摘要:近年來全國(guó)幼兒師范高等??茖W(xué)校如雨后春筍般迅猛發(fā)展,數(shù)學(xué)教學(xué)實(shí)踐也順應(yīng)時(shí)代發(fā)展需求進(jìn)行了諸多方面的改革探索:但在教學(xué)中卻存在很多問題。本文以銅仁幼兒師范高等??茖W(xué)校為例,在數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模的內(nèi)容,把數(shù)學(xué)和實(shí)際應(yīng)用問題聯(lián)系起來等。數(shù)學(xué)建模的引入極大地促進(jìn)了學(xué)校數(shù)學(xué)教學(xué)的改革與創(chuàng)新。
關(guān)鍵詞:數(shù)學(xué)建模;數(shù)學(xué)教學(xué);幼兒師專
幼兒師范高等專科學(xué)校雖然以學(xué)前教育為主,但不少院校開設(shè)的也有小學(xué)教育、數(shù)學(xué)教育等專業(yè)。由于學(xué)生基礎(chǔ)水平較差,如何更好地讓學(xué)生學(xué)好高等數(shù)學(xué)、高等代數(shù)等課程一直是教學(xué)難點(diǎn)。而數(shù)學(xué)建模教學(xué)和競(jìng)賽活動(dòng)在全國(guó)高校蓬勃興起已有很多年,銅仁幼兒師專積極探索將數(shù)學(xué)建模引入高職數(shù)學(xué)教學(xué),促進(jìn)了數(shù)學(xué)教學(xué)的全面改革和創(chuàng)新。
1.將數(shù)學(xué)建模內(nèi)容引入幼兒師專數(shù)學(xué)教學(xué)的必要性與可行性
1.1幼兒師范院校的培養(yǎng)目標(biāo)要求將數(shù)學(xué)建模內(nèi)容引入數(shù)學(xué)教學(xué)
與傳統(tǒng)高等教育有著很大的不同。幼兒師范高等??茖W(xué)校里開設(shè)的小學(xué)教育專業(yè)、數(shù)學(xué)專業(yè)等是培養(yǎng)既有一定的理論知識(shí),又有良好的綜合素質(zhì)的小學(xué)數(shù)學(xué)教師。因此,課程設(shè)置要能適應(yīng)和滿足人才培養(yǎng)需要。銅仁幼兒師專根據(jù)小學(xué)教育、數(shù)學(xué)專業(yè)的實(shí)踐性、開放性等特點(diǎn),通過將數(shù)學(xué)建模內(nèi)容引入數(shù)學(xué)教學(xué),特別是引入與所學(xué)專業(yè)相關(guān)的實(shí)際案例,引導(dǎo)學(xué)生學(xué)習(xí)用數(shù)學(xué)知識(shí)和計(jì)算機(jī)技術(shù)分析、解答實(shí)際問題。這不僅解決了學(xué)生不知道所學(xué)數(shù)學(xué)知識(shí)到底有什么用以及該怎么用的難題,更重要的是探索了一條具有學(xué)校特色的數(shù)學(xué)教學(xué)改革之路。
1.2幼兒師范學(xué)校學(xué)生具備將數(shù)學(xué)建模內(nèi)容引入數(shù)學(xué)教學(xué)改革的基本條件
幼兒師范教育這幾年發(fā)展迅猛,學(xué)生的基礎(chǔ)知識(shí)與本科院校的學(xué)生相比有一定的差距,如果按照傳統(tǒng)的教學(xué)方法,強(qiáng)調(diào)知識(shí)傳授的系統(tǒng)性、理論性,對(duì)他們來說有一定的難度,且沒有必要。從學(xué)生的認(rèn)知特點(diǎn)和知識(shí)的接受能力而言,??茖W(xué)生更愿意學(xué)習(xí)實(shí)用性強(qiáng)的知識(shí),對(duì)解決實(shí)際問題的熱情也更為高漲,關(guān)鍵是我們?cè)鯓釉O(shè)計(jì)教學(xué)內(nèi)容、教學(xué)方法和教學(xué)手段去開發(fā)和引導(dǎo)。多年的教學(xué)實(shí)踐探索表明,將數(shù)學(xué)建模內(nèi)容引入教學(xué)及組織學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽可以充分激發(fā)學(xué)生的學(xué)習(xí)熱情和創(chuàng)新精神,提高學(xué)生運(yùn)用數(shù)學(xué)方法和計(jì)算機(jī)工具分析、 解決實(shí)際問題的能力及創(chuàng)新能力。
2.如何將數(shù)學(xué)建模思想融入到高職數(shù)學(xué)教學(xué)中
2.1在教學(xué)中注重?cái)?shù)學(xué)思想的滲透,重視數(shù)學(xué)方法的介紹
大量的實(shí)踐表明,學(xué)生一旦掌握了數(shù)學(xué)思想方法,將會(huì)在社會(huì)實(shí)踐中如虎添翼,終身受益。尤其數(shù)學(xué)建模思想,對(duì)學(xué)生以后不管是工作還是繼續(xù)深造都有非常大的作用。在介紹概念、原理、公式等時(shí),要注重?cái)?shù)學(xué)思想的滲透以及數(shù)學(xué)方法的介紹.在闡述極限、微分、積分等概念時(shí),通過實(shí)例介紹數(shù)學(xué)家是如何處理實(shí)際問題,將新問題轉(zhuǎn)化成以前解決過的問題后引出定義時(shí),要突出轉(zhuǎn)化思想;強(qiáng)調(diào)學(xué)習(xí)“以不變代變、以靜代動(dòng)、以直代曲、從有限認(rèn)識(shí)無限”等數(shù)學(xué)思想;重視微分方法、積分方法 、微元法等思想方法的介紹.通過“問題情境—建立模型—解釋與應(yīng)用”的模式,培養(yǎng)學(xué)生自覺運(yùn)用數(shù)學(xué)思想方法解決實(shí)際問題的應(yīng)用意識(shí)與應(yīng)用能力。
2.2在教學(xué)中強(qiáng)調(diào)數(shù)學(xué)概念與實(shí)際問題的聯(lián)系與應(yīng)用
數(shù)學(xué)概念一般來源于社會(huì)生產(chǎn)實(shí)踐,概念產(chǎn)生后又反過來為社會(huì)實(shí)踐服務(wù)。在闡述概念本身的含義后,要重視概念與實(shí)際結(jié)合,突出應(yīng)用價(jià)值。比如在概率論中講到古典概率時(shí),可以通過生活中的例子加以講解。再講泰勒展開式時(shí),可以引入在數(shù)學(xué)建模中常用的插值模型的泰勒逼近等。
在教學(xué)中培養(yǎng)學(xué)生將一般的實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型和將數(shù)學(xué)結(jié)果轉(zhuǎn)化成實(shí)際應(yīng)用能力。對(duì)于現(xiàn)實(shí)中的實(shí)際問題 如何抓住問題的實(shí)質(zhì),對(duì)其進(jìn)行一定的抽象、簡(jiǎn)化,用數(shù)學(xué)語(yǔ)言表達(dá)出來,使之轉(zhuǎn)化為高等數(shù)學(xué)的相關(guān)問題是解決問題的首要步驟;對(duì)應(yīng)用數(shù)學(xué)方法進(jìn)行推理或計(jì)算得到的結(jié)果,要重視解釋、檢驗(yàn)、討論,并能用一般人能懂的語(yǔ)言表達(dá)出來,或能結(jié)合實(shí)際解釋其意義。我們?cè)诮虒W(xué)時(shí)適當(dāng)增加許多真實(shí)、貼近生活的例題,養(yǎng)成多觀察、多思考身邊現(xiàn)實(shí)生活中數(shù)學(xué)問題的習(xí)慣,培養(yǎng)理論與實(shí)際結(jié)合的思維方式。比如數(shù)學(xué)建模中常用的優(yōu)化模型、概率模型等經(jīng)常出現(xiàn)現(xiàn)實(shí)生活中。我們可以引導(dǎo)學(xué)生通過思考生活問題來促進(jìn)數(shù)學(xué)學(xué)習(xí)。
3.將數(shù)學(xué)建模內(nèi)容引入幼兒師范學(xué)校數(shù)學(xué)教學(xué)的方法與途徑
3.1 改革必修課
我們首先對(duì)數(shù)學(xué)必修課的教學(xué)內(nèi)容進(jìn)行改革。如,基于學(xué)生對(duì)所學(xué)專業(yè)的熟悉和熱愛,我們把數(shù)學(xué)理論的教學(xué)和專業(yè)知識(shí)緊密結(jié)合,引入大量結(jié)合所學(xué)專業(yè)知識(shí)與工作的案例,通過解決具體的案例,引導(dǎo)出要學(xué)習(xí)的相關(guān)概念與知識(shí),逐漸讓學(xué)生體會(huì)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的樂趣和方法。同時(shí)我們加入了選修課,讓學(xué)生學(xué)習(xí)運(yùn)用計(jì)算機(jī)和數(shù)學(xué)軟件計(jì)算、解答實(shí)際問題。選修課基本上是以專題的形式進(jìn)行的,課程內(nèi)容包括優(yōu)化問題、分類問題、預(yù)測(cè)問題、評(píng)價(jià)問題、決策問題等,所涉及的模型包括函數(shù)模型、線性規(guī)劃模型、統(tǒng)計(jì)模型、微分方程模型、概率模型等。建立的模型及解決模型的計(jì)算都是通過具體的案例進(jìn)行的。
3.2 強(qiáng)化模擬培訓(xùn)
我們通過數(shù)學(xué)必修課、選修課和一些專家培訓(xùn),全面推動(dòng)了數(shù)學(xué)教學(xué)改革,同時(shí)培養(yǎng)了一批熱愛數(shù)學(xué)的優(yōu)秀學(xué)生。對(duì)于這些熱愛數(shù)學(xué)且成績(jī)優(yōu)秀的學(xué)生我們鼓勵(lì)他們參與數(shù)學(xué)建模競(jìng)賽,并利用假期進(jìn)行模擬培訓(xùn)。在模擬培訓(xùn)中,我們首先是精心組合參賽隊(duì)伍。為了備戰(zhàn)大賽,所有參賽隊(duì)員都經(jīng)過激烈的競(jìng)爭(zhēng)和嚴(yán)格的選拔。其次,是模擬競(jìng)賽情景。在假期培訓(xùn)中我們利用往年的賽題對(duì)即將參賽的學(xué)生進(jìn)行模擬培訓(xùn),讓學(xué)生自己獨(dú)立完成往年的指定賽題。通過今年的數(shù)學(xué)建模比賽,學(xué)生收獲很多。
經(jīng)過教學(xué)實(shí)踐,參加數(shù)學(xué)建模后,學(xué)生們反映對(duì)數(shù)學(xué)的學(xué)習(xí)興趣普遍增強(qiáng),對(duì)數(shù)學(xué)的思想、數(shù)學(xué)的作用有了進(jìn)一步的了解,對(duì)用數(shù)學(xué)方法處理實(shí)際問題也有了初步體會(huì)。由此可知,將數(shù)學(xué)建模思想方法融人到幼兒師專數(shù)學(xué)課程中,對(duì)調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性、提高教學(xué)水平都具有重要意義。
參考文獻(xiàn):
[1]姜啟源,謝金星,葉俊.數(shù)學(xué)模型[M].北京:高等教育出版社,2018
[2]李宏平.在高職數(shù)學(xué)課程教學(xué)中融人數(shù)學(xué)建模思想[J].大學(xué)數(shù)學(xué),2012(4).
[3]李大潛.將數(shù)學(xué)建模思想融人數(shù)學(xué)類主干課程[J].中國(guó)大學(xué)教學(xué),2006(1)
作者簡(jiǎn)介:劉愛平,1982年8月,男,漢,湖北南漳人,副教授,銅仁幼兒師范高等??茖W(xué)校初等教育學(xué)院,研究方向數(shù)學(xué)教育。