宓曉晴 謝俊霞 宋寧
[摘要] 目的 探討側(cè)腦室注射α-突觸核蛋白(α-syn)對小鼠黑質(zhì)和紋狀體區(qū)單胺氧化酶B(MAO-B)蛋白表達以及運動功能的影響。
方法 將8周齡雄性C57BL/6小鼠隨機分為生理鹽水組以及0.04、0.20和2.00 ng的α-syn組,給予側(cè)腦室連續(xù)注射生理鹽水或α-syn共7 d,采用轉(zhuǎn)棒實驗檢測小鼠運動能力,采用免疫印跡法檢測小鼠黑質(zhì)和紋狀體區(qū)酪氨酸羥化酶(TH)和MAO-B蛋白表達。
結(jié)果 與生理鹽水組相比,0.20和2.00 ng的α-syn組小鼠在轉(zhuǎn)棒上運動時間明顯縮短(F=4.877,P<0.05),且紋狀體區(qū)MAO-B蛋白表達水平顯著升高(F=9.662,P<0.05),但0.04 ng的α-syn組小鼠運動水平和紋狀體區(qū)MAO-B蛋白表達水平均沒有明顯變化(P>0.05)。各組小鼠黑質(zhì)區(qū)TH和MAO-B蛋白表達水平比較差異均無顯著性(P>0.05)。
結(jié)論 側(cè)腦室注射α-syn可引起小鼠紋狀體區(qū)MAO-B蛋白表達增加和運動功能障礙。
[關(guān)鍵詞] α突觸核蛋白;輸注,腦室內(nèi);紋狀體;黑質(zhì);單胺氧化酶;小鼠
[中圖分類號] R338.2
[文獻標志碼] A
[文章編號] 2096-5532(2021)05-0642-04
doi:10.11712/jms.2096-5532.2021.57.134
[開放科學(xué)(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210628.1725.016.html;2021-06-29 10:22:32
EFFECT OF INTRACEREBROVENTRICULAR INJECTION OF Α-SYNUCLEIN ON THE EXPRESSION OF MONOAMINE OXIDASE B IN THE SUBSTANTIA NIGRA AND THE STRIATUM
MI Xiaoqing, XIE Junxia, SONG Ning
(Department of Physiology and Pathophysiology, School of Basic Medicine,? Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effect of intracerebroventricular injection of α-synuclein (α-syn) on the expression of monoamine oxidase B (MAO-B) in the substantia nigra and the striatum of mice.
Methods Male C57BL/6 mice, aged 8 weeks, were randomly divided into normal saline group and 0.04, 0.20, and 2.00 ng α-syn groups. After intracerebroventricular injection of normal saline or α-syn was given for 7 consecutive days, the rotarod test was used to evaluate motor ability, and Wes-
tern blotting was used to measure the protein expression levels of tyrosine hydroxylase (TH) and MAO-B in the substantia nigra and the striatum of mice.
Results Compared with the normal saline group, the 0.20 and 2.00 ng α-syn groups had a significant reduction in the time spent on the rotating rod (F=4.877,P<0.05) and a significant increase in the protein expression level of MAO-B in the striatum (F=9.662,P<0.05), while the 0.04 ng α-syn group had no significant changes in motor ability and the protein expression level of MAO-B in the striatum (P>0.05). There were no significant differences in the protein expression levels of TH and MAO-B in the substantia nigra between these groups (P>0.05).
Conclusion Intracerebroventricular injection of α-syn can increase the protein expression of MAO-B in the striatum of mice and induce impairment of motor ability.
[KEY WORDS] alpha-synuclein; infusions, intraventricular; corpus striatum; substantia nigra; monoamine oxidase; mice
帕金森?。≒D)是第二大常見的神經(jīng)退行性疾病,其確切病因至今尚未完全明了[1-3],其主要病理特征為黑質(zhì)致密部多巴胺(DA)能神經(jīng)元缺失和路易小體(LB)形成,臨床主要表現(xiàn)有肌強直、靜止性震顫、運動遲緩以及姿勢不穩(wěn)等[4-7]。α-突觸核蛋白(α-syn)是SNCA編碼的由140個氨基酸組成的小分子蛋白質(zhì),是LB的主要成分[8-10]。大量研究結(jié)果表明,PD等突觸核蛋白病病人腦脊液中的α-syn水平較正常人顯著降低[11-12]。然而,長期追蹤調(diào)查發(fā)現(xiàn),PD病人腦脊液中的α-syn水平會隨著疾病進展逐漸回升,而且α-syn水平的升高與PD病人后期運動功能的下降存在緊密聯(lián)系[13-14]。單胺氧化酶B(MAO-B)是一種線粒體膜蛋白,是單胺類神經(jīng)遞質(zhì)的主要氧化脫氨酶,可分解DA產(chǎn)生3,4-二羥基苯基乙醛(DOPAL)等代謝產(chǎn)物[15-16]。有文獻報道,α-syn以及α-syn 1~103片段均可直接結(jié)合MAO-B而增強其酶活性,最終導(dǎo)致DA能神經(jīng)元變性[17]。
本文通過給予小鼠側(cè)腦室注射不同濃度α-syn,以評價其運動功能以及紋狀體和黑質(zhì)區(qū)MAO-B蛋白表達的變化?,F(xiàn)將結(jié)果報告如下。
1 材料和方法
1.1 實驗動物及主要試劑
實驗動物:SPF級雄性C57BL/6小鼠,8周齡,體質(zhì)量(20±2)g,購自北京維通利華實驗動物技術(shù)有限公司,飼養(yǎng)于可自由飲水取食、室溫(19±2)℃、濕度(50±5)%、晝夜循環(huán)光照(12 h/12 h)的清潔環(huán)境中。主要試劑:α-syn購自美國rPeptide公司;酪氨酸羥化酶(TH)一抗購自德國Sigma公司;MAO-B一抗購自美國GeneTex公司;Rabbit Anti-β-actin購自中國博奧森公司;Goat Anti-Rabbit IgG二抗購自中國愛必信公司。
1.2 動物分組與處理
將40只實驗小鼠隨機分為生理鹽水組(A組)以及0.04、0.20和2.00 ng α-syn組(B、C、D組),每組10只。小鼠用異戊烷麻醉后固定在腦立體定位儀上。剪開小鼠顱腦背側(cè)皮膚,用體積分數(shù)0.03的過氧化氫溶液擦拭顱骨表面至顱縫和前后囟清晰可見。確定坐標(右側(cè)側(cè)腦室立體定位坐標為前囟后0.3 mm、右旁開1.0 mm、深度2.2 mm)后,將長5.2 mm的套管垂直埋入側(cè)腦室2.2 mm。以1 μL/min的流量注射生理鹽水或α-syn 2 μL,每天1次,連續(xù)7 d。
1.3 轉(zhuǎn)棒實驗
小鼠在旋轉(zhuǎn)棒上適應(yīng)2 min后,將旋轉(zhuǎn)棒轉(zhuǎn)速設(shè)置為4~40 r/min,使小鼠隨旋轉(zhuǎn)棒自主運動,記錄小鼠在旋轉(zhuǎn)棒上運動的時間。測量2次(間隔30 min)取平均值。
1.4 免疫印跡法檢測TH和MAO-B蛋白表達
小鼠斷頭,根據(jù)小鼠大腦圖譜取紋狀體和黑質(zhì)樣本并稱質(zhì)量。按照25 μL/mg的比例向樣本中加入蛋白裂解液,充分研磨后以12 000 r/min離心20 min,取上清,用BCA試劑盒檢測蛋白濃度,加入1/4體積的Loading Buffer后95 ℃金屬浴5 min。處理好的蛋白樣本進行聚丙烯酰胺凝膠電泳后轉(zhuǎn)膜(0.45 μm 的PVDF膜)。以50 g/L的脫脂奶粉室溫封閉2 h后加入一抗TH(1∶3 000)、MAO-B(1∶1 000)、β-actin(1∶10 000)4 ℃孵育過夜,次日用山羊抗兔二抗(1∶10 000)室溫孵育1 h,ECL方法顯影。用Image J軟件分析條帶灰度值,TH和MAO-B蛋白表達水平以目的蛋白與內(nèi)參β-actin條帶灰度值的比值來表示。
1.5 統(tǒng)計學(xué)處理
應(yīng)用Prism 5軟件進行統(tǒng)計學(xué)分析。計量資料以±s形式表示,采用單因素方差分析(one-way ANOVA檢驗)進行多組均數(shù)的比較,繼以Tukey方法進行兩兩均數(shù)間的比較。P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)? 果
2.1 側(cè)腦室注射不同濃度α-syn對小鼠行為學(xué)的影響
生理鹽水組以及0.04、0.20和2.00 ng α-syn組小鼠在旋轉(zhuǎn)棒上運動的時間分別為(221.867±38.855)、(213.905±63.634)、(145.556±54.844)和(138.111±40.932)s,4組比較差異有統(tǒng)計學(xué)意義(F=4.877,P<0.05)。兩兩比較結(jié)果顯示,與生理鹽水組相比較,0.04 ng α-syn組小鼠運動時間無明顯變化(P>0.05),而0.20和2.00 ng α-syn組小鼠的運動時間明顯縮短,差異具有統(tǒng)計學(xué)意義(q=3.907、4.288,P<0.05)。
2.2 側(cè)腦室注射不同濃度α-syn對紋狀體區(qū)TH和MAO-B蛋白表達的影響
本研究4組小鼠紋狀體區(qū)TH蛋白表達比較差異均無統(tǒng)計學(xué)意義(P>0.05)。4組小鼠紋狀體區(qū)MAO-B蛋白表達比較差異有統(tǒng)計學(xué)意義(F=9.662,P<0.05)。兩兩比較結(jié)果顯示,與生理鹽水組相比較,0.04 ng α-syn組小鼠紋狀體區(qū)MAO-B蛋白表達水平?jīng)]有明顯的變化(P>0.05),0.20和2.00 ng的α-syn組小鼠紋狀體區(qū)MAO-B蛋白表達水平顯著升高(q=4.281、6.993,P<0.05)。見表1。
2.3 側(cè)腦室注射不同濃度α-syn對黑質(zhì)區(qū)TH和MAO-B蛋白表達的影響
本研究4組小鼠黑質(zhì)區(qū)TH和MAO-B蛋白表達比較差異均無統(tǒng)計學(xué)意義(P>0.05)。兩兩比較結(jié)果顯示,與生理鹽水組相比,各濃度α-syn組小鼠黑質(zhì)區(qū)TH和MAO-B蛋白表達水平均沒有明顯改變(P>0.05)。見表2。
3 討? 論
編碼α-syn的SNCA是首個被人們發(fā)現(xiàn)的與PD相關(guān)的常染色體顯性遺傳基因[18]。無論是在遺傳性PD還是在散發(fā)性PD中,α-syn均可以在DA能神經(jīng)元中積聚形成LB[19]。生理狀態(tài)下的α-syn與A組比較,F(xiàn)=9.662,*q=4.281、6.993,P<0.05。
通常被認為是舒展的可溶性結(jié)構(gòu),但當(dāng)其濃度升高時α-syn易聚合折疊形成寡聚體,對神經(jīng)元膜有毒性作用,可改變膜滲透性,導(dǎo)致鈣大量內(nèi)流,引起膜除極;也可引起細胞氧化損傷,導(dǎo)致細胞死亡[20]。細胞內(nèi)的α-syn還可以被釋放到細胞外。人的腦脊液和血漿中存在一定濃度的α-syn[21]。大量研究發(fā)現(xiàn),PD病人腦脊液中的α-syn水平降低[11-12],但隨著疾病進展,α-syn水平回升且與病人的認知、運動功能緊密相關(guān)[13-14]。
單胺氧化酶是在中樞神經(jīng)系統(tǒng)和外周神經(jīng)系統(tǒng)中催化DA、5-羥色胺和去甲腎上腺素等單胺類神經(jīng)遞質(zhì)的主要氧化脫氨酶。MAO-B通過分解DA產(chǎn)生DOPAL并產(chǎn)生活性氧(ROS)物質(zhì)和內(nèi)源性神經(jīng)毒素[16]。年齡相關(guān)的MAO-B表達增加與自由基損傷和ROS增加存在密切關(guān)聯(lián),可導(dǎo)致神經(jīng)元線粒體功能降低,導(dǎo)致黑質(zhì)致密部神經(jīng)元活力降低以至神經(jīng)變性[22]。MAO-B抑制劑常被作為有效的PD治療藥物[23-24]。本研究結(jié)果表明,側(cè)腦室注射α-syn 7 d可引起C57BL/6小鼠紋狀體區(qū)MAO-B蛋白表達升高和運動功能障礙,但黑質(zhì)區(qū)MAO-B蛋白表達不變。MAO-B主要位于星形膠質(zhì)細胞,在星形膠質(zhì)細胞激活時MAO-B蛋白表達明顯上調(diào),因此MAO-B可能作為星形膠質(zhì)細胞激活的生化標記物[25]。α-syn可以通過Toll樣受體4(TLR4)激活星形膠質(zhì)細胞[26]。因此我們推測,紋狀體MAO-B表達升高可能與側(cè)腦室注射的α-syn到達紋狀體后激活星形膠質(zhì)細胞有關(guān),這尚需在后續(xù)實驗中進一步證實。此外,MAO-B是DA酶解途徑之一,當(dāng)MAO-B表達增加時,一方面MAO-B可促進DA
分解;另一方面,DA分解產(chǎn)生的DOPAL還可以激活δ分泌酶,在N103位置裂解α-syn。α-syn以及α-syn 1~103片段均可直接結(jié)合MAO-B而增強其酶活性[17,27]。我們推測,MAO-B表達和活性的增加,可能在未造成DA能神經(jīng)元損傷之前(本實驗觀察到黑質(zhì)和紋狀體區(qū)TH表達均不變)顯著促進了紋狀體區(qū)DA的分解,造成了小鼠運動功能障礙。與其他腦區(qū)相比較,黑質(zhì)中星形膠質(zhì)細胞分布相對較少[28],這可能是側(cè)腦室注射α-syn未引起黑質(zhì)區(qū)MAO-B蛋白表達變化的原因。
綜上所述,側(cè)腦室注射α-syn可引起C57BL/6小鼠紋狀體區(qū)MAO-B蛋白表達增加和運動功能障礙。本文研究結(jié)果為進一步探討腦脊液中α-syn的變化影響PD疾病進程提供了新的實驗思路和理論依據(jù)。
[參考文獻]
[1]SPILLANTINI M G, SCHMIDT M L, LEE VIRGINIAM Y, et al. Alpha-synuclein in Lewy bodies[J].? Nature, 1997,388(6645):839-840.
[2]BI M X, DU X X, JIAO Q, et al. Expanding the role of proteasome homeostasis in Parkinsons disease: beyond protein breakdown[J].? Cell Death & Disease, 2021,12(2):154.
[3]BI M X, JIAO Q, DU X X, et al. Glut9-mediated urate uptake is responsible for its protective effects on dopaminergic neurons in Parkinsons disease models[J].? Frontiers in Molecular Neuroscience, 2018,11:21.
[4]STEFANOVIC A N D, STCKL M T, CLAESSENS M M A E, et al. α-Synuclein oligomers distinctively permeabilize complex model membranes[J].? The FEBS Journal, 2014,281(12):2838-2850.
[5]VEYS L, VANDENABEELE M, ORTUO-LIZARN I, et al. Retinal α-synuclein deposits in Parkinsons disease patients and animal models[J].? Acta Neuropathologica, 2019,137(3):379-395.
[6]BUCCIANTINI M, GIANNONI E, CHITI F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases[J].? Nature, 2002,416(6880):507-511.
[7]YAN M H, WANG X L, ZHU X W. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease[J].? Free Radical Biology and Medicine, 2013,62:90-101.
[8]LASHUEL H A, OVERK C R, OUESLATI A, et al. The many faces of α-synuclein: from structure and toxicity to the-rapeutic target[J].? Nature Reviews Neuroscience, 2013,14(1):38-48.
[9]FELINSKI E A, QUINN P G. The coactivator dTAF(Ⅱ)110/hTAF(Ⅱ)135 is sufficient to recruit a polymerase com-? plex and activate basal transcription mediated by CREB[J].
Proceedings of the National Academy of Sciences of the United States of America, 2001,98(23):13078-13083.
[10]WEN A Y, SAKAMOTO K M, MILLER L S. The role of the transcription factor CREB in immune function[J].? Journal of Immunology (Baltimore, Md:1950), 2010,185(11):6413-6419.
[11]HALL S, HRFELT A, CONSTANTINESCU R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders[J].? Archives of Neurology, 2012,69(11):1445-1452.
[12]MOLLENHAUER B, LOCASCIO J J, SCHULZ-SCHAEFFER W, et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with Parkinsonism: a cohort study[J].? The Lancet Neurology, 2011,10(3):230-240.
[13]HALL S, SUROVA Y, HRFELT A, et al. Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinsons disease[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2016,31(6):898-905.
[14]MAJBOUR N K, VAIKATH N N, EUSEBI P, et al. Longitudinal changes in CSF alpha-synuclein species reflect Parkinsons disease progression[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2016,31(10):1535-1542.
[15]MASATO A, PLOTEGHER N, BOASSA D, et al. Impaired dopamine metabolism in Parkinsons disease pathogenesis[J].? Molecular Neurodegeneration, 2019,14(1):35.
[16]MEISER J, WEINDL D, HILLER K. Complexity of dopamine metabolism[J].? Cell Communication and Signaling: CCS, 2013,11(1):34.
[17]KANG S S, AHN E H, ZHANG Z T, et al. A-synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinsons disease[J].? The EMBO Journal, 2018,37(12):e98878.
[18]DENG H, WANG P, JANKOVIC J. The genetics of Parkinson disease[J].? Ageing Research Reviews, 2018,42:72-85.
[19]RECASENS A, DEHAY B, BOV J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein patho-
logy and neurodegeneration in mice and monkeys[J].? Annals of Neurology, 2014,75(3):351-362.
[20]DANZER K M, KREBS S K, WOLFF M, et al. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology[J].? Journal of Neurochemistry, 2009,111(1):192-203.
[21]EL-AGNAF O M, SALEM S A, PALEOLOGOU K E, et al. Alpha-synuclein implicated in Parkinsons disease is present in extracellular biological fluids, including human plasma[J].? FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2003,17(13):1945-1947.
[22]KOPPULA S, KUMAR H, KIM I S, et al. Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinsons disease[J].? Mediators of Inflammation, 2012, 2012:823902.
[23]NAOI M, MARUYAMA W, SHAMOTO-NAGAI M. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinsons disease[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2020,127(2):131-147.
[24]YOUDIM M B H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2018,125(11):1719-1733.
[25]TONG J C, RATHITHARAN G, MEYER J H, et al. Brain monoamine oxidase B and A in human Parkinsonian dopamine deficiency disorders[J].? Brain: a Journal of Neurology, 2017,140(9):2460-2474.
[26]SORRENTINO Z A, GIASSON B I, CHAKRABARTY P. α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease[J].? Acta Neuropathologica, 2019,138(1):1-21.
[27]WU Z R, XIA Y Y, WANG Z H, et al. C/EBPβ/δ-secretase signaling mediates Parkinsons disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB[J].? Molecular Psychiatry, 2021,26(2):568-585.
[28]SONG N, WANG J, JIANG H, et al. Astroglial and microg-lial contributions to iron metabolism disturbance in Parkinsons disease[J].? Biochimica et Biophysica Acta Molecular Basis of Disease, 2018,1864(3):967-973.
(本文編輯 馬偉平)