管光華,劉王嘉儀
串聯(lián)輸水渠系控制解耦算法優(yōu)化與仿真
管光華,劉王嘉儀
(武漢大學(xué)水資源與水電工程科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430072)
串聯(lián)輸水渠系耦合特性表現(xiàn)為針對(duì)單一渠池設(shè)計(jì)的控制器串聯(lián)使用后控制性能較差。解耦算法可在一定程度上增強(qiáng)渠池的獨(dú)立控制性能。該研究針對(duì)基于比例-積分-微分(Proportional-Integral-Differential,PID)反饋控制的上游方向解耦算法提出優(yōu)化方案,首先對(duì)控制解耦算法中的解耦系數(shù)的選取范圍進(jìn)行驗(yàn)證;其次針對(duì)相鄰渠池長(zhǎng)度差異較大的情況,在算法中引入放大系數(shù)以提升解耦效果;最后通過(guò)對(duì)不同取水流量規(guī)模、渠道上下游運(yùn)行流量減半的算例進(jìn)行仿真分析,驗(yàn)證優(yōu)化方案的控制性能。結(jié)果表明:1)解耦系數(shù)的合理取值范圍為0.8~1.0;2)放大系數(shù)可選用相鄰渠池水面面積之比;3)當(dāng)串聯(lián)渠系上下游設(shè)計(jì)過(guò)流能力差異較大時(shí),放大系數(shù)的修正能顯著提升控制效果。該研究提出的優(yōu)化解耦算法可應(yīng)用于不同規(guī)模復(fù)雜渠道系統(tǒng)的解耦控制器設(shè)計(jì),對(duì)于灌區(qū)及引調(diào)水工程輸水系統(tǒng)的智能化調(diào)度有一定參考價(jià)值,工程應(yīng)用時(shí)建議結(jié)合具體渠道的特點(diǎn),根據(jù)渠道的特性和用途綜合考慮系數(shù)的取值。
渠道;算法;優(yōu)化;輸水渠系;控制解耦;下游常水位;放大系數(shù);PID控制器
中國(guó)水資源總量豐富,但人均擁有量較低,且南北分布不均,南方較為豐富而北方較為匱乏[1]。農(nóng)業(yè)用水作為中國(guó)用水占比最大的產(chǎn)業(yè),消耗量達(dá)到全國(guó)總用水量的60%以上[2]。其中農(nóng)田灌溉用水為農(nóng)業(yè)用水的主體,占其總量的90%[3]。提高節(jié)水灌溉技術(shù)是降低農(nóng)業(yè)用水量、節(jié)約水資源的有效途徑[4],而在灌溉輸配水階段,提高渠道自動(dòng)化運(yùn)行水平和灌區(qū)調(diào)度管理水平是提高用水效率的重要方式之一。
由于渠道具有非線性、滯后性的特點(diǎn),渠池之間耦合問(wèn)題突出,即單個(gè)渠池取水會(huì)導(dǎo)致其上下游相鄰渠池的水位也下降,引發(fā)多個(gè)閘門(mén)啟閉作用疊加[5],在上游水庫(kù)補(bǔ)償蓄量前的短時(shí)間內(nèi)多個(gè)渠池的水位會(huì)低于目標(biāo)水位[6-7],導(dǎo)致系統(tǒng)運(yùn)行失穩(wěn)。反饋調(diào)節(jié)器作用于單個(gè)渠池進(jìn)行分散控制時(shí),渠池間的相互影響不可避免,水位偏差增大,穩(wěn)定時(shí)間延長(zhǎng),系統(tǒng)更加不穩(wěn)定[8],不利于灌溉用水的合理輸配和輸水渠系自動(dòng)化控制。解耦可減小相鄰渠池的相互影響,在一定程度上實(shí)現(xiàn)單個(gè)渠池獨(dú)立調(diào)節(jié),使渠道控制更加靈活和準(zhǔn)確。
國(guó)內(nèi)外學(xué)者對(duì)于解耦問(wèn)題已有較多研究,Schuurmans[8-9]提出分別針對(duì)上、下游方向的Decoupler Ⅰ、Decoupler Ⅱ解耦結(jié)構(gòu),其以閘門(mén)開(kāi)度為控制變量,并得到多位學(xué)者的驗(yàn)證[10];Acharya 等[11]提出將控制變量設(shè)為流量;Clemmens等[12]提出在比例-積分(Proportional-Integral,PI)控制器中引入滯后參數(shù)(lag),在反饋調(diào)節(jié)中考慮水波傳遞的滯后時(shí)間以盡快調(diào)節(jié)水位;上述提及的解耦方法均為在PI控制器的基礎(chǔ)上加入解耦環(huán)節(jié);Malaterre[13]則以狀態(tài)空間為基礎(chǔ),提出渠道的線性二次最優(yōu)控制算法,在建模時(shí)考慮渠池之間的耦合,同樣實(shí)現(xiàn)解耦;Zhong等[14]證明優(yōu)化的線性二次最優(yōu)控制算法解耦效果明顯;崔巍等[15]基于水位-流量串級(jí)控制,提出僅需對(duì)上游方向解耦的PI反饋解耦控制算法,對(duì)于非線性強(qiáng)、滯后明顯的渠道來(lái)說(shuō)較為有效。
已有研究表明,加入解耦器的分散控制器較其他方式控制效果更佳[16],各閉環(huán)控制之間相互影響較低。且在針對(duì)單一渠池的分散控制器中加入解耦環(huán)節(jié),省去了建立狀態(tài)空間方程的復(fù)雜建模及控制器求解。故崔巍等[15]提出的PI反饋解耦控制算法更為方便。然而,此算法目前仍存在不足:其針對(duì)相鄰渠池長(zhǎng)度、運(yùn)行流量相差較大的情況研究較缺乏,而此種情況常見(jiàn)于灌區(qū)渠道。本文在PI反饋解耦控制算法的基礎(chǔ)上,針對(duì)上游渠池長(zhǎng)度大于下游渠池長(zhǎng)度的情況添加放大系數(shù),通過(guò)仿真模擬的方式,分析改進(jìn)后的算法對(duì)控制效果的改善程度,并驗(yàn)證其在不同工程情況下的適用性,以期為渠道控制解耦問(wèn)題提供借鑒。
基于經(jīng)典控制理論中應(yīng)用廣泛的比例-積分-微分(Proportional-Integral-Differential,PID)反饋算法(如圖1所示)進(jìn)行渠系控制。PID反饋算法由比例環(huán)節(jié)、積分環(huán)節(jié)、微分環(huán)節(jié)組成。比例環(huán)節(jié)主要用來(lái)減小水位偏差,積分環(huán)節(jié)用于消除閘門(mén)控制的殘差,微分環(huán)節(jié)用于加快閘門(mén)動(dòng)作,減小穩(wěn)定時(shí)間[17-19]。
PID反饋算法表達(dá)式標(biāo)準(zhǔn)方程[19]如式(1),若不考慮微分環(huán)節(jié)即為PI控制:
式中()為時(shí)刻的控制器輸出,即閘門(mén)的開(kāi)度增量,m; K為比例系數(shù);K為積分系數(shù);K為微分系數(shù)。
崔巍等[20]曾提出水位-流量串級(jí)控制的方法,運(yùn)用以流量為控制變量的PI控制。這種控制方法可使渠系靈活啟閉閘門(mén)以減小過(guò)閘流量偏差。基于此方法,下游方向的擾動(dòng)被有效隔絕。
本文參照上述控制方法,僅針對(duì)上游方向的解耦算法進(jìn)行改進(jìn),以彌補(bǔ)當(dāng)前控制解耦算法的不足。
PID反饋控制是對(duì)擾動(dòng)造成的偏差進(jìn)行微調(diào),這是僅針對(duì)于單一渠池的控制;解耦則協(xié)調(diào)相鄰渠池的閘門(mén)動(dòng)作[20],以降低渠池間的相互影響,保證在按時(shí)定量輸水的前提下盡快維持系統(tǒng)的穩(wěn)定性。
在輸水渠系中,崔巍等[15,21]提出用以下方法對(duì)相鄰渠池進(jìn)行解耦:將下游渠池的反饋流量,以一定權(quán)重(解耦系數(shù)K)傳遞至上游的反饋流量中,即將下游因水位偏差產(chǎn)生的調(diào)節(jié)量,納入上游渠池的調(diào)節(jié)控制中。將解耦流量逐渠池向上游傳遞,進(jìn)而完成整個(gè)系統(tǒng)的解耦。加入解耦環(huán)節(jié)后,各閘門(mén)反饋控制算法如下[21]:
研究表明上述解耦系數(shù)取0.8~1.0較為合適[15,21],但這僅適用于相鄰渠池長(zhǎng)度差異不大或上游渠池短于下游渠池的情況;當(dāng)上游渠池比下游渠池長(zhǎng)時(shí),下游渠池取水時(shí)上游仍會(huì)出現(xiàn)較大水位偏差。為了增大解耦程度,降低長(zhǎng)度差異較大渠池之間的相互影響,本文提出在解耦系數(shù)前乘以放大系數(shù),表達(dá)式如下:
對(duì)于解耦放大系數(shù)的取值,有以下初步分析:
1)由于取水后上游渠池將進(jìn)行蓄量補(bǔ)償,下游常水位運(yùn)行時(shí),水面線以下游水位為支點(diǎn)轉(zhuǎn)動(dòng)抬升[22],反饋流量由渠池下游水位偏差決定,K的取值可能和這2個(gè)參數(shù)相關(guān);
2)在實(shí)際渠道中,補(bǔ)償?shù)恼鎸?shí)蓄量較難確定,且緩坡渠道中水面線可視作水平抬升,故近似用補(bǔ)償蓄量與水位偏差的比值,即渠池的水面面積探究放大系數(shù)K取值的規(guī)律;
3)對(duì)于運(yùn)行流量、斷面尺寸沿程無(wú)明顯變化的渠道,水面面積與渠池長(zhǎng)度從研究角度來(lái)看是等價(jià)的;而對(duì)于上下游渠池流量、斷面變化較大的渠道,則需在二者之間選取更加合適的參數(shù)作為放大系數(shù)K的參考。
結(jié)合以上理論分析和仿真的可行性,本文選取渠道下游常水位運(yùn)行時(shí)的水面面積作為研究對(duì)象,對(duì)放大系數(shù)的取值進(jìn)行分析。
衡量系統(tǒng)控制性能不應(yīng)以單一指標(biāo)的最優(yōu)性能為判別依據(jù),而是以若干指標(biāo)進(jìn)行綜合比較以均衡控制效果。本文選取穩(wěn)定時(shí)間t、絕對(duì)值誤差積分(Integral of Absolute Error,IAE)、絕對(duì)流量變化積分(Integral of Absolute Flow Change,IAQ)分別從時(shí)間、水位、流量這3個(gè)要素全面衡量系統(tǒng)的控制性能,其中t衡量系統(tǒng)穩(wěn)定的快慢,其穩(wěn)定狀態(tài)的判斷標(biāo)準(zhǔn)為連續(xù)3 h內(nèi)閘門(mén)開(kāi)度變化累計(jì)小于0.01 m且控制點(diǎn)水位偏差在目標(biāo)水位的2%以內(nèi);IAE、IAQ分別衡量在過(guò)渡過(guò)程中水位波動(dòng)的累積和系統(tǒng)對(duì)流量的控制能力[23],其表達(dá)式分別如下:
式中?為采樣時(shí)間步長(zhǎng),s;為系統(tǒng)仿真總時(shí)長(zhǎng),s;1、2分別為流量初始變化和最終穩(wěn)定的時(shí)刻;Q為時(shí)刻過(guò)閘流量,m3/s。
管光華等[24]曾針對(duì)渠道自動(dòng)化控制提出無(wú)量綱的綜合性能指標(biāo)(GI),公式如下:
式中IAE為水位絕對(duì)值誤差積分,無(wú)量綱;k、NIAQ為去量綱的穩(wěn)定時(shí)間、和絕對(duì)流量變化積分;為經(jīng)驗(yàn)系數(shù),當(dāng)流量、水位、穩(wěn)定時(shí)間權(quán)重一致時(shí)=1。
解耦可降低因下游渠池分水帶來(lái)的水位偏差,但同時(shí)閘門(mén)動(dòng)作量也會(huì)增加,本文衡量系統(tǒng)控制性能時(shí)側(cè)重解耦后對(duì)水位偏差的改善幅度,同時(shí)以對(duì)流量的控制能力作為輔助衡量指標(biāo),約束閘門(mén)動(dòng)作量在適度的范圍內(nèi)。本文對(duì)同一工程算例進(jìn)行綜合指標(biāo)對(duì)比,故不需對(duì)參數(shù)進(jìn)行無(wú)量綱化,且增大水位偏差的權(quán)重以重視其改善幅度。保留式(7)格式,將變量修改為有量綱形式,適用于本文研究的綜合指標(biāo)GI如式(8)所示,GI越小表示控制性能越好。
式中t為系統(tǒng)穩(wěn)定時(shí)間,h;IAQ為絕對(duì)流量變化積分,m3/s。
IAE放大至和IAQ同量級(jí)進(jìn)行計(jì)算。因側(cè)重水位偏差的改善幅度,將式(7)中IAE的指數(shù)放大至3。
本文選取3個(gè)在渠池長(zhǎng)度、取水流量、斷面尺寸方面差異較大的工程實(shí)例,在其基礎(chǔ)上進(jìn)行合理修改作為不同工況的仿真算例。渠道A取自甘肅省疏勒河灌溉渠系;渠道B取自美國(guó)土木工程師學(xué)會(huì)(The American Society of Civil Engineers,ASCE)推薦的ASCE測(cè)試渠系;渠道C取自山東省麻灣灌溉渠系。在加入解耦環(huán)節(jié)前已將PI控制器中的參數(shù)P、I調(diào)節(jié)至系統(tǒng)振蕩較小、過(guò)渡較平穩(wěn)的狀態(tài),不同算例取值不同,在此不加贅述。并且研究過(guò)程中不改變其取值,對(duì)比解耦前后的控制性能變化。各算例渠池整體仿真總時(shí)長(zhǎng)1 440 min,時(shí)間步長(zhǎng)10 min,計(jì)算斷面間隔50 m。分水口取水時(shí)間360 min,與下游節(jié)制閘距離100 m,計(jì)算斷面間隔 10 m,其中分水口的分水流量線性增大。
選取渠道A和渠道B的相鄰2渠池分析基礎(chǔ)解耦系數(shù)K的適宜取值,具體參數(shù)見(jiàn)表1。(注:不同算例選取2個(gè)渠道中,2個(gè)不同的相鄰渠池仿真,故分別展示每個(gè)算例中選取的渠池,不作統(tǒng)一展示。)
在取水時(shí)段內(nèi)下游渠池的分水口進(jìn)行取水,探究上游渠池受到下游渠池的影響程度,與加入解耦算法后的控制器對(duì)比控制效果,驗(yàn)證已有研究在向上游方向解耦時(shí),對(duì)基礎(chǔ)解耦系數(shù)K建議取值的合理性。由表2和圖2可知:1)增加解耦環(huán)節(jié)后,控制性能有顯著的改善;在0.6~1.0范圍內(nèi),隨著解耦系數(shù)的增大,水位誤差減小,閘門(mén)動(dòng)作量在一定范圍內(nèi)減小,但系數(shù)過(guò)大反而降低控制效果,且系數(shù)超過(guò)1.0出現(xiàn)超調(diào),從渠道安全運(yùn)行角度來(lái)說(shuō)不適用;2)通過(guò)綜合指標(biāo)的對(duì)比,取值在0.8~1.2之間時(shí)改善幅度較大,系數(shù)為1.0~1.2時(shí)解耦程度相對(duì)較高;3)通過(guò)圖2中曲線對(duì)比可知,系數(shù)大于1.0時(shí)出現(xiàn)明顯超調(diào),即在過(guò)渡階段水位高于控制目標(biāo)水位,從渠道安全運(yùn)行角度來(lái)說(shuō)應(yīng)盡量避免。綜上,解耦系數(shù)在0.8~1.0之間較合適,驗(yàn)證了崔巍等在研究中提出的解耦系數(shù)建議取值為0.8~1.0[15,21]。本文將固定采用K=0.8作為基礎(chǔ)解耦系數(shù)進(jìn)行進(jìn)一步研究。
表1 渠道A、B部分渠池建模參數(shù)表
表2 渠道A、B上游渠池綜合指標(biāo)對(duì)比
選取渠道A進(jìn)行仿真分析,渠道幾何參數(shù)見(jiàn)表1,為增大解耦前后的對(duì)比效果,取水流量增大到6 m3/s,其他設(shè)置同表1。采用上游方向解耦且上游渠池長(zhǎng)度大于下游時(shí),需在基礎(chǔ)解耦系數(shù)上乘以放大系數(shù)以優(yōu)化算法,故在最下游渠池進(jìn)行分水,研究上游長(zhǎng)渠池的解耦效果。分別選取上下游渠池水面面積相差3.5、4.5、5.5倍進(jìn)行對(duì)比分析,渠道整體建模如圖3所示。各情況的水位誤差線和綜合指標(biāo)GI對(duì)比見(jiàn)圖4和表3。通過(guò)上下游水面面積相差3.5、4.5、5.5倍的3組數(shù)據(jù)可得K適宜的取值區(qū)間和面積差異的關(guān)系。
從圖4可以看出,解耦能降低渠池的水位誤差,略微縮短系統(tǒng)的穩(wěn)定時(shí)間。加入放大系數(shù)后的算法能顯著提升解耦效果,在一定范圍內(nèi)隨系數(shù)的增大,水位誤差和穩(wěn)定時(shí)間減小,但繼續(xù)增大會(huì)帶來(lái)超調(diào)的問(wèn)題,且水位誤差累積量增大。表3綜合指標(biāo)對(duì)比更清楚地體現(xiàn)了放大系數(shù)的增大對(duì)控制性能的影響。隨著放大系數(shù)的增加,穩(wěn)定時(shí)間、水位波動(dòng)累積(t、IAE)均會(huì)經(jīng)歷先減后增的過(guò)程,而流量變化積分(IAQ)明顯增加,說(shuō)明閘門(mén)動(dòng)作量增大,這與理論和經(jīng)驗(yàn)相符;對(duì)比GI可發(fā)現(xiàn)控制性能在系數(shù)增大過(guò)程中達(dá)到最優(yōu),與未解耦、未添加放大系數(shù)相比具有顯著提升。通過(guò)比較圖4改善幅度曲線可知,上下游水面面積3.5倍時(shí),K較優(yōu)區(qū)間[2.5,3.5],相差4.5倍時(shí),K較優(yōu)區(qū)間為[4,5],相差5.5倍時(shí)較優(yōu)區(qū)間為[5,6]。綜合來(lái)看,放大系數(shù)取在上下游渠池水面面積差異倍數(shù)附近區(qū)間較合適,故總結(jié)公式如下:
K=αA/A且K>1 (9)
式中A為上游渠池水面面積,m2;A為下游渠池水面面積,m2;為經(jīng)驗(yàn)系數(shù),可取0.9~1.1。
表3 上下游水面面積相差倍數(shù)不同時(shí)不同Ka下長(zhǎng)渠池綜合指標(biāo)對(duì)比
為了說(shuō)明解耦算法中放大系數(shù)的普適性,在不同規(guī)模的渠系上均能達(dá)到解耦目的,選取灌區(qū)輸配水渠道普遍存在的2種情況對(duì)系數(shù)進(jìn)行驗(yàn)證。2種情況分別為取水流量差異較大的2渠道,同一渠道上下游渠池因支渠分水運(yùn)行流量減半。
2.3.1 渠道系統(tǒng)規(guī)模差異
分別選取ASCE測(cè)試渠道(渠道B)和山東省麻灣灌溉渠系(渠道C)中的相鄰2渠池進(jìn)行仿真分析,其中上游渠池長(zhǎng)度大于下游渠池,在未取水時(shí)上下游水面面積分別相差1.6、1.8倍。渠道C分水流量是渠道B的9倍,取水流量規(guī)模差異較大,同時(shí)也說(shuō)明渠道尺寸和過(guò)流能力相差較大。渠道相關(guān)參數(shù)和取水流量如表4所示。
表4 渠道B、C部分渠池建模參數(shù)
對(duì)比圖5水位誤差線的走向和表5各指標(biāo)的數(shù)據(jù),可看出改善幅度的大小隨放大系數(shù)的增大呈現(xiàn)先增后減的趨勢(shì),其中渠道C中K=2.5時(shí),改善幅度出現(xiàn)負(fù)值?0.92%,代表與未解耦情況相比控制性能反而降低,這是由于系數(shù)增大解耦作用過(guò)度,導(dǎo)致閘門(mén)動(dòng)作量和穩(wěn)定時(shí)間過(guò)大。放大系數(shù)對(duì)系統(tǒng)穩(wěn)定時(shí)間的影響取決于水位誤差和閘門(mén)動(dòng)作量,故影響趨勢(shì)較為復(fù)雜。通過(guò)表5和圖5控制性能對(duì)比可知,K的適宜取值在渠道B、C中均在[1.5,2]內(nèi),同時(shí)分別取1.5、1.8時(shí)效果較優(yōu),驗(yàn)證了上文中K的取值在上下游渠池水面面積相差倍數(shù)附近區(qū)間內(nèi)這一結(jié)論。同時(shí),通過(guò)渠道A、B、C這3個(gè)不同工程實(shí)例對(duì)比可知:1)相較于相鄰渠池長(zhǎng)度相差較大的渠道A,相差較小的渠道B、C的K適宜區(qū)間更短,則式(9)中取值可更接近于1.0;2)反饋解耦算法的改善空間有限[25],完美的解耦是不符合實(shí)際的。不同算例中解耦空間不同,并且和PID控制器參數(shù)設(shè)置有關(guān),但針對(duì)此點(diǎn)本文不做詳細(xì)探究。
2.3.2 渠系間相鄰渠段幾何差異
輸水渠系通常會(huì)在干渠的側(cè)邊設(shè)若干支渠進(jìn)行輸配水,故上下游渠池運(yùn)行流量相差較大的現(xiàn)象時(shí)有發(fā)生。選取渠道A、B進(jìn)行仿真,上游長(zhǎng)渠池的運(yùn)行流量是下游短渠池的2倍,下游渠池進(jìn)行分水。由于算例中運(yùn)行流量和斷面尺寸均不同,水面寬度沿程改變較大,故常水位運(yùn)行時(shí)水面面積倍比和長(zhǎng)度倍比相差較大,更符合灌區(qū)實(shí)際運(yùn)行情況,進(jìn)一步驗(yàn)證式(9)的正確性。渠道相鄰長(zhǎng)、短渠池建模參數(shù)和運(yùn)行情況如表6。
表5 上下游水面面積相差倍數(shù)不同時(shí)渠道B和C不同Ka下長(zhǎng)渠池綜合指標(biāo)對(duì)比
表6 渠道A、B上下游渠池參數(shù)
由表7和圖6對(duì)比可知,渠道A中K的適宜取值區(qū)間為[6,7];渠道B中K的適宜取值區(qū)間為[2.5,3]。此時(shí)渠道A上下游渠池長(zhǎng)度相差5倍,水面面積相差6.5倍;渠道B長(zhǎng)度相差2倍,水面面積相差2.5倍,可知K更接近水面面積的倍比,驗(yàn)證了以A/A作為K取值參考的合理性。同時(shí)驗(yàn)證了添加放大系數(shù)后的解耦算法對(duì)于渠道運(yùn)行流量減半的情況同樣具有顯著的解耦效果。
表7 上下游水面面積相差倍數(shù)不同時(shí)渠道A和B不同Ka下長(zhǎng)渠池綜合指標(biāo)對(duì)比
如多渠池系統(tǒng)要取得較大的整體性能改善,則每個(gè)渠池需根據(jù)其與下游渠池的水面面積比,選擇不同的放大系數(shù)進(jìn)行解耦。當(dāng)K在水面面積倍比附近選取時(shí),渠道A(3渠池串聯(lián))和渠道B(4渠池串聯(lián))的整體改善幅度可達(dá)到58.40%和47.42%;相較于未引入放大系數(shù)的方案也分別有34.15%和13.19%的改善(具體工況設(shè)置和指標(biāo)分析未在文中展示)??梢钥闯稣w性能改善幅度比單一渠池小,這是因?yàn)閷?shí)際工程中渠池長(zhǎng)度多變,并且渠池之間的相互影響造成閘門(mén)動(dòng)作量大大增加,但總體仍有明顯的改善。
由表3、5、7可知:在渠道A甘肅疏勒河灌渠中,各組工況解耦后改善幅度最大均能達(dá)到90%以上;渠道B為渠道斷面稍大的ASCE測(cè)試渠道,當(dāng)相鄰渠池的運(yùn)行流量差異和渠池長(zhǎng)度倍比改變時(shí),最大改善幅度也均能達(dá)到75%以上;而渠道C選取的麻灣渠道渠道斷面尺寸和設(shè)計(jì)流量較另外2個(gè)算例較大,改善幅度則相對(duì)較小,較優(yōu)時(shí)僅有50%,可見(jiàn)解耦優(yōu)化方案對(duì)不同渠道的性能提升程度是不同的。這是由于改善程度和系統(tǒng)的自動(dòng)控制能力聯(lián)系緊密,且水力響應(yīng)特性和渠道斷面及流量有關(guān)[26]。優(yōu)化后的解耦算法無(wú)法完全消除渠池間的耦合關(guān)系,而對(duì)于規(guī)模越大的渠道,控制難度越大[27],解耦效果就更加有限。此外,本文雖未對(duì)K和K的搭配效果做出詳細(xì)分析,但由于是對(duì)K的解耦效果進(jìn)行放大,其配合效果一定程度上取決于K的取值是否合適,仿真結(jié)果同樣可證明此點(diǎn)。
渠道水面線可簡(jiǎn)化為均勻流區(qū)和回水區(qū),且回水區(qū)是基于閘前水位壅高,水波反射的水動(dòng)力特征在低頻域內(nèi)簡(jiǎn)化的[9],故其大小會(huì)影響相鄰渠池的耦合關(guān)系和解耦程度。但由于回水區(qū)的界限在實(shí)際渠道中較難確定,故本文選取下游常水位運(yùn)行時(shí)的渠道水面面積作為近似的研究對(duì)象。但從工程應(yīng)用角度來(lái)說(shuō),利用水面面積求放大系數(shù)的適宜取值區(qū)間有一定的復(fù)雜性和變化性,故在此分析采用渠池長(zhǎng)度倍比作為參考指標(biāo)的適用情況。如2.2節(jié)中渠道A設(shè)置的3種長(zhǎng)度倍比分別為4、5、6倍,根據(jù)圖4可知,當(dāng)K選取4、5、6時(shí),其改善幅度和選取水面面積倍比3.5、4.5、5.5時(shí),差值在2%以內(nèi),其降低幅度均在較小的范圍內(nèi),故對(duì)于實(shí)際工程而言在此情況下選取長(zhǎng)度倍比為放大系數(shù)K是合理的,且應(yīng)用更為簡(jiǎn)單。但對(duì)于渠道沿程會(huì)進(jìn)行大幅分水的工況,如2.3節(jié)中上下游運(yùn)行流量相差一半:若選取相鄰渠池的長(zhǎng)度倍比,根據(jù)表7可知,渠道A的K取5時(shí),改善幅度相較于水面面積倍比的6.5,則相差3.27%,解耦效果降低得更多。文中疏勒河灌渠和麻灣干渠可代表規(guī)模不同的工程實(shí)例,尤其疏勒河沿程的流量和斷面尺寸相差較大,放大系數(shù)的取值更加貼近水面面積倍比,此類渠道建議選取水面面積作為參考指標(biāo),不建議以長(zhǎng)度倍比代替。
目前輸水渠系的耦合問(wèn)題對(duì)某些渠道的穩(wěn)定運(yùn)行顯著影響,進(jìn)而影響輸配水的運(yùn)行效率及配水效果。本文提出的解耦優(yōu)化方案,能大幅降低因下游渠池取水對(duì)上游渠池造成的水位偏差,達(dá)到各渠池相對(duì)較優(yōu)的控制效果,有利于實(shí)現(xiàn)各渠池的獨(dú)立控制。并且優(yōu)化方案只需在原有解耦系數(shù)的基礎(chǔ)上添加放大系數(shù),思路簡(jiǎn)單、計(jì)算方便,對(duì)工程應(yīng)用有一定參考價(jià)值和借鑒意義。但該優(yōu)化方案仍存在局限性,輸水渠系一般支渠眾多,取水時(shí)段和取水流量不同,水力相應(yīng)特征也不同[28]。供水系統(tǒng)中過(guò)水建筑物也同樣對(duì)耦合有所影響[29],故對(duì)多條支渠分水、干支渠復(fù)雜銜接等情況的解耦優(yōu)化仍有待研究。另外,解耦方式也可考慮通過(guò)自主學(xué)習(xí)達(dá)到自適應(yīng)控制,和PID自適應(yīng)調(diào)節(jié)參數(shù)類似[30],根據(jù)渠道不同運(yùn)行流量帶來(lái)的水面面積倍比的變化,調(diào)整放大系數(shù)的取值,更加精確迅速地對(duì)渠池的擾動(dòng)做出響應(yīng),降低渠池間的耦合程度。
本文針對(duì)相鄰渠池長(zhǎng)度、運(yùn)行流量差異較大的解耦問(wèn)題,在已有解耦算法中引入放大系數(shù)和基礎(chǔ)解耦系數(shù)相乘的優(yōu)化方案,采用仿真分析的方式驗(yàn)證放大系數(shù)選取的適宜區(qū)間,并選取不同輸水渠系實(shí)例驗(yàn)證其合理性和適用性,證明其在實(shí)際工程控制解耦上的效果。研究得到以下結(jié)論:
1)驗(yàn)證了上游方向解耦時(shí),上游渠池長(zhǎng)度小于下游渠池長(zhǎng)度時(shí),基礎(chǔ)解耦系數(shù)0.8~1.0適用;當(dāng)上游渠池長(zhǎng)度大于下游渠池長(zhǎng)度時(shí),則需引入放大系數(shù)進(jìn)行優(yōu)化。
2)提出了解耦放大系數(shù),建議取值在渠道下游常水位運(yùn)行時(shí),相鄰渠池水面面積倍比的附近。加入放大系數(shù)后,水位誤差改善較明顯,系統(tǒng)穩(wěn)定時(shí)間明顯減小,閘門(mén)動(dòng)作量在可接受范圍內(nèi),控制性能的改善效果較為顯著,并提出計(jì)算放大系數(shù)的公式。
3)通過(guò)不同渠道取水規(guī)模差異較大、相同渠道上下游運(yùn)行流量減半的工況對(duì)優(yōu)化方案進(jìn)行驗(yàn)證,各工況下解耦效果均有顯著提升,在實(shí)際工程中有一定的普適性。
4)當(dāng)渠道內(nèi)運(yùn)行流量和斷面尺寸沿程無(wú)明顯變化時(shí),為方便工程應(yīng)用可直接以長(zhǎng)度倍比確定放大系數(shù);反之,運(yùn)行流量差異較大時(shí),則最好以水面面積倍比確定。說(shuō)明優(yōu)化方案對(duì)于灌區(qū)渠道的大部分情況均適用。
[1] 吳普特,馮浩,牛文全,等. 中國(guó)用水結(jié)構(gòu)發(fā)展態(tài)勢(shì)與節(jié)水對(duì)策分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):1-6.
Wu Pute, Feng Hao, Niu Wenquan, et al. Analysis of development tendency of water distribution and water-saving strategies[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 1-6. (in Chinese with English abstract)
[2] 倪文進(jìn). 中國(guó)農(nóng)村水利發(fā)展?fàn)顩r與科技需求[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):1-8.
Ni Wenjin. Development and technology requirement of China rural water conservancy[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 1-8. (in Chinese with English abstract)
[3] 范群芳,董增川,杜芙蓉. 農(nóng)業(yè)用水和生活用水效率研究與探討[J]. 水利學(xué)報(bào),2007,38(增刊1):465-469.
Fan Qunfang, Dong Zengchuan, Du Furong. Study of agriculture water and life water use efficiency[J]. Journal of Hydraulic Engineering, 2007, 38(Supp.1): 465-469. (in Chinese with English abstract)
[4] 李慧,丁躍元,李原園,等. 新形勢(shì)下我國(guó)節(jié)水現(xiàn)狀及問(wèn)題分析[J].南水北調(diào)與水利科技,2019,17(1):202-208.
Li Hui, Ding Yueyuan, Li Yuanyuan, et al.Analysis of status quo and problems of water conservation in China in new situation[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 202-208. (in Chinese with English abstract)
[5] 崔巍,王長(zhǎng)德. 調(diào)水工程運(yùn)行最優(yōu)控制研究[J]. 南水北調(diào)與水利科技,2007,5(2):6-8,24.
Cui Wei, Wang Changde. Optimal control of water diversion projects[J]. South-to-North Water Transfers and Water Science & Technology, 2007, 5(2): 6-8, 24. (in Chinese with English abstract)
[6] 管光華,廖文俊,毛中豪,等. 大型輸水渠系蓄量非疊加非充分補(bǔ)償優(yōu)化算法[J]. 華中科技大學(xué)學(xué)報(bào):自然科學(xué)版,2019,47(9):60-66.
Guan Guanghua, Liao Wenjun, Mao Zhonghao, et al. Optimization algorithm for non-superimposed inadequate volume compensation in large-scale water conveyance canal system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47(9): 60-66. (in Chinese with English abstract)
[7] 管光華,廖文俊,毛中豪,等. 渠系前饋蓄量補(bǔ)償控制時(shí)滯參數(shù)算法比較與改進(jìn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):72-80.
Guan Guanghua, Liao Wenjun, Mao Zhonghao, et al. Comparison and improvement of time delay parameter algorithm for feedforward volume compensation control in canal system[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 72-80. (in Chinese with English abstract)
[8] Schuurmans J. Control of Water Levels in Open-channels[D]. Netherlands: Delft University of Technol, 1997.
[9] Schuurmans J, Bosgra H, Brouwer R. Open-channel flow model approximation for controller design[J]. Applied Mathematical Modelling, 1995, 19(9): 525-530.
[10] Wahlin B T, Clemmens A J. Performance of historic downstream canal control algorithms on ASCE test canal 1[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(6): 365-375.
[11] Acharya K D, Sau J, Sanfilippo F. Narmada project: Controlled volume concept[R]. France: Société du Canal de Provence, 1999: 122-127.
[12] Clemmens A J, Strand R J. Downstream-water-level control test results on the WM lateral canal[J]. Journal of Irrigation and Drainage Engineering, 2010, 136(7): 460-469.
[13] Malaterre P-O. Linear quadratic optimal controller for irrigation canals[J]. Journal of Irrigation and Drainage Engineering, 1998, 124(4): 187-194.
[14] Zhong K, Guan G H, Tian X, et al. Evaluating optimization objectives in linear quadratic control applied to open canal automation[J]. Journal of Water Resources Planning and Management, 2020, 146(11): 04020087-1-04020087-12.
[15] 崔巍,陳文學(xué),郭曉晨,等. 明渠調(diào)水工程閘前常水位運(yùn)行控制解耦研究[J]. 灌溉排水學(xué)報(bào),2009,28(6):9-13,29.
Cui Wei, Chen Wenxue, Guo Xiaochen, et al. Research on decoupling of constant downstream depth operation of canal[J]. Journal of Irrigation and Drainage, 2009, 28(6): 9-13,29. (in Chinese with English abstract)
[16] Hanuma N R, Kumar D, Gopikrishna R P V. Improved centralised control system for rejection of loop interaction in coupled tank system[J]. Indian Chemical Engineer, 2019, 62(2): 118-137.
[17] Wahlin, B T, Clemmens A J. Automatic downstream water-Level feedback control[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(3): 198-207.
[18] van Overloop P J, Schuurmans J, Brouwer R, et al. Multiple-model optimization of proportional integral controllers on canals[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(2): 190-196.
[19] 美國(guó)內(nèi)務(wù)部墾務(wù)局著. 現(xiàn)代灌區(qū)自動(dòng)化管理技術(shù)實(shí)用手冊(cè)[M]. 高占義,謝崇寶,程先軍,譯. 北京:中國(guó)水利水電出版社,2004.
[20] 崔巍,陳文學(xué),姚雄,等. 大型輸水明渠運(yùn)行控制模式研究[J]. 南水北調(diào)與水利科技,2009,7(5):6-10,19.
Cui Wei, Chen Wenxue, Yao Xiong, et al. Research on canal control of large scale water transfer Project[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5): 6-10, 19. (in Chinese with English abstract)
[21] 崔巍,陳文學(xué),郭曉晨.明渠閘前常水位運(yùn)行控制解耦試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào),2012,31(6):115-119,125.
Cui Wei, Chen Wenxue, Guo Xiaochen. Experimental study on decoupling algorithm for canal operation at constant downstream depth[J]. Journal of Hydroelectric Engineering, 2012, 31(6): 115-119, 125. (in Chinese with English abstract)
[22] 崔巍,陳文學(xué),郭曉晨. 明渠運(yùn)行控制模型研究進(jìn)展[J]. 南水北調(diào)與水利科技,2009,7(4):5-9.
Cui Wei, Chen Wenxue, Guo Xiaochen. Progress in research on canal control models[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(4): 5-9. (in Chinese with English abstract)
[23] Clemmens A J, Kacerek T F, Grawitz B, et al. Test cases for canal control algorithms[J]. Journal of Irrigation and Drainage Engineering, 1998, 124(1): 23-30.
[24] 管光華,鐘錁,廖文俊,等. 基于無(wú)量綱性能指標(biāo)的渠系控制器參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):90-99.
Guan Guanghua, Zhong Ke, Liao Wenjun, et al. Optimization of controller parameters based on nondimensional performance indicators for canal systems[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 90-99. (in Chinese with English abstract)
[25] 閔娟,黃之初. 多變量解耦控制方法[J]. 控制工程,2005,12(增刊2):125-127.
Min Juan, Huang Zhichu. Methods of multivariable decoupling control[J]. Control Engineering of China, 2005, 12(Supp.2): 125-127. (in Chinese with English abstract)
[26] 穆祥鵬,陳文學(xué),崔巍,等. 南水北調(diào)中線工程渠道敏感性研究[J]. 水力發(fā)電學(xué)報(bào),2012,31(6):109-114.
Mu Xiangpeng, Chen Wenxue, Cui Wei, et al. Study on hydraulic response sensitivity of canal pools of the middle route of South-to-North Water Diversion Project[J]. Journal of Hydroelectric Engineering, 2012, 31(6): 109-114. (in Chinese with English abstract)
[27] 范杰,王長(zhǎng)德,管光華,等. 渠道非恒定流水力學(xué)響應(yīng)研究[J]. 水科學(xué)進(jìn)展,2006,17(1):55-60.
Fan Jie, Wang Changde, Guan Guanghua, et al. Study on the hydraulic reaction of unsteady flows in open channel[J]. Advances in Water Science, 2006, 17(1): 55-60. (in Chinese with English abstract)
[28] 李抗彬,沈冰,李智錄,等. 基于非恒定水流模擬的灌區(qū)明渠水力響應(yīng)特征分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):107-114.
Li Kangbin, Shen Bing, Li Zhilu, et al. Open channel hydraulic response characteristics in irrigation area based on unsteady flow simulation analysis[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 107-114. (in Chinese with English abstract)
[29] Mao Z H, Guan G H, Yang Z H, et al. Linear model of water movements for large-scale inverted siphon in water distribution system[J]. Journal of Hydroinformatics, 2019, 21(6): 1048-1063.
[30] 韓延成,高學(xué)平. 基于RBF人工神經(jīng)網(wǎng)絡(luò)的下游常水位自適應(yīng)渠道輸水控制研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(8):202-206.
Han Yancheng, Gao Xueping. Research of self-adapting canal downstream constant level control based on RBF neural network[J]. Journal of Northwest A & F University: Natural Science Edition, 2007, 35(8): 202-206. (in Chinese with English abstract)
Optimization and simulation of decoupling algorithm for cascade drainage system control
Guan Guanghua, Liu Wangjiayi
(,,430072,)
Coupling characteristics of a series channel system refers that the regulation action of a single control gate can affect the water level of adjacent pools in upstream/downstream reaches. Without decoupling, there is often a dramatic decline in the performance of the control system, even instability in the optimal controller for a single channel pool. In particular, the coupling effect is more complex, because there are significant differences in the length and capacity of adjacent channels in various irrigation districts of China. Decoupling can allow the pools to run independently of channel control, making it easier to change the individual channel. However, it is still lacking in the design principle of decoupling coefficient in complex canal systems with different lengths and scales. In this study, an optimization was proposed for decoupling algorithm in the upstream direction using Proportional-Integral-Differential (PID) feedback control. Firstly, an efficient range was determined for the decoupling coefficient. Secondly, an amplification factor was introduced to improve the decoupling effect in various lengths of adjacent channels. Finally, a simulation was carried out under different water intake flows and geometric structures between the upper and lower reaches of the channel. Three engineering examples were also selected with different decoupling amplitude to verify the simulation. The results show that the optimization scheme presented a significant improvement in the control performance. The improved range of system increased first and then decreased, with the addition of amplification factor. There was also an excellent enhancement of coefficient interval with a gentle change of the improved range in the middle, indicating that the reasonable value range of amplification factor. Specifically, 1) the specific range of basic decoupling coefficient should be between 0.8 and 1.0. 2) A calculation formula was proposed, while the amplification factor was selected in the area near the ratio of water surface area of adjacent channels and pools. 3) The selection and correction of the amplification factor significantly improved the control performance, when the upstream and downstream designs of a series channel system differed greatly in the flow capacity. 4) The amplification factor was directly determined by the length ratio for the convenience of engineering application when there was no obvious change in the flow rate and section size in the channel. Whereas, it was best to determine the ratio of water surface area when the operating flow varied greatly. Furthermore, the optimized decoupling adjusted the value of amplification factor, according to the change of water surface area ratio caused by different channel flow, responding more accurately and rapidly to the disturbance of channel pool, while reducing the degree of coupling between the channels. Consequently, the algorithm can be applied to the decoupling controller design in the complex channel systems in different scales, further to realize the independent control of drainage pools. The finding can provide a sound reference for the intelligent scheduling of water transmission systems in the irrigation district and water diversion projects. More importantly, it can be suggested to consider the characteristics of specific channels for the optimized coefficient, according to the response characteristics and application of channels in engineering applications.
canals; algorithms; optimization; drainage system; control decoupling; downstream constant water level; amplification factor; PID controller
10.11975/j.issn.1002-6819.2021.15.009
S274.2; TV91
A
1002-6819(2021)-15-0068-10
管光華,劉王嘉儀. 串聯(lián)輸水渠系控制解耦算法優(yōu)化與仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):68-77.doi:10.11975/j.issn.1002-6819.2021.15.009 http://www.tcsae.org
Guan Guanghua, Liu Wangjiayi. Optimization and simulation of decoupling algorithm for cascade drainage system control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 68-77. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.009 http://www.tcsae.org
2021-03-30
2021-06-10
國(guó)家自然科學(xué)基金項(xiàng)目(51979202,51009108)
管光華,博士,副教授,研究方向?yàn)榍老到y(tǒng)自動(dòng)化運(yùn)行調(diào)度理論與技術(shù),灌區(qū)量水理論與方法,灌排工程新結(jié)構(gòu)。Email:GGH@whu.edu.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:管光華(E041700033M)