè)。除草機(jī)作業(yè)后,葡萄樹(shù)干周?chē)淮嬖跇O小部分雜草未得到清除,除草作業(yè)覆蓋率得到大幅度提高。機(jī)器作業(yè)行外側(cè)的雜草,當(dāng)機(jī)器返程作業(yè)在相鄰行時(shí),可將其良好清除。除草機(jī)在相鄰行往返作業(yè)后,可使中間葡萄行周?chē)椭觊g雜草完美清除,達(dá)到理想除草效果。田間試驗(yàn)避障除草效果如圖10所示。
對(duì)除草作業(yè)后葡萄樹(shù)干周?chē)奈闯s草面積進(jìn)行測(cè)量,并計(jì)算除草作業(yè)覆蓋率、果樹(shù)損傷率,結(jié)果取平均值,具體計(jì)算結(jié)果如表2所示。
表2 葡萄株間除草機(jī)精準(zhǔn)避障控制系統(tǒng)田間試驗(yàn)
由表2試驗(yàn)結(jié)果分析可得,機(jī)器作業(yè)速度為260 、320、380、440 mm/s的平均除草作業(yè)覆蓋率分別可達(dá)94.82%、94.36%、93.97%、92.60%。葡萄園中果樹(shù)生長(zhǎng)彎曲角度不同,葡萄樹(shù)干彎曲至接近地表狀態(tài)時(shí),避障信號(hào)采集部分對(duì)其識(shí)別準(zhǔn)確率下降,除草刀與樹(shù)干發(fā)生碰撞,使葡萄樹(shù)干出現(xiàn)韌皮層裸露,造成果樹(shù)損傷。除草機(jī)以各機(jī)器作業(yè)速度均進(jìn)行兩行葡萄的除草作業(yè),通過(guò)統(tǒng)計(jì)葡萄樹(shù)干總數(shù)和損傷葡萄樹(shù)干數(shù)目,計(jì)算果樹(shù)損傷率;機(jī)器作業(yè)速度為260、320 、380、440 mm/s的果樹(shù)損傷率分別為1.67%、1.78%、1.92%、2.08%;機(jī)器作業(yè)速度對(duì)果樹(shù)損傷率的影響甚微,除草機(jī)在各機(jī)器作業(yè)速度下均可實(shí)現(xiàn)精確避障除草作業(yè),有效避免對(duì)果樹(shù)的損傷。
由試驗(yàn)結(jié)果分析可得,隨著機(jī)器作業(yè)速度增加,除草作業(yè)覆蓋率逐漸降低。機(jī)器作業(yè)速度在260 、320 和380 mm/s 3個(gè)水平下,除草作業(yè)覆蓋率相差甚微,但機(jī)器作業(yè)速度為380 mm/s時(shí),除草作業(yè)效率顯著提高;當(dāng)機(jī)器作業(yè)速度為440 mm/s時(shí),雖然除草作業(yè)效率提高,但除草刀盤(pán)避障動(dòng)作頻繁,導(dǎo)致株間未除雜草面積增加,除草作業(yè)覆蓋率下降幅度較大;綜合分析可得,機(jī)器作業(yè)速度取380 mm/s時(shí),除草作業(yè)覆蓋率與機(jī)器作業(yè)效率綜合效果最佳,試驗(yàn)得到平均除草作業(yè)覆蓋率為93.97%,原避障控制系統(tǒng)下機(jī)器除草作業(yè)覆蓋率約為90.02%[25],機(jī)器作業(yè)速度相同情況下,除草作業(yè)覆蓋率較先前研究提高4.39%。
1)本文優(yōu)化設(shè)計(jì)了一種精準(zhǔn)避障控制系統(tǒng),主要由避障信號(hào)采集部分、程序控制部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分等組成?;诜滦慰刂圃砼c避障的工作要求,建立避障信號(hào)采集部分、液壓執(zhí)行部分、避障監(jiān)測(cè)反饋部分三者之間的關(guān)聯(lián)式,確定精準(zhǔn)避障閉環(huán)控制方案;進(jìn)行液壓系統(tǒng)、電控系統(tǒng)等關(guān)鍵部件的優(yōu)化設(shè)計(jì)與型號(hào)選取。
2)在機(jī)器靜態(tài)調(diào)試時(shí),標(biāo)定避障信號(hào)采集位移傳感器的有效行程范圍為0~70 mm,避障液壓缸、避障監(jiān)測(cè)反饋位移傳感器的有效行程范圍均為5~145 mm;并對(duì)PID參數(shù)進(jìn)行整定,確定最優(yōu)PID參數(shù)組合為比例系數(shù)=0.034 3;積分系數(shù)=127.78;微分系數(shù)=0。實(shí)現(xiàn)避障動(dòng)作準(zhǔn)確、快速、穩(wěn)定的運(yùn)行。
3)利用Recurdyn對(duì)障礙物呈直線(xiàn)排列狀態(tài)下除草機(jī)的精準(zhǔn)避障作業(yè)進(jìn)行模擬仿真,并通過(guò)分析除草刀盤(pán)運(yùn)動(dòng)軌跡對(duì)除草作業(yè)覆蓋率進(jìn)行計(jì)算,選取較優(yōu)除草刀盤(pán)轉(zhuǎn)速為200 r/min。
4)加工物理樣機(jī)并進(jìn)行田間試驗(yàn),以機(jī)器作業(yè)速度為試驗(yàn)因素,除草作業(yè)覆蓋率和果樹(shù)損傷率為評(píng)價(jià)指標(biāo)進(jìn)行田間作業(yè)性能測(cè)試。除草作業(yè)完成后,根據(jù)除草前后葡萄樹(shù)干周?chē)s草覆蓋面積和果樹(shù)損傷情況,測(cè)量計(jì)算除草作業(yè)覆蓋率與果樹(shù)損傷率的大小,最終確定最優(yōu)機(jī)器作業(yè)速度為380 mm/s,平均除草作業(yè)覆蓋率可達(dá)93.97%,與先前研究相比,除草作業(yè)覆蓋率提高4.39%;果樹(shù)損傷率為1.92%,除草機(jī)可良好實(shí)現(xiàn)避障除草作業(yè)。
[1] 邢潔潔,徐麗明,史麗娜,等. 葡萄園3DC-1500行間打草機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 中外葡萄與葡萄酒,2016(5):57-59.
Xing Jiejie, Xu Liming, Shi Lina, et al. Design and test of 3dc-1500 inter row weeding machine in vineyard[J]. Chinese and Foreign Grape and Wine, 2016(5): 57-59. (in Chinese with English abstract)
[2] 尚書(shū)旗,王東偉,鹿光耀,等. 我國(guó)葡萄機(jī)械化生產(chǎn)現(xiàn)狀與發(fā)展趨勢(shì)[J]. 農(nóng)機(jī)科技推廣,2014(5):7-9.
Shangshuqi, Wang Dongwei, Lu Guangyao, et al. Status and development trend of mechanized grape production in China[J]. Agricultural machinery science and technology promotion, 2014(5): 7-9. (in Chinese with English abstract)
[3] 徐麗明,馬帥,劉星星,等. 新疆葡萄生產(chǎn)機(jī)械化現(xiàn)狀與發(fā)展趨勢(shì)[J]. 新疆農(nóng)機(jī)化,2019(3):10-13.
Xu Liming, Ma Shuai, Liu Xingxing, et al. Status and development trend of grape production mechanization in Xinjiang[J]. Xinjiang Agricultural Mechanization, 2019(3): 10-13. (in Chinese with English abstract)
[4] 白勇,王曉燕,胡光,等. 非化學(xué)方法在農(nóng)田雜草防治中的應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(4):191-196.
Bai Yong, Wang Xiaoyan, Hu Guang, et al. Review of the development in non-chemical weed management[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(4): 191-196. (in Chinese with English abstract)
[5] Cordill C, Grift T E. Design and testing of an intra-row mechanical weeding machine for corn[J]. Biosystems Engineering, 2011, 110(3): 247-252.
[6] 齊月,李俊生,閆冰,等. 化學(xué)除草劑對(duì)農(nóng)田生態(tài)系統(tǒng)野生植物多樣性的影響[J]. 生物多樣性,2016,24(2):228-236.
Qi Yue, Li Junsheng, Yan Bing, et al. Impact of herbicides on wild plant diversity in agroecosystems[J]. Biodiversity Science, 2016, 24(2): 228- 236. (in Chinese with English abstract)
[7] 王金峰,王金武,閆東偉,等. 3SCJ-2型水田行間除草機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(6):71-78,202.
Wang Jinfeng, Wang Jinwu, Yan Dongwei, et al. Design andexperiment of 3SCJ-2 type row weeding machine for paddyfield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 71-78, 202. (in Chinese with English abstract)
[8] Rebich R A, Coupe R H, Turman E M, et al. Herbicideconcentrations in the mississippi river basin-the importanceof chloroacetanilide herbicide degradates[J]. Science of the Total Environment, 2004, 321(1/2/3): 1-3.
[9] 陳學(xué)深,方貴進(jìn),馬旭,等. 基于線(xiàn)性自抗擾的稻田除草對(duì)行控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(6):19-27.
Chen Xueshen, Fang Guijin, Ma Xu. Design and experiment of control system for weedingalignment in rice field based on linear active disturbance rejection control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 19-27. (in Chinese with English abstract)
[10] Midtiby H S. Estimating the plant stem emerging points (PSEPs) of sugar beets at early growth stages[J]. Biosystems Engineering, 2012, 111(1): 83-90.
[11] 劉文,徐麗明,邢潔潔,等. 作物株間機(jī)械除草技術(shù)的研究現(xiàn)狀[J]. 農(nóng)機(jī)化研究,2017,39(1):243-250.
Liu Wen, Xu Liming, Xing Jiejie, et al. Research status of mechanical intra-row weed control in row crops[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 243-250. (in Chinese with English abstract)
[12] 陳子文,張春龍,李南,等. 智能高效株間鋤草機(jī)器人研究進(jìn)展與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):1-8.
Chen Ziwen, Zhang Chunlong, Li Nan, et al. Research progress and analysis of intelligent and efficient weeding robot between plants[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 1-8. (in Chinese with English abstract)
[13] 李江國(guó),劉占良,張晉國(guó),等. 國(guó)內(nèi)外田間機(jī)械除草技術(shù)研究現(xiàn)狀[J]. 農(nóng)機(jī)化研究,2006(10):14-16.
Li Jiangguo, Liu Zhanliang, Zhang Jinguo, et al. Review of mechanical weeding technique in field at home and abroad[J]. Journal of Agricultural Mechanization Research, 2006(10): 14-16. (in Chinese with English abstract)
[14] 王斌,畢新勝,羅進(jìn)軍,等. 果園避障旋耕機(jī)液壓系統(tǒng)的設(shè)計(jì)與研究[J]. 液壓與氣動(dòng),2015(8):129-132.
Wang Bin, Bi Xinsheng, Luo Jinjun, et al. Design and Research on hydraulic system of orchard obstacle avoidance rotary cultivator[J]. Hydraulic and Pneumatic, 2015(8): 129-132. (in Chinese with English abstract)
[15] Norremark M. The development and assessment of the accuracy of an autonomous GPS based system for intra-row mechanical weed control in row crops[J]. Biosystems Engineering, 2008, 101(4): 396-410.
[16] Norremark M. Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area[J]. Precision Agriculture, 2012, 13(2): 149-162.
[17] Cordill C, Grift T E. Design and testing of an intra-row mechanical weeding machine for corn[J]. Biosystems Engineering, 2011, 110(3): 247-252.
[18] 楊碩,李法徳,閆銀發(fā),等. 果園株間機(jī)械除草技術(shù)研究進(jìn)展與分析[J]. 農(nóng)機(jī)化研究,2020,42(10):1-8,16.
Yang Shuo, Li Fade, Yan Yinfa, et al. Research progress and analysis of intra-row mechanical weeding technology for orchards[J]. Agricultural Mechanization Research, 2020, 42(10): 1-8, 16. (in Chinese with English abstract)
[19] 張斌. 果園株間除草自動(dòng)讓樹(shù)裝置的設(shè)計(jì)與研究[D]. 石河子:石河子大學(xué),2017.
Zhang Bin. Design and Research for Equipment of Allowing Trees for Weeding among Plants[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[20] 劉玉潔,陳聰. 基于物聯(lián)網(wǎng)的果園避障除草機(jī)定位導(dǎo)航控制系統(tǒng)研究[J]. 農(nóng)機(jī)化研究,2018,40(9):223-226.
Liu Yujie, Chen Cong. Research on positioning and navigation control system of orchard obstacle avoiding weeding machine based on internet of things[J]. Journal of Agricultural Mechanization Research, 2018, 40(9): 223-226. (in Chinese with English abstract)
[21] 張朋舉,張紋,陳樹(shù)人,等. 八爪式株間機(jī)械除草裝置虛擬設(shè)計(jì)與運(yùn)動(dòng)仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(4):56-59.
Zhang Pengju, Zhang Wen, Chen Shuren, et al. Virtual design and kinetic simulation for eight claw intra-row mechanical weeding device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 56-59. (in Chinese with English abstract)
[22] 陳樹(shù)人,張朋舉,尹東富,等. 基于 LabVIEW 的八爪式機(jī)械株間除草裝置控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2):234-237.
Chen Shuren, Zhang Pengju, Yin Dongfu, et al. Control system of eight claw intra-row mechanical weeding device based on LabVIEW[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 234-237. (in Chinese with English abstract)
[23] 何義川,湯智輝,楊懷君,等. 葡萄園避障除草機(jī)的設(shè)計(jì)[J].農(nóng)機(jī)化研究,2019,41(11):127-131.
He Yichuan, Tang Zhihui, Yang Huaijun, et al. Design of obstacle avoidance weeding machine for vineyard[J]. Research on Agricultural Mechanization, 2019, 41(11): 127-131. (in Chinese with English abstract)
[24] 朱站偉,湯智輝,何義川,等. 果園株間除草自動(dòng)避障裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2020,42(6):147-153.
Zhu Zhanwei, Tang Zhihui, He Yichuan, et al. Design and test of automatic obstacle avoidance device for inter plant weeding in orchard[J]. Agricultural Mechanization Research, 2020, 42(6): 147-153. (in Chinese with English abstract)
[25] 于暢暢,徐麗明,王慶杰,等. 籬架式栽培葡萄雙邊作業(yè)株間自動(dòng)避障除草機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):1-9.
Yu Changchang, Xu Liming, Wang Qingjie, et al. Design and test of automatic obstacle avoidance weeding machine for double side operation of grape in hedgerow cultivation[J], Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 1-9. (in Chinese with English abstract)
[26] [美]菲利普·K.雅內(nèi)特. 企業(yè)及編程與控制理論[M]. 北京:清華大學(xué)出版社,2019.
[27] 韓豹,楊亞楠,王宏偉,等. 苗間除草部件入土深度PID自動(dòng)控制系統(tǒng)設(shè)計(jì)與臺(tái)架試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):68-77.
Han Bao, Yang Yanan, Wang Hongwei, et al. Design and bench test of PID automatic control system for soil penetration depth of weeding components among seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 68-77. (in Chinese with English abstract)
[28] 任玲,王寧,曹衛(wèi)彬,等. 番茄缽苗整排取苗手定位的模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):21-30.
Ren Ling, Wang Ning, Cao Weibin, et al. Fuzzy PID control for the positioning of tomato potted seedlings in whole row[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 21-30. (in Chinese with English abstract)
[29] 常運(yùn)濤,陳愛(ài)軍,萬(wàn)保雄,等. 葡萄V形、籬架式改造成高寬垂架式[J]. 南方園藝,2010,21(4):17-20.
Chang Yuntao, Chen Aijun, Wan Baoxiong, et al. Grapevine trellis reform practice from V-shape or espalier to special T-shape[J]. Southern Horticulture, 2010, 21(4): 17-20. (in Chinese with English abstract)
[30] 陳國(guó)才,邦生. 機(jī)械化保護(hù)性耕作新型機(jī)具—淺耕除草機(jī)[J]. 當(dāng)代農(nóng)機(jī),2007(11):70-71.
Chen Guocai, Bang Sheng. A new type of mechanized protective tillage machine-shallow tillage weeding machine[J]. Contemporary Farm Machinery, 2007(11): 70-71. (in Chinese with English abstract)
Optimized design and experiment of the precise obstacle avoidance control system for a grape interplant weeding machine
Xu Liming, Zhao Shijian, Ma Shuai, Niu Cong, Yan Chenggong, Lu Caiyun
(,,100083,)
Weeds have generally seized the growth resources of grapes, resulting in the aggravation of plant diseases and insect pests for the reduced grape quality, particularly the yield reduced by 10% to 20%. Therefore, weed removal is one of the most important steps in the vineyard. The current obstacle avoidance system in an automatic obstacle avoidance weeder can be operated bilaterally in the hedge-frame grape cultivation. Most obstacle avoidance action was controlled by the switches, where the obstacle avoidance stroke was fixed. However, a relatively low effect of weeding often occurred, due mainly to the obstacle avoidance action stroke cannot be accurately controlled, according to the position of obstacles. In this study, a highly precise control system of obstacle avoidance was optimized to design in an interplant weeding machine, according to the principle of copying control. The specific system consisted of the signal acquisition of obstacle avoidance, program control, hydraulic actuator, and the obstacle avoidance monitoring feedback part. A closed-loop control system was also composed of signal acquisition, hydraulic actuator, and monitoring feedback part, according to the requirements of precise obstacle avoidance. The signal acquisition of obstacle avoidance was run to collect the angle change of signals ?in real time when the weeding cutter moved to the position close to the obstacle. A voltage signal was then converted to transmit for the control system. The theoretical action stroke of the hydraulic actuator was calculated by the control system, where the signal was converted and output to the hydraulic actuator in theAngular variation ?size. At the same time, the displacement sensor of obstacle avoidance monitoring feedback transmitted the actual action stroke to the control system for the precise adjustment of the action stroke of the hydraulic cylinder. The structure of the hydraulic circuit was optimized to realize the precise control of obstacle avoidance under the combination of hydraulic and electronic control. Static calibration was carried out for the precise control program of obstacle avoidance. Specifically, the effective stroke range was 5-145 mm for the calibration hydraulic cylinder and the feedback displacement sensor, and the effective stroke of the signal acquisition displacement sensor was 0-70 mm. PID parameters were set in the control program at the speed of 440 mm/s, where the optimal PID parameters were finally determined as=0.034 3;=127.78;=0. The target center distance curve of the hydraulic cylinder was well fitted to the actual center distance curve, indicating an accurate, quick and stable implementation of the obstacle avoidance process. Recurdyn was used to simulate the precise obstacle avoidance operation in a weeding machine under the condition of straight obstacles. The coverage rate of the weeding operation was calculated to analyze the movement track of the weeding cutter disc. An optimal speed of the weeding cutter disc was selected as 200 r/min. Taking the operation speed of the machine as the experimental factor, the weeding coverage rate, and the damage rate of the fruit tree as evaluation indexes, field tests were carried out in the Scientific Research Test Base of China Agricultural University Zhuozhou, Hebei Province in June 2021. The results were as follows: The average coverage rate of weeding was 94.82%, 94.36%, 93.97%, and 92.60% at the machine speed of 260, 320, 380, and 440 mm/s, and the fruit tree damage rate was 1.67%, 1.78%, 1.92%, and 2.08%, respectively. The best comprehensive effect of weeding coverage rate and the highest operational efficiency was achieved at the operation speed of 380 mm/s. The average weeding operation coverage rate was 93.97% in the test, and the machine weeding operation coverage rate under the original obstacle avoidance control system was about 90.02%. The coverage rate of weeding operation increased by 4.39% at the same machine operation speed. Consequently, there was an excellent performance obstacle avoidance weeding in the highly precise control system of obstacle avoidance. This finding can provide a sound reference for further optimization of the interplant weeding machines in the modern orchards.
agricultural machinery; mechanization; precise obstacle avoidance; PID control; interplant weeding machine; optimization design
徐麗明,趙詩(shī)建,馬帥,等. 葡萄株間除草機(jī)精準(zhǔn)避障控制系統(tǒng)優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):31-39.doi:10.11975/j.issn.1002-6819.2021.15.004 http://www.tcsae.org
Xu Liming, Zhao Shijian, Ma Shuai, et al. Optimized design and experiment of the precise obstacle avoidance control system for a grape interplant weeding machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 31-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.004 http://www.tcsae.org
2021-06-09
2021-07-09
財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助
徐麗明,教授,博士生導(dǎo)師,研究方向?yàn)樯锷a(chǎn)自動(dòng)化技術(shù)與裝備。Email:xlmoffice@126.com
10.11975/j.issn.1002-6819.2021.15.004
S224.1+5
A
1002-6819(2021)-15-0031-09