唐碩 徐華敏 謝俊霞
[摘要] 目的 探討枸櫞酸鐵銨(FAC)和脂多糖(LPS)對原代培養(yǎng)的星形膠質(zhì)細(xì)胞脂質(zhì)運載蛋白-2(LCN2)表達(dá)的影響及可能的機制。
方法 實驗分為對照組、FAC組、LPS組、FAC+LPS組、MG132+LPS組,對照組用細(xì)胞培養(yǎng)液處理,F(xiàn)AC組和LPS組分別用FAC和LPS處理24 h,F(xiàn)AC+LPS組先用FAC預(yù)處理4 h后再用LPS處理24 h,MG132+LPS組先用MG132預(yù)處理4 h后再用LPS處理24 h。應(yīng)用蛋白質(zhì)免疫印跡(Western blot)方法檢測細(xì)胞內(nèi)核因子κB(NF-κB)和LCN2的表達(dá)。
結(jié)果 與對照組相比,單獨FAC處理不影響細(xì)胞內(nèi)磷酸化的核因子κB(P-NF-κB)及LCN2的蛋白表達(dá)水平(F=11.76、68.18,q=0.469、0.655,P>0.05),LPS處理能夠上調(diào)P-NF-κB及LCN2蛋白的表達(dá)(q=5.859、16.170,P<0.01);與LPS組相比,F(xiàn)AC預(yù)處理對LPS誘導(dǎo)的P-NF-κB及LCN2蛋白表達(dá)上調(diào)沒有影響(q=1.516、1.151,P>0.05),而MG132預(yù)處理則能夠顯著抑制LPS誘導(dǎo)的P-NF-κB及LCN2蛋白表達(dá)上調(diào)(q=4.939、15.710,P<0.05)。
結(jié)論 細(xì)胞內(nèi)高鐵對LPS誘導(dǎo)的P-NF-κB和LCN2蛋白表達(dá)上調(diào)無明顯影響,MG132能夠下調(diào)LPS誘導(dǎo)的P-NF-κB和LCN2蛋白表達(dá)上調(diào),蛋白酶體、NF-κB通路可能參與了LPS誘導(dǎo)的LCN2表達(dá)上調(diào)的抑制作用。
[關(guān)鍵詞] 星形細(xì)胞;NF-κB;脂籠蛋白質(zhì)類;鐵;脂多糖類
[中圖分類號] R338.2
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2021)05-0633-04
doi:10.11712/jms.2096-5532.2021.57.103
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210510.1103.001.html;2021-05-10 17:36:51
EFFECT OF FERRIC AMMONIUM CITRATE AND LIPOPOLYSACCHARIDE ON THE EXPRESSION OF LIPOCALIN-2 IN PRIMARY CULTURED ASTROCYTES AND ITS MECHANISM
TANG Shuo, XU Huamin, XIE Junxia
(Department of Phy-siology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effect of ferric ammonium citrate (FAC) and lipopolysaccharide (LPS) on the expression of lipocalin-2 (LCN2) in primary cultured astrocytes and its possible mechanism.
Methods Astrocytes were divided into control group, FAC group, LPS group, FAC+LPS group, and MG132+LPS group. The astrocytes in the control group were treated with cell culture media, those in the FAC group and the LPS group were treated with FAC or LPS for 24 h, those in the FAC+LPS group were given FAC pretreatment for 4 h followed by LPS treatment for 24 h, and those in the MG132+LPS group were given MG132 pretreatment for 4 h followed by LPS treatment for 24 h. Western blot was used to measure the protein expression of phosphorylated nuclear factor-kappa B (P-NF-κB) and LCN2 in astrocytes.
Results Compared with the control group, FAC treatment alone did not affect the protein expression levels of P-NF-κB and LCN2 in astrocytes (F=11.76,68.18;q=0.469,0.655;P>0.05), and LPS treatment significantly upregulated the protein expression of P-NF-κB and LCN2 (q=5.859,16.170;P<0.01). Compared with the LPS group, FAC pretreatment had no significant effect on the upregulated protein expression of P-NF-κB and LCN2 induced by LPS (q=1.516,1.151;P>0.05), and MG132 pretreatment significantly inhibited the upregulated protein expression of P-NF-κB and LCN2 induced by LPS (q=4.939,15.710;P<0.05).
Conclusion High iron state in astrocytes has no significant effect on the upregulated protein expression of P-NF-κB and LCN2 induced by LPS, and MG132 can downregulate the upregulated protein expression of P-NF-κB and LCN2 induced by LPS. Proteasome and the NF-κB pathway may be involved in inhibition of the upregulated protein expression of LCN2 induced by PLS.
[KEY WORDS] astrocytes; NF-kappa B; lipocalins; iron; lipopolysaccharides
帕金森?。≒D)作為一種常見的神經(jīng)退行性疾病,主要以黑質(zhì)(SN)多巴胺(DA)能神經(jīng)元的缺失以及嗜酸性路易小體(LBs)的形成為特點[1]。盡管PD的主要發(fā)病機制尚未完全闡明,但包括神經(jīng)炎癥在內(nèi)的多種因素均可能參與了PD的發(fā)病。導(dǎo)致神經(jīng)退行性變的神經(jīng)炎癥活動主要由固有免疫細(xì)胞(如活化的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞)介導(dǎo),這些細(xì)胞能夠產(chǎn)生活性氧中間體、一氧化氮和炎性細(xì)胞因子等[2-5]。因此,闡明神經(jīng)炎癥機制和調(diào)控神經(jīng)膠質(zhì)細(xì)胞激活對于保護(hù)PD病人SN區(qū)DA能神經(jīng)元至關(guān)重要。SN鐵沉積是PD病人和PD動物模型的重要特征[6-7]。脂質(zhì)運載蛋白-2(LCN2)是一種先天性免疫蛋白,在生理和炎癥條件下作為重要的鐵調(diào)節(jié)蛋白發(fā)揮作用[8]。脂多糖(LPS)能夠與脂多糖結(jié)合蛋白(LBP)結(jié)合,由CD14分子介導(dǎo)LPS向細(xì)胞內(nèi)傳遞,導(dǎo)致核因子κB(NF-κB)激活,誘導(dǎo)炎性細(xì)胞因子表達(dá)[9]。MG132是蛋白酶體抑制劑,同時還可以抑制蛋白酶體介導(dǎo)的NF-κB活化[10-11]。研究發(fā)現(xiàn),LCN2基因的啟動子含有NF-κB及增強子結(jié)合蛋白(C/EBP)的結(jié)合位點,提示其表達(dá)可能受到NF-κB的調(diào)控[12]。然而,蛋白酶體、NF-κB通路是否參與LPS誘導(dǎo)的LCN2表達(dá)尚不清楚。因此,本研究觀察了鐵負(fù)載試劑枸櫞酸鐵銨(FAC)和LPS以及MG132誘導(dǎo)的原代星形膠質(zhì)細(xì)胞中磷酸化的核轉(zhuǎn)錄因子(P-NF-κB)和LCN2表達(dá)的變化。現(xiàn)將結(jié)果報告如下。
1 材料與方法
1.1 實驗材料
DMEM/F12培養(yǎng)液購自美國Hyclone公司,青霉素和鏈霉素雙抗購于碧云天公司,多聚賴氨酸、LPS、FAC均購于美國Sigma公司,MG132購于美國Selleck公司,聚偏二氟乙烯(PVDF)膜購于美國Millipore公司,BCA蛋白濃度測定試劑盒、分離/濃縮膠緩沖液、RIPA裂解液購于中國康為世紀(jì)公司,兔源β-actin抗體購于博奧森公司,LCN2抗體購于美國R&D公司,P-NF-κB和NF-κB購于美國CST公司。
1.2 細(xì)胞培養(yǎng)及實驗分組
將新生24 h的Wistar大鼠乳鼠脫頸處死,取中腦,除去腦膜和血管,用槍頭吹打形成單細(xì)胞懸液。將懸液置于大離心管中,在4 ℃下以1 000 r/min離心5 min,棄上清,重懸于含有體積分?jǐn)?shù)0.10胎牛血清、100 kU/L青霉素和100 mg/L鏈霉素的DMEMD/F12細(xì)胞培養(yǎng)液中,吹打混勻。將細(xì)胞接種到培養(yǎng)瓶中,置37 ℃、含體積分?jǐn)?shù)0.05 CO2的無菌細(xì)胞培養(yǎng)箱中培養(yǎng)48 h。2 d后,更換新鮮培養(yǎng)液以除去未貼壁細(xì)胞,將貼壁細(xì)胞繼續(xù)培養(yǎng)10 d,每3 d更換一次新鮮培養(yǎng)液。當(dāng)細(xì)胞鋪滿瓶底90%以上時,將培養(yǎng)瓶置于恒溫(37 ℃)搖床上,以200 r/min的轉(zhuǎn)速搖17~20 h,以去除小膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,清洗細(xì)胞,再用胰蛋白酶消化細(xì)胞,收集細(xì)胞接種于6孔板,進(jìn)行后續(xù)的實驗。將細(xì)胞分為對照組(A組)、FAC組(B組)、LPS組(C組)、FAC+LPS組(D組)和MG132+LPS組(E組),對照組用細(xì)胞培養(yǎng)液培養(yǎng),F(xiàn)AC組和LPS組分別用FAC和LPS處理24 h,F(xiàn)AC+LPS組先用FAC預(yù)處理4 h后再用LPS處理24 h,MG132+LPS組先用MG132預(yù)處理4 h后再用LPS處理24 h。
1.3 蛋白質(zhì)免疫印跡(Western blot)方法檢測P-NF-κB和LCN2蛋白表達(dá)
細(xì)胞處理結(jié)束以后,吸除培養(yǎng)液,每孔加入100 μL裂解液,冰上靜置30 min,用刮子將細(xì)胞刮下來,置于提前準(zhǔn)備好的1.5 mL的EP管中,在4 ℃下以12 000 r/min離心30 min。吸取80 μL的細(xì)胞上清置于新的EP管中,用BCA試劑盒測定蛋白濃度,按照每孔20 μg蛋白計算上樣體積,電泳(80 V、1 h,120 V、1 h),然后將蛋白濕轉(zhuǎn)到PVDF膜上(30 mA、90 min)。使用50 g/L奶粉封閉2 h,加入β-actin一抗(1∶10 000)、LCN2一抗(1∶1 000)、P-NF-κB一抗(1∶1 000)、NF-κB一抗(1∶1 000),置4 ℃恒溫?fù)u床上過夜,16 h后,用TBST洗膜3次,每次10 min。分別加入山羊抗兔(1∶10 000)、兔抗山羊(1∶10 000)的二抗,室溫下置搖床上1 h,用TBST洗膜3次,每次10 min;使用化學(xué)發(fā)光液進(jìn)行顯影。
1.4 統(tǒng)計學(xué)分析
應(yīng)用Graphpad Prism軟件進(jìn)行統(tǒng)計學(xué)分析。計量資料以±s表示,多組比較采用單因素方差分析(One-Way ANOVA),然后用Turkey法進(jìn)行組間兩兩比較。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)? 果
2.1 FAC和LPS誘導(dǎo)的原代星形膠質(zhì)細(xì)胞中P-NF-κB蛋白表達(dá)的變化
各組P-NF-κB蛋白表達(dá)水平比較差異具有統(tǒng)計學(xué)意義(F=11.76,P<0.01)。FAC處理后,細(xì)胞中P-NF-κB蛋白表達(dá)與對照組比較無明顯變化(q=0.469,P>0.05);LPS處理后,P-NF-κB蛋白表達(dá)水平升高,與對照組相比差異具有統(tǒng)計學(xué)意義(q=5.859,P<0.01);FAC+LPS處理后,P-NF-κB蛋白表達(dá)水平與LPS組相比較差異無顯著性(q=1.516,P>0.05),與對照組和FAC組相比差異具有統(tǒng)計學(xué)意義(q=7.376、6.907,P<0.01);MG132+LPS處理后,P-NF-κB蛋白表達(dá)與LPS組相比明顯下降,差異具有統(tǒng)計學(xué)意義(q=4.939,P<0.05)。見表1。
2.2 FAC和LPS誘導(dǎo)的原代星形膠質(zhì)細(xì)胞LCN2蛋白表達(dá)的變化
各組LCN2蛋白表達(dá)水平比較差異具有統(tǒng)計學(xué)意義(F=68.18,P<0.01)。FAC處理后,細(xì)胞中LCN2蛋白表達(dá)與對照組比較無明顯變化(q=0.655,P>0.05);LPS處理后,LCN2蛋白表達(dá)升高,與對照組相比差異具有統(tǒng)計學(xué)意義(q=16.170,P<0.01);FAC+LPS處理后,LCN2蛋白表達(dá)水平與LPS組相比差異無顯著性(q=1.512,P>0.05),與對照組和FAC組相比差異具有統(tǒng)計學(xué)意義(q=14.650、13.990,P<0.01);MG132+LPS處理后,LCN2蛋白表達(dá)與LPS組相比明顯下降,差異具有統(tǒng)計學(xué)意義(q=15.710,P<0.01)。見表1。
3 討? 論
PD是第二大常見的神經(jīng)退行性疾病,以中腦SN的DA能神經(jīng)元選擇性死亡為特征[1]。研究已經(jīng)證明,PD發(fā)病與年齡老化、環(huán)境因素、遺傳因素、氧化應(yīng)激和自由基形成等有關(guān),近年來越來越多的證據(jù)表明,神經(jīng)炎癥和鐵在PD的進(jìn)展中起關(guān)鍵作用[13-15]。目前的研究表明,PD病人的SN中鐵選擇性升高,并且鐵的積累程度與PD的疾病嚴(yán)重程度相關(guān)[15-17]。在動物模型中,將不同濃度的FeCl3(分別含1、5和50 μg的Fe3+)單側(cè)注射到成年大鼠的SN中,兩種較低劑量的鐵對DA水平和大鼠的行為反應(yīng)沒有影響,但是注射50 μg的Fe3+會導(dǎo)致DA能神經(jīng)元的顯著降低[18-19]。有文獻(xiàn)報道,LPS的全身注射可促進(jìn)小鼠的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞活化并增高促炎細(xì)胞因子水平[20]。PD病人的尸檢結(jié)果顯示,其DA能神經(jīng)元大量喪失,小膠質(zhì)細(xì)胞活化,一氧化氮、腫瘤壞死因子、白細(xì)胞介素和其他促炎細(xì)胞因子水平增高[21-22]。
有文獻(xiàn)報道,在PD病人大腦中觀察到LCN2表達(dá)的顯著上調(diào),并且SN和紋狀體中的LCN2表達(dá)上調(diào)要明顯高于海馬和大腦皮質(zhì),LCN2水平增高將加重神經(jīng)毒性和神經(jīng)炎癥,導(dǎo)致DA能神經(jīng)元的破壞和異常運動行為[23]。還有研究顯示,與野生型小鼠相比,在LCN2-/-小鼠中,顱內(nèi)出血(ICH)引起較低的鐵蛋白上調(diào)、小膠質(zhì)細(xì)胞活化、腦腫脹、腦萎縮和神經(jīng)功能缺損,F(xiàn)eCl2引起的病變程度以及腦腫脹和血-腦脊液屏障(BBB)破壞的程度也較輕,表明LCN2在ICH后增強腦損傷和鐵毒性中起作用[24]。有文獻(xiàn)報道,LCN2-/-小鼠的腦梗死體積、神經(jīng)系統(tǒng)評分、BBB通透性、神經(jīng)膠質(zhì)激活和炎性遞質(zhì)表達(dá)等均明顯低于野生型小鼠[25]。大量的研究表明,LCN2在中樞神經(jīng)系統(tǒng)中起著重要作用,但是目前對LCN2的產(chǎn)生機制卻知之甚少。本文研究結(jié)果顯示,高鐵狀態(tài)對P-NF-κB和LCN2蛋白的表達(dá)沒有影響,LPS則可促進(jìn)P-NF-κB和LCN2的表達(dá),用MG132預(yù)處理可以下調(diào)LPS對P-NF-κB和LCN2的誘導(dǎo)作用。提示MG132可能是通過抑制NF-κB途徑而起到抑制LCN2表達(dá)的作用,LPS可能通過P-NF-κB上調(diào)星形膠質(zhì)細(xì)胞LCN2的表達(dá),參與PD神經(jīng)炎癥的進(jìn)展。
[參考文獻(xiàn)]
[1]HUANG B X, LIU J X, MENG T, et al. Polydatin prevents lipopolysaccharide (LPS)-induced Parkinsons disease via re-
gulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis[J].? Frontiers in Immunology, 2018,9:2527.
[2]MCGEER E G, KLEGERIS A, MCGEER P L. Inflammation, the complement system and the diseases of aging[J].? Neuro-
biology of Aging, 2005,26(1):94-97.
[3]HIRSCH E C, HUNOT S. Neuroinflammation in Parkinsons disease: a target for neuroprotection[J]? The Lancet Neurology, 2009,8(4):382-397.
[4]MENZA M, DOBKIN R D, MARIN H, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinsons disease[J].? Psychosomatics, 2010,51(6):474-479.
[5]COOKSON M R. The biochemistry of Parkinsons disease[J].? Annual Review of Biochemistry, 2005,74:29-52.
[6]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J].? The Lancet Neurology, 2014,13(10):1045-1060.
[7]HARE D J, ADLARD P A, DOBLE P A, et al. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neuroto-
xicity[J].? Metallomics, 2013,5(2):91-109.
[8]LEE S, LEE W H, LEE M S, et al. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology[J].? Journal of Neuroscience Research, 2012,90(3):540-550.
[9]TSUKAMOTO H, TAKEUCHI S, KUBOTA K, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKE-IRF3 axis activation[J].? The Journal of Biological Chemistry, 2018,293(26):10186-10201.
[10]CUAZ-PROLIN C, BILLIET L, BAUG E, et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice[J].? Arteriosclerosis, thrombosis, and vascular biology, 2008,28(2):272-277.
[11]KIM S J, PARK J H, KIM K H, et al. Effect of NF-κB decoy oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis in an animal model[J].? Basic & Clinical Pharmacology & Toxicology, 2010,107(6):925-930.
[12]SHEN F, HU Z H, GOSWAMI J, et al. Identification of common transcriptional regulatory elements in interleukin-17 target genes[J].? The Journal of Biological Chemistry, 2006,281(34):24138-24148.
[13]GYONEVA S, SHAPIRO L, LAZO C, et al. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinsons disease[J].? Neurobiology of Disease, 2014,67:191-202.
[14]DELEIDI M, GASSER T. The role of inflammation in spora-
dic and familial Parkinsons disease[J].? Cellular and Molecular Life Sciences: CMLS, 2013,70(22):4259-4273.
[15]YOU L H, LI F, WANG L, et al. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinsons disease[J].? Neuroscience, 2015,284:234-246.
[16]DEXTER D T, WELLS F R, LEE A J, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinsons disease[J].? Journal of Neurochemistry, 1989,52(6):1830-1836.
[17]VYMAZAL J, RIGHINI A, BROOKS R A, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson
disease, and patients with multiple system atrophy: relation to iron content[J].? Radiology, 1999,211(2):489-495.
[18]MARTIN-BASTIDA A, LAO-KAIM N P, LOANE C, et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinsons disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility[J].? Euro-
pean Journal of Neurology, 2017,24(2):357-365.
[19]BEN-SHACHAR D, YOUDIM M B. Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats[J].? Journal of Neurochemistry, 1991,57(6):2133-2135.
[20]HOOGLAND I C, HOUBOLT C, VAN WESTERLOO D J, et al. Systemic inflammation and microglial activation: syste-
matic review of animal experiments[J].? Journal of Neuroinflammation, 2015,12:114.
[21]MCGEER P L, ITAGAKI S, AKIYAMA H, et al. Rate of cell death in Parkinsonism indicates active neuropathological process[J].? Annals of Neurology, 1988,24(4):574-576.
[22]MOGI M, HARADA M, KONDO T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients[J].? Neuroscience Letters, 1994,180(2):147-150.
[23]KIM B W, JEONG K H, KIM J H, et al. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system[J].? The Journal of Neuroscience, 2016,36(20):5608-5622.
[24]NI W, ZHENG M Z, XI G H, et al. Role of lipocalin-2 in brain injury after intracerebral hemorrhage[J].? Journal of Ce-
rebral Blood Flow and Metabolism, 2015,35(9):1454-1461.
[25]JIN M, KIM J H, JANG E, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice[J].? Journal of Cerebral Blood Flow & Metabolism, 2014,34(8):1306-1314.
(本文編輯 馬偉平)