国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)土壤微生物群落特征及功能差異:研究進(jìn)展與展望*

2021-11-15 05:07陳利頂楊小茹趙方凱許申來
土壤學(xué)報(bào) 2021年6期
關(guān)鍵詞:群落重金屬土壤

李 敏,陳利頂,楊小茹,趙方凱,孫 龍,許申來,楊 磊?

城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)土壤微生物群落特征及功能差異:研究進(jìn)展與展望*

李 敏1,2,陳利頂1,2,楊小茹3,趙方凱1,2,孫 龍1,許申來4,楊 磊1,2?

(1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085;2. 中國(guó)科學(xué)院大學(xué),北京 100049;3. 中國(guó)科學(xué)院城市環(huán)境研究所,福建廈門 361021;4. 長(zhǎng)江生態(tài)環(huán)保集團(tuán)有限公司,武漢 440000)

土壤微生物在陸地生態(tài)系統(tǒng)多個(gè)過程中發(fā)揮著重要作用,而城市化過程使得城市及其周邊地區(qū)土地利用發(fā)生劇烈變化,形成了異質(zhì)性環(huán)境梯度,直接或間接地影響了土壤微生物群落的組成和功能,進(jìn)而影響了其承載的生態(tài)系統(tǒng)服務(wù)。本文綜述了城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)不同景觀單元土壤微生物群落的組成特征、主要影響因素及其功能差異,發(fā)現(xiàn)城市化對(duì)土地利用的改變驅(qū)動(dòng)了土壤微生物群落的組成、結(jié)構(gòu)和功能差異,土地利用、土壤污染物、植被覆蓋、土壤性質(zhì)等因素共同影響土壤微生物群落,并且在不同景觀中影響土壤微生物的主導(dǎo)因素有所不同。進(jìn)一步探討了土壤微生物的生態(tài)服務(wù)功能,并分析了不同景觀中土壤微生物功能存在的差異性。今后需進(jìn)一步解析社會(huì)—經(jīng)濟(jì)—自然復(fù)合生態(tài)系統(tǒng)格局特征對(duì)土壤微生物的影響,揭示城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)不同功能區(qū)土壤微生物對(duì)土壤生態(tài)服務(wù)的產(chǎn)生和維持機(jī)制,明確變化環(huán)境下土壤微生物對(duì)土壤安全和人類健康的維持機(jī)制,以提升土壤生態(tài)服務(wù)功能、維護(hù)城鄉(xiāng)土壤安全和人居環(huán)境健康。

城市化;土壤微生物;土地利用;功能差異;土壤安全

城市化改變了城市周邊的土地利用方式和社會(huì)、經(jīng)濟(jì)功能,使自然/農(nóng)業(yè)生態(tài)系統(tǒng)逐步向城市生態(tài)系統(tǒng)轉(zhuǎn)變,并形成城市-城郊-農(nóng)業(yè)/自然生態(tài)系統(tǒng)的環(huán)境梯度,構(gòu)成了社會(huì)、經(jīng)濟(jì)和環(huán)境要素復(fù)雜聯(lián)系的城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)。城市化在給城鄉(xiāng)居民帶來諸多福祉的同時(shí),也帶來了一系列生態(tài)環(huán)境問題,如耕地銳減、土地退化、土壤污染、生物多樣性降低等[1-3]。土壤是城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)的重要組成部分,為城鄉(xiāng)居民提供食物供給、污染物凈化、水源涵養(yǎng)等多種生態(tài)服務(wù),城市化對(duì)土壤及其環(huán)境的改變必將影響土壤生態(tài)服務(wù)的供給與維持。土壤微生物是土壤中最為活躍的部分,參與多個(gè)關(guān)鍵生態(tài)服務(wù)的形成,在驅(qū)動(dòng)地表生物地球化學(xué)循環(huán)中發(fā)揮著重要作用[4]。土壤微生物主導(dǎo)了多個(gè)土壤過程:如固碳、固氮和有機(jī)質(zhì)分解等[5-7],土壤根際微生物與植物根際土的相互作用主導(dǎo)著地上和地下生態(tài)過程的耦合[8],并且微生物在土壤污染物降解過程中也發(fā)揮了重要作用[9]。

明確土壤微生物在城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)的組成特征及其功能差異,對(duì)維護(hù)土壤安全、提升土壤生態(tài)服務(wù)具有重要科學(xué)意義。土壤微生物對(duì)環(huán)境的變化非常敏感,不同生態(tài)系統(tǒng)中土壤微生物群落組成存在較大差異。例如,Wu等[10]通過16S rRNA高通量測(cè)序和克隆文庫技術(shù)分析發(fā)現(xiàn),土壤微生物的多樣性和群落組成是由土地利用方式?jīng)Q定的。Zhao等[11]通過比較天然森林、公園、農(nóng)田、街道綠地和路邊樹林土壤微生物生物量和功能多樣性,發(fā)現(xiàn)不同土地利用方式通過影響土壤理化性質(zhì),尤其是養(yǎng)分有效性和重金屬含量,對(duì)土壤微生物的生物量和群落功能多樣性產(chǎn)生間接影響。并且,也有研究表明土地利用歷史也會(huì)對(duì)土壤微生物群落的結(jié)構(gòu)、功能及多樣性產(chǎn)生影響[12-13]。人類主導(dǎo)景觀通過土地利用方式的變化,改變了土壤結(jié)構(gòu)、組成和生物地球化學(xué)循環(huán)過程,從而塑造了不同的土壤微生物群落[14-15],進(jìn)一步又影響了其在土壤生態(tài)服務(wù)產(chǎn)生和維持中的作用。隨著城市化進(jìn)程的加快和土地利用方式的改變,城市化驅(qū)動(dòng)的土壤微生物群落組成和功能的差異正逐漸引起關(guān)注。各國(guó)學(xué)者從不同土地利用土壤微生物群落的組成、結(jié)構(gòu)、多樣性、生態(tài)功能及其影響因素等方面開展了研究[16-18]。土壤環(huán)境及其變化受自然、社會(huì)和經(jīng)濟(jì)因素的多重驅(qū)動(dòng),但目前多數(shù)研究集中在單一土地利用類型的微生物群落多樣性和生態(tài)系統(tǒng)功能,快速城市化及人類活動(dòng)所形成的城鄉(xiāng)環(huán)境梯度對(duì)土壤微生物群落組成和功能的影響還亟待展開。基于此,本文綜述了城市化影響下不同土地利用/景觀中土壤微生物群落的組成特征、功能差異及關(guān)鍵影響因素,并對(duì)今后的研究進(jìn)行了展望,以期為城市化過程中可持續(xù)性人地關(guān)系的建立、土壤安全和生態(tài)系統(tǒng)服務(wù)的提升提供參考。

1 城鄉(xiāng)環(huán)境梯度不同景觀中土壤微生物群落特征

土壤微生物群落的組成、豐度、多樣性等與土壤環(huán)境密切相關(guān),城市化過程中土壤環(huán)境的改變使得土壤微生物的組成和分布受到人類活動(dòng)的劇烈影響[19]。明確城鄉(xiāng)環(huán)境不同景觀中土壤微生物群落特征是探討土壤微生物生態(tài)功能對(duì)城市化響應(yīng)的基礎(chǔ)。

1.1 城鄉(xiāng)環(huán)境梯度土壤微生物群落特征的空間差異

就生物量而言,自然區(qū)域中(如森林、草地等)土壤微生物的生物量最高,城市和城郊土壤微生物生物量相對(duì)較低。例如,研究發(fā)現(xiàn)北京市從城市到自然區(qū)域,土壤微生物的生物量逐漸增加[20];在廈門市的一項(xiàng)研究發(fā)現(xiàn)自然區(qū)域土壤古菌和細(xì)菌的生物量仍為最高,但城市土壤細(xì)菌的生物量略高于城郊[21];也有研究表明城市和城郊地區(qū)的土壤微生物生物量并沒有明顯差異[22]。就多樣性而言,城市和城郊地區(qū)土壤微生物多樣性通常明顯高于自然/農(nóng)業(yè)區(qū)域。城市和城郊地區(qū)受人類活動(dòng)影響大,土壤環(huán)境的變化必然會(huì)使土壤微生物的多樣性發(fā)生改變。例如,Tan等[23]研究東莞城鄉(xiāng)環(huán)境梯度下土壤微生物群落多樣性發(fā)現(xiàn),土壤中細(xì)菌群落多樣性在城市中最高,其次為城郊,自然區(qū)域最低。楊元根等[24]對(duì)阿伯丁市土壤微生物群落研究發(fā)現(xiàn),城市土壤中重金屬元素的積累可能會(huì)使以糖類為碳源的微生物種類減少,而利用其他碳源的微生物種類可能會(huì)增多??傮w而言,城鄉(xiāng)環(huán)境梯度下大體存在土壤微生物的生物量在自然區(qū)域中最高,城郊和城市較低,土壤微生物的多樣性在城市和城郊中較高,而自然區(qū)域中較低的規(guī)律(表1)。

1.2 城鄉(xiāng)環(huán)境典型景觀中土壤微生物群落特征

1.2.1 城市綠地 城市綠地主要包括公園、綠化帶、居民區(qū)綠地等,是城市土壤覆蓋的主要區(qū)域,為城市居民提供氣候調(diào)節(jié)、污染物凈化、水源涵養(yǎng)、景觀美學(xué)等生態(tài)服務(wù)。城市綠地土壤的組成、結(jié)構(gòu)和理化性質(zhì)受人類活動(dòng)干擾最為強(qiáng)烈[31],導(dǎo)致城市綠地土壤微生物群落組成與自然土壤存在顯著差異。由于城市土壤環(huán)境中重金屬等污染物的累積以及城市土壤多為客土[32],使得微生物呈現(xiàn)活性高但不穩(wěn)定的特征[33],并且城市綠地中土壤微生物群落相互作用網(wǎng)絡(luò)較為松散,發(fā)揮核心作用的微生物類群較少[18]。例如,Wang等[34]對(duì)芝加哥不同類型城市綠地(公園、街道和住宅區(qū)綠地)中土壤微生物研究,發(fā)現(xiàn)綠地類型和人口密度導(dǎo)致了土壤微生物群落組成的顯著差異,認(rèn)為城市人口結(jié)構(gòu)和土地利用變化是影響土壤微生物群落的重要因素。Hui等[30]比較了芬蘭41個(gè)公園中土壤微生物群落的特征,發(fā)現(xiàn)城市綠地中土壤微生物仍然遵循自然環(huán)境中典型的植物—微生物組合模式,并且公園的年齡決定了土壤微生物群落的組成。Zhao等[11]在北京研究發(fā)現(xiàn)城市綠地土壤微生物的生物量較低,并與Yang等[35]的研究均證實(shí)重金屬積累是城市土壤微生物生物量偏低的主要因素。還有學(xué)者研究發(fā)現(xiàn)綠色屋頂中微生物生物量以及細(xì)菌與真菌的比例明顯低于公園,這可能是綠色屋頂土層淺薄、長(zhǎng)期暴露于太陽輻射等極端土壤條件導(dǎo)致的[36]。

1.2.2 城郊建設(shè)和工業(yè)用地 城郊處于城市和農(nóng)業(yè)/自然生態(tài)系統(tǒng)的交界地帶,這使得城郊地區(qū)的景觀多樣性、復(fù)雜性及破碎化程度均高于城市、農(nóng)業(yè)和自然區(qū)域[37],多樣、復(fù)雜的景觀使得城郊土壤中的微生物群落組成更加復(fù)雜。城市、城郊甚至鄉(xiāng)村地區(qū)的土壤都容易受到重金屬、有機(jī)污染物等的威脅,影響土壤微生物的組成和多樣性,尤其在城郊建設(shè)和工礦用地,這一現(xiàn)象更為明顯。Silva-Castro等[38]在研究被柴油污染的土壤修復(fù)過程中發(fā)現(xiàn)了以石油作為碳源的特異性微生物群落,以適應(yīng)被石油污染的土壤。也有研究發(fā)現(xiàn)當(dāng)土壤長(zhǎng)期暴露于六氯環(huán)己烷(俗稱六六六)污染中時(shí),土壤中嗜甲烷細(xì)菌具有較高的豐富度[39]。土壤受到重金屬污染時(shí),不僅微生物群落組成受到顯著影響,土壤微生物相互作用網(wǎng)絡(luò)也會(huì)受到影響,但不同微生物對(duì)重金屬的響應(yīng)不同,有些微生物甚至?xí)踊钴S[40]。重金屬污染不僅會(huì)直接影響土壤微生物群落及其代謝結(jié)構(gòu),還會(huì)通過微生物群落進(jìn)一步對(duì)土壤功能產(chǎn)生影響[41]。公路工程建設(shè)也對(duì)土壤微生物造成一定程度的干擾。例如,路域土壤與林區(qū)相比,土壤微生物的種屬多樣性和功能菌的數(shù)量都有所減少[42],旅游道路建設(shè)會(huì)導(dǎo)致真菌物種數(shù)、孢子密度和多樣性指數(shù)下降,對(duì)真菌群落產(chǎn)生了負(fù)面影響[43]。

1.2.3 農(nóng)田 土壤微生物在農(nóng)田土壤肥力形成和植物養(yǎng)分吸收轉(zhuǎn)化過程中發(fā)揮著重要作用[44]。隨著城市的發(fā)展和人口的聚集,農(nóng)田作物生產(chǎn)和食品供給的需求增加,為提高土壤生產(chǎn)力,施肥等大量農(nóng)業(yè)耕作措施被應(yīng)用于農(nóng)田土壤中,進(jìn)而影響了土壤微生物群落。研究發(fā)現(xiàn),在長(zhǎng)期施用化肥的農(nóng)田中,土壤微生物的生物量會(huì)明顯下降[45-46]。時(shí)鵬等[47]研究了玉米連作和施肥對(duì)農(nóng)田土壤微生物功能多樣性的影響,發(fā)現(xiàn)玉米連作不施肥的微生物多樣性低于撂荒處理,非玉米連作則提高了土壤微生物優(yōu)勢(shì)度指數(shù)。長(zhǎng)期施用氮、磷、鉀等專性肥料,只會(huì)促進(jìn)與這些營(yíng)養(yǎng)元素循環(huán)有關(guān)的微生物的生長(zhǎng)和代謝,而其他微生物的生長(zhǎng)代謝過程則會(huì)受到阻礙,從而降低土壤微生物多樣性;另一方面,大量研究也表明施用化肥會(huì)導(dǎo)致土壤酸化,影響土壤pH,從而導(dǎo)致土壤微生物多樣性下降[46,48-50]。長(zhǎng)期施用化肥還會(huì)導(dǎo)致土壤微生物之間的相互聯(lián)系被削弱,降低群落網(wǎng)絡(luò)在節(jié)點(diǎn)數(shù)、連通性、網(wǎng)絡(luò)密度和聚類系數(shù)等方面的復(fù)雜性,土壤微生物群落變得不穩(wěn)定[51]。相比而言,秸稈還田、平衡施肥等耕作方式能夠增加土壤有機(jī)質(zhì)含量,增強(qiáng)土壤中離子交換能力,在提高作物產(chǎn)量的同時(shí)增加土壤微生物的功能性狀,使得土壤微生物群落的相互作用網(wǎng)絡(luò)更加穩(wěn)定[52]。

1.2.4 自然區(qū)域 自然區(qū)域土壤中微生物組成豐富,與地下生態(tài)過程緊密相關(guān),在生物地球化學(xué)循環(huán)中起著重要作用。在群落組成上,以森林為例,森林土壤微生物組成主要包括細(xì)菌、真菌、放線菌三大類群,其中細(xì)菌數(shù)量最多,其次為放線菌,真菌數(shù)量最少[53]。自然區(qū)域土壤微生物在垂直剖面上有明顯的分布規(guī)律,隨著土壤深度的增加,土壤微生物的生物量和多樣性表現(xiàn)為下降趨勢(shì)[54]。自然區(qū)域土壤微生物群落多樣性和組成受地上植被覆蓋影響顯著,地上植物群落的多樣性與土壤微生物群落多樣性成正比,植物的凋落物、根際分泌物等均會(huì)影響土壤微生物,一方面凋落物和植物根際分泌物會(huì)直接對(duì)土壤微生物產(chǎn)生影響,另一方面植物通過改變土壤的性質(zhì)和營(yíng)養(yǎng)狀況來改變土壤微生物的生存環(huán)境[55-56]。通過研究我國(guó)北方溫帶草原土壤微生物群落組成發(fā)現(xiàn),溫帶草原土壤微生物群落組成在草原類型間存在明顯差異,土壤性質(zhì)、地上植被量以及植被類型等都對(duì)其有影響[57]。馬紅梅等[58]發(fā)現(xiàn)草地中土壤微生物數(shù)量也存在細(xì)菌最多,放線菌其次,真菌數(shù)量最少的規(guī)律,并且不同草地利用對(duì)土壤微生物的數(shù)量和微生物量碳的影響不同。Zhao等[59]對(duì)中國(guó)南方4個(gè)常綠闊葉林中土壤微生物群落的組成、多樣性和碳/氮循環(huán)基因的綜合研究發(fā)現(xiàn),土壤中的氮和磷不僅對(duì)微生物群落多樣性和組成有顯著影響,而且對(duì)功能基因相互作用也有顯著影響。

2 城鄉(xiāng)環(huán)境中土壤微生物群落的主要影響因素

影響土壤微生物群落的因素較多,主要包括環(huán)境因素,如土壤性質(zhì)(土壤質(zhì)地、有機(jī)碳、水分、養(yǎng)分、pH、溫度等)、植被覆蓋、污染物等,以及群落內(nèi)部因素對(duì)土壤微生物的影響。土壤微生物群落及其動(dòng)態(tài)是由多種因素共同作用的結(jié)果[60],并且在不同的景觀中其關(guān)鍵影響因素有所不同(圖1)。

2.1 城市

土壤翻動(dòng)、壓實(shí)及封閉等城市建設(shè)活動(dòng)會(huì)顯著改變土壤性質(zhì),使土壤孔隙度減小、容重增大、酸堿度改變、水分和養(yǎng)分含量降低,從而對(duì)土壤微生物的組成、群落結(jié)構(gòu)和多樣性造成影響[61]。城市土壤中重金屬和有機(jī)污染物的積累,以及生活廢棄物和廢水中的污染物直接或間接進(jìn)入土壤[62],也極大影響了土壤微生物群落。Wang等[34]對(duì)城市綠地土壤微生物群落研究發(fā)現(xiàn)土壤濕度與土壤微生物多樣性顯著相關(guān),還發(fā)現(xiàn)土壤砂粒含量與微生物多樣性呈正相關(guān),這可能是由于粗糙的土壤會(huì)創(chuàng)造更多孤立的水膜,為微生物提供適宜的生境。Singh等[63]在美國(guó)新澤西州研究了城市土壤中微生物群落對(duì)重金屬污染的響應(yīng),結(jié)果表明重金屬污染對(duì)細(xì)菌群落有顯著影響。有研究發(fā)現(xiàn),城市中的多環(huán)芳烴污染能夠改變土壤變形菌門、放線菌門和擬桿菌門的群落組成和相對(duì)豐度,這些門與人類免疫功能和慢性疾病有關(guān),環(huán)境中其群落組成發(fā)生的重大變化可能會(huì)潛在地影響人類健康[64]。

2.2 城郊

城郊地區(qū)各種土地利用類型交織混合,直接面臨來自城市擴(kuò)張和人類活動(dòng)的壓力,使城郊土壤環(huán)境極為復(fù)雜,影響土壤微生物的因素也更為廣泛和多樣。一方面,城郊地區(qū)頻繁的建設(shè)工程、筑路以及施肥等活動(dòng),導(dǎo)致部分地區(qū)土壤質(zhì)量下降,土壤性質(zhì)發(fā)生巨大改變,進(jìn)而影響土壤微生物群落。另一方面,城郊地區(qū)承接來自城市的污染物,如垃圾填埋、污水處理等,以及自身的工業(yè)生產(chǎn)活動(dòng),多重因素的疊加導(dǎo)致城郊土壤的污染問題尤為嚴(yán)重[65-66],污染物進(jìn)入土壤極大的改變了土壤微生物群落的組成、結(jié)構(gòu)和多樣性[67]。Tischer等[68]研究發(fā)現(xiàn)城郊土壤微生物群落隨著土地利用類型的變化發(fā)生相應(yīng)梯度的變化,土壤pH、含碳量、C︰N是影響微生物群落變化的主要因素。Wu等[10]在研究電子廢物回收廠周圍土壤微生物群落時(shí),通過冗余分析發(fā)現(xiàn)可利用磷含量、土壤濕度和金屬汞是影響土壤微生物群落的主要因素。

2.3 農(nóng)田

農(nóng)田中作物種類、輪作連作、肥料施用等均會(huì)改變農(nóng)田土壤性質(zhì)和土壤肥力,是影響土壤微生物群落的主要因素[50]。針對(duì)不同施肥以及耕作方式對(duì)土壤微生物的生物量、酶活性以及多樣性影響的研究發(fā)現(xiàn),多種肥料的配施能提高土壤微生物的代謝活性和多樣性,秸稈還田和添加生物炭等措施對(duì)土壤微生物群落穩(wěn)定性和多樣性的維持有積極的影響[69-70]。Wang等[71]通過比較不同的施肥方式探究施肥與土壤微生物群落之間的關(guān)系,結(jié)果表明施肥土壤中細(xì)菌群落的變化更受氮肥和有機(jī)肥施用的驅(qū)動(dòng),而非磷肥的施用。但另一方面,有機(jī)肥施用、污水灌溉等會(huì)導(dǎo)致農(nóng)田土壤中重金屬、有機(jī)污染物、抗生素和抗性基因的污染,對(duì)土壤微生物的生長(zhǎng)和代謝產(chǎn)生不良影響[72]。有研究探討了鹽脅迫對(duì)長(zhǎng)期污水灌溉田間土壤細(xì)菌群落和Cd有效性的影響,結(jié)果表明土壤鹽漬化脅迫導(dǎo)致土壤鎘有效性增加,并改變土壤中主要的微生物類群[73]。

2.4 自然區(qū)域

自然區(qū)域中,土壤屬性、降水和溫度是較大尺度下土壤微生物群落組成的主要驅(qū)動(dòng)因素[74-75]。植被覆蓋也是影響土壤微生物群落結(jié)構(gòu)的重要因素[76],植被對(duì)土壤微生物群落結(jié)構(gòu)的影響主要有兩個(gè)方面:一是凋落物和植物根際分泌物會(huì)直接對(duì)土壤微生物群落產(chǎn)生影響,二是植物通過改變土壤的結(jié)構(gòu)和營(yíng)養(yǎng)狀況來改變土壤微生物的生存環(huán)境[77]。如Wu等[78]對(duì)溫帶針葉林和草原土壤進(jìn)行分析發(fā)現(xiàn),森林土壤中微生物之間的相互作用較草地土壤更為顯著,認(rèn)為地表植被環(huán)境是土壤微生物群落差異的主要原因。此外還有研究認(rèn)為土壤有機(jī)碳是影響自然生境中土壤微生物群落結(jié)構(gòu)的主要因素[79],在土壤有機(jī)質(zhì)含量高的地區(qū),土壤微生物群落依靠有機(jī)質(zhì)分解獲得更多的能量[80]。

在城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)中,各種環(huán)境因素直接或間接的作用于土壤微生物群落,經(jīng)過環(huán)境的過濾作用,群落內(nèi)部因素也會(huì)使土壤微生物不斷的進(jìn)行群落構(gòu)建、演替和變化。此外,土壤微生物由于自身適應(yīng)性的差異而進(jìn)行生態(tài)選擇,選擇最適宜其自身生存的環(huán)境;微生物的擴(kuò)散能力也是一項(xiàng)重要影響因素,例如由于細(xì)菌個(gè)體較小、適應(yīng)性較強(qiáng),其擴(kuò)散能力大于真菌[81];生態(tài)漂變?cè)跇?gòu)建微生物群落結(jié)構(gòu)上發(fā)揮著重要的作用[82];同時(shí)微生物與微生物之間復(fù)雜的相互作用,如共生、捕食和競(jìng)爭(zhēng)等會(huì)對(duì)土壤微生物群落的組成產(chǎn)生影響,土壤微生物依靠各種復(fù)雜的關(guān)系共同維持群落的穩(wěn)定性[83]。

3 土壤微生物在城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)不同景觀中的功能差異

3.1 控制與修復(fù)土壤污染

城市化推進(jìn)過程中人類社會(huì)、經(jīng)濟(jì)活動(dòng)的增加會(huì)導(dǎo)致大量重金屬、多環(huán)芳烴、抗生素、微塑料等污染物大量進(jìn)入土壤環(huán)境,土壤面臨著質(zhì)量下降、污染加重、生態(tài)服務(wù)功能降低的挑戰(zhàn)[37]。土壤微生物在控制與修復(fù)土壤污染上發(fā)揮著尤為重要的作用。

城市綠地和城郊地區(qū)土壤重金屬污染相對(duì)較為嚴(yán)重,但土壤微生物群落中存在一些特異性微生物,這些微生物通常具有高濃度重金屬耐受性,能對(duì)土壤中的重金屬進(jìn)行吸附轉(zhuǎn)化[84]。土壤微生物在重金屬吸附、積累和轉(zhuǎn)化中的微觀作用機(jī)理非常復(fù)雜,且具有代謝多樣性。總體而言,土壤微生物產(chǎn)生配體與重金屬離子結(jié)合,隨后通過離子交換、螯合、擴(kuò)散等過程進(jìn)入微生物細(xì)胞內(nèi),對(duì)重金屬進(jìn)行吸附;被微生物吸收進(jìn)入體內(nèi)的重金屬通過與細(xì)胞質(zhì)內(nèi)帶電功能團(tuán)的結(jié)合、被細(xì)胞壁吸附、參與微生物的代謝等方式進(jìn)行積累;微生物對(duì)重金屬的轉(zhuǎn)化則主要是通過微生物體內(nèi)的代謝過程進(jìn)行的,包括氧化、還原、甲基化等[85]。大多數(shù)微生物對(duì)土壤中重金屬的作用是和植物相耦合的,通過植物—微生物共同對(duì)受污染的土壤進(jìn)行修復(fù)[86]。

在農(nóng)田中,有機(jī)肥的施用使得大量抗生素進(jìn)入到土壤中[87],會(huì)對(duì)土壤中的植物、動(dòng)物、微生物產(chǎn)生直接或間接的毒害作用,并且誘導(dǎo)抗生素抗性基因的產(chǎn)生[88]??股嘏c土壤微生物之間的互作效應(yīng),一方面體現(xiàn)在抗生素對(duì)于土壤微生物的毒害作用,導(dǎo)致土壤微生物數(shù)量減少、多樣性降低、生物活性和功能受到損害,群落結(jié)構(gòu)遭到破壞;同時(shí)土壤微生物也會(huì)產(chǎn)生抗性基因來抵抗土壤中抗生素的脅迫[89]。另一方面,微生物產(chǎn)生的一些代謝物和酶也可以通過改變抗生素的化學(xué)性質(zhì)進(jìn)行降解[90],從而緩解土壤中抗生素污染。

3.2 調(diào)節(jié)土壤生態(tài)平衡,提升土壤肥力

農(nóng)業(yè)土壤可持續(xù)利用主要取決于土壤過程和植物生長(zhǎng)之間的平衡。土壤微生物以群落的方式創(chuàng)造出復(fù)雜的相互作用網(wǎng)絡(luò),在維持土壤的穩(wěn)定性和可持續(xù)性上發(fā)揮著關(guān)鍵作用[91]。但自毒物質(zhì)的積累、病原菌滋生、耕作方式不當(dāng)、集約化利用等會(huì)導(dǎo)致養(yǎng)分失衡和土壤退化,打破土壤生態(tài)系統(tǒng)原有的平衡狀態(tài)[92]。例如,長(zhǎng)期施用化肥會(huì)導(dǎo)致植物和土壤微生物的多樣性下降,并且土壤微生物網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜性也會(huì)降低,打破土壤生態(tài)系統(tǒng)的穩(wěn)定性,減少土壤生態(tài)系統(tǒng)服務(wù)[51]。土壤微生物不僅可以產(chǎn)生多種代謝產(chǎn)物促進(jìn)植物的生長(zhǎng),而且能夠誘導(dǎo)植物產(chǎn)生抗病性,通過拮抗或競(jìng)爭(zhēng)作用抑制病原微生物的生長(zhǎng),從而有效調(diào)節(jié)整個(gè)土壤生態(tài)系統(tǒng)的平衡[91]。如可以通過真菌寄生有效抑制馬鈴薯黑屑病[93],還有研究表明利用微生物接種代替部分化肥的使用可以有效提高土壤肥力,保持土壤穩(wěn)定[94]。

3.3 促進(jìn)物質(zhì)循環(huán),調(diào)節(jié)氣候變化

土壤微生物在自然生態(tài)系統(tǒng)扮演著最基本的角色—分解者,土壤微生物在有機(jī)物礦化過程中起著決定性作用,地球上90%以上的礦化作用都是由微生物完成的,其分解能力和多樣性是土壤實(shí)現(xiàn)物質(zhì)循環(huán)和養(yǎng)分保持功能的基礎(chǔ),同時(shí)土壤微生物作為生物地球化學(xué)循環(huán),尤其是碳氮循環(huán)過程的重要驅(qū)動(dòng)者,使其在溫室氣體排放、調(diào)節(jié)氣候變化方面發(fā)揮著重要作用,預(yù)計(jì)到2100年,由于氣候變暖,25%的凍土?xí)诨尫懦龃罅康挠袡C(jī)質(zhì)供土壤微生物分解利用,對(duì)氣候變化產(chǎn)生正反饋?zhàn)饔茫觿夂蜃兣痆95-96]。如Dong等[97]發(fā)現(xiàn)豆科植物的根瘤附近CO2濃度下降,可能是根瘤菌進(jìn)行了CO2的同化。土壤微生物能夠直接促進(jìn)植物根系吸收土壤中的營(yíng)養(yǎng)成分,如共生固氮菌、叢枝菌根真菌、植物根際促生菌等與植物根系形成共生關(guān)系,參與土壤中氮、磷等養(yǎng)分循環(huán),促進(jìn)植物的生長(zhǎng)[98](圖2)。

4 研究展望

在快速城市化、人類活動(dòng)和氣候變化的多重影響下,探究城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)復(fù)雜環(huán)境格局及多重驅(qū)動(dòng)因素對(duì)土壤微生物群落及其功能的影響已成為亟需探討的一個(gè)重要科學(xué)問題?;趯?duì)城鄉(xiāng)環(huán)境土壤微生物組成及功能差異的梳理,認(rèn)為今后需加強(qiáng)以下幾個(gè)方面的研究:

1)明確土地利用及其空間格局特征對(duì)土壤微生物網(wǎng)絡(luò)和功能的影響。開展長(zhǎng)期研究,闡明不同尺度下土壤微生物的時(shí)空格局特征,進(jìn)一步明確社會(huì)、經(jīng)濟(jì)和自然因素對(duì)土壤微生物群落組成、動(dòng)態(tài)及其功能演變的驅(qū)動(dòng)機(jī)制,明確不同因素對(duì)土壤微生物作用的直接和間接作用關(guān)系,揭示城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)中宏觀格局與土壤微生物過程的耦合機(jī)制。

2)揭示土壤微生物在城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)不同功能區(qū)生態(tài)服務(wù)功能的產(chǎn)生和維持機(jī)制。明確土壤微生物在不同城鄉(xiāng)環(huán)境中對(duì)維持糧食生產(chǎn)、提升土壤肥力、提升作物品質(zhì)、控制溫室氣體排放、調(diào)節(jié)氣候等關(guān)鍵生態(tài)系統(tǒng)服務(wù)的作用機(jī)制,闡明土壤微生物不同生態(tài)服務(wù)權(quán)衡和協(xié)同關(guān)系及其影響機(jī)制,基于城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)不同功能區(qū)關(guān)鍵土壤生態(tài)服務(wù)的供給與需求特征,探討土壤微生物生態(tài)服務(wù)功能的提升途徑。

3)闡明變化環(huán)境下土壤微生物對(duì)土壤安全的維持機(jī)制。探討氣候變化對(duì)土壤微生物活性和功能的影響,尤其是需要明確在氣候變化、快速城市化和人類活動(dòng)進(jìn)一步增強(qiáng)的多重環(huán)境壓力下,土壤微生物在維護(hù)土壤生態(tài)功能、控制和修復(fù)土壤污染的作用特征及其時(shí)空分異規(guī)律,解析其對(duì)環(huán)境變化的響應(yīng)特征和機(jī)制,闡明土壤微生物對(duì)土壤健康的維持過程和作用機(jī)制。

4)探討土壤微生物對(duì)人居環(huán)境健康的影響。進(jìn)一步梳理和明晰城鄉(xiāng)環(huán)境梯度下土壤微生物與人類健康的關(guān)系,尤其是城市化過程中土壤致病菌的變化,明確致病菌在城鄉(xiāng)環(huán)境中的分布特征、遷移過程、影響因素,明確其生態(tài)風(fēng)險(xiǎn)和環(huán)境健康風(fēng)險(xiǎn)。依托土壤微生物“再野化”假說,改善土壤微生物環(huán)境,制定景觀格局空間優(yōu)化策略,進(jìn)一步發(fā)揮微生物對(duì)人類健康的貢獻(xiàn),營(yíng)造人與微生物和諧相處的環(huán)境。

[1] Chen J. Rapid urbanization in China:A real challenge to soil protection and food security[J]. Catena,2007,69(1):1—15.

[2] Larson C. Losing arable land,China faces stark choice:Adapt or go hungry[J]. Science,2013,339(6120):644—645.

[3] Lu Q S,Gao Z Q,Ning J C,et al. Impact of progressive urbanization and changing cropping systems on soil erosion and net primary production[J]. Ecological Engineering,2015,75:187—194.

[4] Ha K,Marschner P,Bünemann E. Dynamics of C,N,P and microbial community composition in particulate soil organic matter during residue decomposition[J]. Plant and Soil,2008,303(1/2):253—264.

[5] Condron L,Stark C,O’Callaghan M,et al. The role of microbial communities in the formation and decomposition of soil organic matter[M]//Soil Microbiology and Sustainable Crop Production. Dordrecht:Springer Netherlands,2010:81—118.

[6] Kuypers M M M,Marchant H K,Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263—276.

[7] Sofi J A,Lone A H,Ganie M A,et al. Soil microbiological activity and carbon dynamics in the current climate change scenarios:A review[J]. Pedosphere,2016,26(5):577—591.

[8] Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota[J]. Science,2004,304(5677):1629—1633.

[9] Deng H,Li X F,Huang Y Z,et al. Pollution induced community tolerance in soil microbial community:A review[J]. Asian Journal of Ecotoxicology,2008,3(5):428—437. [鄧歡,李小方,黃益宗,等. 土壤微生物污染誘導(dǎo)群落耐性研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2008,3(5):428—437.]

[10] Wu W C,Dong C X,Wu J H,et al. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region[J]. Science of the Total Environment,2017,601/602:57—65.

[11] Zhao D,Li F,Yang Q,et al. The influence of different types of urban land use on soil microbial biomass and functional diversity in Beijing,China[J]. Soil Use and Management,2013,29(2):230—239.

[12] Hermans S,Taylor M,Grelet G,et al. From pine to pasture:Land use history has long-term impacts on soil bacterial community composition and functional potential[J]. FEMS Microbiology Ecology,2020,96(4):12.

[13] Turley N E,Bell-Dereske L,Evans S E,et al. Agricultural land-use history and restoration impact soil microbial biodiversity[J]. Journal of Applied Ecology,2020,57(5):852—863.

[14] Guo X P,Chen H Y H,Meng M J,et al. Effects of land use change on the composition of soil microbial communities in a managed subtropical forest[J]. Forest Ecology and Management,2016,373:93—99.

[15] Mganga K Z,Razavi B S,Kuzyakov Y. Land use affects soil biochemical properties in Mt. Kilimanjaro region[J]. Catena,2016,141:22—29.

[16] Thompson G,Kao-Kniffin J. Urban grassland management implications for soil C and N dynamics:A microbial perspective[J]. Frontiers in Ecology and Evolution,2019,7:315.

[17] Yan Z Z,Chen Q L,Zhang Y J,et al. Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces[J]. Environmental Pollution,2020,261:114201.

[18] Zhang Y,Ji G D,Wu T,et al. Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale[J]. Environmental Pollution,2020,258:113708.

[19] Zhu Y G,Gillings M,Simonet P,et al. Microbial mass movements[J]. Science,2017,357(6356):1099—1100.

[20] Zhao D,Li F,Wang R S,et al. Effect of soil sealing on the microbial biomass,N transformation and related enzyme activities at various depths of soils in urban area of Beijing,China[J]. Journal of Soils and Sediments,2012,12(4):519—530.

[21] Wang H T,Marshall C W,Cheng M Y,et al. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils[J]. Scientific Reports,2017,7:44049.

[22] Hou Y,Zhou H P,Zhang C. Effects of urbanization on community structure of soil microorganism[J]. Ecology and Environmental Sciences,2014,23(7):1108—1112. [侯穎,周會(huì)萍,張超. 城市化對(duì)土壤微生物群落結(jié)構(gòu)的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2014,23(7):1108—1112.]

[23] Tan X L,Kan L,Su Z Y,et al. The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China[J]. Forests,2019,10(9):797.

[24] Yang Y G,Paterson E,Campbell C. Application of biolog method to study on microbial features in urban and rural soils[J]. Acta Pedologica Sinica,2002,39(4):582—589. [楊元根,Paterson E,Campbell C. Biolog方法在區(qū)分城市土壤與農(nóng)村土壤微生物特性上的應(yīng)用[J]. 土壤學(xué)報(bào),2002,39(4):582—589.]

[25] Chen S,Wang X K,Lu F. Research on forest microbial community function variations in urban and suburban forests[J]. Chinese Journal of Soil Science,2012,43(3):614—620. [陳帥,王效科,逯非. 城市與郊區(qū)森林土壤微生物群落特征差異研究[J]. 土壤通報(bào),2012,43(3):614—620.]

[26] Xi D,Kuang Y W. Characteristics of soil organic carbon and its fractions in subtropical evergreen broad-leaved forests along an urbanization gradient[J]. Chinese Journal of Applied Ecology,2018,29(7):2149—2155. [習(xí)丹,曠遠(yuǎn)文. 城市化梯度上亞熱帶常綠闊葉林土壤有機(jī)碳及其組分特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(7):2149—2155.]

[27] Chen F S,F(xiàn)ahey T J,Yu M Y,et al. Key nitrogen cycling processes in pine plantations along a short urban–rural gradient in Nanchang,China[J]. Forest Ecology and Management,2010,259(3):477—486.

[28] Martinová V,van Geel M,Lievens B,et al. Strong differences in-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient[J]. Fungal Ecology,2016,20:88—96.

[29] Yan B,Li J S,Xiao N W,et al. Urban-development- induced changes in the diversity and composition of the soil bacterial community in Beijing[J]. Scientific Reports,2016,6:38811.

[30] Hui N,Jumpponen A,F(xiàn)rancini G,et al. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate[J]. Environmental Microbiology,2017,19(3):1281—1295.

[31] Ellis E C. Anthropogenic transformation of the terrestrial biosphere[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2011,369(1938):1010—1035.

[32] Zhao Q N. Review on soil pollution during functional replacement of urban land[J]. Soils,2009,41(3):350—355. [趙沁娜. 城市土地置換過程中土壤污染研究進(jìn)展評(píng)述[J]. 土壤,2009,41(3):350—355.]

[33] Insam H,Hutchinson T C,Reber H H. Effects of heavy metal stress on the metabolic quotient of the soil microflora[J]. Soil Biology & Biochemistry,1996,28(4/5):691—694.

[34] Wang H T,Cheng M Y,Dsouza M,et al. Soil bacterial diversity is associated with human population density in urban greenspaces[J]. Environmental Science & Technology,2018,52(9):5115—5124.

[35] Yang Y G,Campbell C D,Clark L,et al. Microbial indicators of heavy metal contamination in urban and rural soils[J]. Chemosphere,2006,63(11):1942—1952.

[36] McGuire K L,Payne S G,Palmer M I,et al. Digging the New York City skyline:Soil fungal communities in green roofs and City Parks[J]. PLoS One,2013,8(3):e58020.

[37] Zhao F K,Yang L,Chen L D,et al. Soil security in peri-urban ecosystems:Problems and challenges[J]. Acta Ecologica Sinica,2018,38(12):4109—4120. [趙方凱,楊磊,陳利頂,等. 城郊生態(tài)系統(tǒng)土壤安全:?jiǎn)栴}與挑戰(zhàn)[J]. 生態(tài)學(xué)報(bào),2018,38(12):4109—4120.]

[38] Silva-Castro G A,Rodelas B,Perucha C,et al. Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents:Assays in a pilot plant[J]. Science of the Total Environment,2013,445/446:347—355.

[39] Mertens B,Boon N,Verstraete W. Stereospecific effect of hexachlorocyclohexane on activity and structure of soil methanotrophic communities[J]. Environmental Microbiology,2005,7(5):660—669.

[40] Li X Q,Meng D L,Li J,et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental Pollution,2017,231:908—917.

[41] Bérard A,Capowiez L,Mombo S,et al. Soil microbial respiration and PICT responses to an industrial and historic lead pollution:A field study[J]. Environmental Science and Pollution Research International,2016,23(5):4271—4281.

[42] Zhang K D,Ju T Z,Ren Y B,et al. The comparative study of soil microbial community characteristics in Baotian expressway[J]. Ecological Science,2016,35(4):134—141. [張克弟,巨天珍,任藝彬,等. 寶天高速公路路域土壤微生物群落特征的比較研究[J]. 生態(tài)科學(xué),2016,35(4):134—141.]

[43] Yang A N,Tang D M,Jin X L,et al. The effects of road building on arbuscular mycorrhizal fungal diversity in Huangshan Scenic Area[J]. World Journal of Microbiology and Biotechnology,2018,34(2):30.

[44] Gonzalez-Qui?ones V,Stockdale E A,Banning N C,et al. Soil microbial biomass—Interpretation and consideration for soil monitoring[J]. Soil Research,2011,49(4):287—304.

[45] Luo X Q,Hao X H,Chen T,et al. Effects of long-term different fertilization on microbial community functional diversity in paddy soil[J]. Acta Ecologica Sinica,2009,29(2):740—748. [羅希茜,郝曉暉,陳濤,等. 長(zhǎng)期不同施肥對(duì)稻田土壤微生物群落功能多樣性的影響[J]. 生態(tài)學(xué)報(bào),2009,29(2):740—748.]

[46] Wu Q F,Lu K P,Mao X L,et al. Responses of soil nutrients and microbial biomass and community composition to long-term fertilization in cultivated land[J]. Chinese Agricultural Science Bulletin,2015,31(5):150—156. [鄔奇峰,陸扣萍,毛霞麗,等. 長(zhǎng)期不同施肥對(duì)農(nóng)田土壤養(yǎng)分與微生物群落結(jié)構(gòu)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(5):150—156.]

[47] Shi P,Gao Q,Wang S P,et al. Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity[J]. Acta Ecologica Sinica,2010,30(22):6173—6182. [時(shí)鵬,高強(qiáng),王淑平,等. 玉米連作及其施肥對(duì)土壤微生物群落功能多樣性的影響[J]. 生態(tài)學(xué)報(bào),2010,30(22):6173—6182.]

[48] Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494(7438):459—462.

[49] Xu M G,Tang H J,Yang X Y,et al. Best soil managements from long-term field experiments for sustainable agriculture[J]. Journal of Integrative Agriculture,2015,14(12):2401—2404.

[50] Wang H Y,Xu M G,Ma X,et al. Research advances of microorganism and ammonia oxidizing bacteria under long-term fertilization in Chinese typical cropland[J]. Soil and Fertilizer Sciences in China,2018(2):1—12. [王慧穎,徐明崗,馬想,等. 長(zhǎng)期施肥下我國(guó)農(nóng)田土壤微生物及氨氧化菌研究進(jìn)展[J]. 中國(guó)土壤與肥料,2018(2):1—12.]

[51] Huang R L,McGrath S P,Hirsch P R,et al. Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers[J]. Microbial Biotechnology,2019,12(6):1464—1475.

[52] Yu Y J,Wu M,Petropoulos E,et al. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China[J]. Science of the Total Environment,2019,656:625—633.

[53] Hu H,Liu Z B,F(xiàn)an Y P,et al. Study progress in soil microbial ecology of forest[J]. World Forestry Research,2016,29(3):24—29. [扈花,劉澤彬,樊亞鵬,等. 森林土壤微生物生態(tài)學(xué)研究進(jìn)展[J]. 世界林業(yè)研究,2016,29(3):24—29.]

[54] Han M,Jiao R Z,Dong Y H. Distribution pattern of microbes in the deciduous broad-leaved forest soil and screening of functional bacteria in Wolong nature reserve[J]. Scientia Silvae Sinicae,2013,49(10):113—117. [韓梅,焦如珍,董玉紅. 臥龍自然保護(hù)區(qū)落葉闊葉林土壤微生物分布規(guī)律及功能菌的篩選[J]. 林業(yè)科學(xué),2013,49(10):113—117.]

[55] Prescott C E,Grayston S J. Tree species influence on microbial communities in litter and soil:Current knowledge and research needs[J]. Forest Ecology and Management,2013,309:19—27.

[56] Meng H J,Liu X D,Jin M,et al. Response of edaphon to different vegetation types in Qilian mountains[J]. Chinese Journal of Soil Science,2007,38(6):1127—1130. [孟好軍,劉賢德,金銘,等. 祁連山不同森林植被類型對(duì)土壤微生物影響的研究[J]. 土壤通報(bào),2007,38(6):1127—1130.]

[57] Fang Y,Wang W,Yao X D,et al. Soil microbial community composition and environmental controls in northern temperate steppe of China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2017,53(1):142—150. [方圓,王娓,姚曉東,等. 我國(guó)北方溫帶草地土壤微生物群落組成及其環(huán)境影響因素[J]. 北京大學(xué)學(xué)報(bào):自然科學(xué)版,2017,53(1):142—150.]

[58] Ma H M,Shao X Q,Zhang J Q,et al. Soil microbe characteristics of alpine grassland under different management regimes in the Yushu district of Qinghai Province,China[J]. Acta Agrestia Sinica,2015,23(1):75—81. [馬紅梅,邵新慶,張建全,等. 玉樹高寒草甸不同利用方式下土壤微生物的特征[J]. 草地學(xué)報(bào),2015,23(1):75—81.]

[59] Zhao M X,Cong J,Cheng J M,et al. Soil microbial community assembly and interactions are constrained by nitrogen and phosphorus in broadleaf forests of Southern China[J]. Forests,2020,11(3):285.

[60] Frossard A,Hartmann M,F(xiàn)rey B. Tolerance of the forest soil microbiome to increasing mercury concentrations[J]. Soil Biology and Biochemistry,2017,105:162—176.

[61] Zhang G L,Zhu Y G,F(xiàn)u B J. Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review[J]. Acta Ecologica Sinica,2003,23(3):539—546. [張甘霖,朱永官,傅伯杰. 城市土壤質(zhì)量演變及其生態(tài)環(huán)境效應(yīng)[J]. 生態(tài)學(xué)報(bào),2003,23(3):539—546.]

[62] Li Y W,Wang J,Ju T Z,et al. Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin,Gansu,China[J]. Chinese Journal of Ecology,2017,36(5):1408—1418. [李有文,王晶,巨天珍,等. 白銀市不同功能區(qū)土壤重金屬污染特征及其健康風(fēng)險(xiǎn)評(píng)價(jià)[J]. 生態(tài)學(xué)雜志,2017,36(5):1408—1418.]

[63] Singh J P,Vaidya B P,Goodey N M,et al. Soil microbial response to metal contamination in a vegetated and urban brownfield[J]. Journal of Environmental Management,2019,244:313—319.

[64] Parajuli A,Gr?nroos M,Kauppi S,et al. The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?[J]. PLoS One,2017,12(11):e0187852.

[65] Grimm N B,F(xiàn)oster D,Groffman P,et al. The changing landscape:Ecosystem responses to urbanization and pollution across climatic and societal gradients[J]. Frontiers in Ecology and the Environment,2008,6(5):264—272.

[66] Pastor J,Hernández A J. Heavy metals,salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas:Determinants for restoring their impact[J]. Journal of Environmental Management,2012,95(Suppl):S42—S49.

[67] Hang X S,Wang H Y,Zhou J M,et al. Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory[J]. Journal of Agro-Environment Science,2010,29(11):2133—2138. [杭小帥,王火焰,周健民,等. 電鍍廠附近土壤重金屬污染特征及其對(duì)微生物與酶活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(11):2133—2138.]

[68] Tischer A,Blagodatskaya E,Hamer U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions[J]. Soil Biology & Biochemistry,2015,89:226—237.

[69] Ding Y L,Liu J,Wang Y Y. Effects of biochar on microbial ecology in agriculture soil:A review[J]. Chinese Journal of Applied Ecology,2013,24(11):3311—3317. [丁艷麗,劉杰,王瑩瑩. 生物炭對(duì)農(nóng)田土壤微生物生態(tài)的影響研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(11):3311—3317.]

[70] Zhang T,Kong Y,Xiu W M,et al. Effects of fertilization treatments on soil microbial community characteristics under the wheat-maize rotation system in fluvo-aquic soil region in North China[J]. Ecology and Environmental Sciences,2019,28(6):1159—1167. [張婷,孔云,修偉明,等. 施肥措施對(duì)華北潮土區(qū)小麥—玉米輪作體系土壤微生物群落特征的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2019,28(6):1159—1167.]

[71] Wang Y,Ji H F,Gao C Q. Differential responses of soil bacterial taxa to long-term P,N,and organic manure application[J]. Journal of Soils and Sediments,2016,16(3):1046—1058.

[72] Han W H,Dang J H,Zhao Y. Compound pollution of heavy metals and polycyclic aromatic hydrocarbons in sewage irrigation area and its effect on soil microbial quantity[J]. Ecology and Environmental Sciences,2016,25(9):1562—1568. [韓文輝,黨晉華,趙穎. 污灌區(qū)重金屬和多環(huán)芳烴復(fù)合污染及其對(duì)農(nóng)田土壤微生物數(shù)量的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(9):1562—1568.]

[73] Wang M,Chen S B,Chen L,et al. The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil[J]. Chemosphere,2019,236:124372.

[74] Lauber C L,Hamady M,Knight R,et al. Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology,2009,75(15):5111—5120.

[75] Talbot J M,Bruns T D,Taylor J W,et al. Endemism and functional convergence across the North American soil mycobiome[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(17):6341—6346.

[76] Ding J J,Zhang Y G,Deng Y,et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline[J]. Scientific Reports,2015,5:7994.

[77] Cesarz S,F(xiàn)ender A C,Beyer F,et al. Roots from beech (L.)and ash(L.)differentially affect soil microorganisms and carbon dynamics[J]. Soil Biology & Biochemistry,2013,61:23—32.

[78] Wu S H,Huang B H,Huang C L,et al. The aboveground vegetation type and underground soil property mediate the divergence of soil microbiomes and the biological interactions[J]. Microbial Ecology,2018,75(2):434—446.

[79] Wallenius K,Rita H,Mikkonen A,et al. Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology & Biochemistry,2011,43(7):1464—1473.

[80] Delgado-Baquerizo M,Maestre F T,Reich P B,et al. Carbon content and climate variability drive global soil bacterial diversity patterns[J]. Ecological Monographs,2016,86(3):373—390.

[81] Farjalla V F,Srivastava D S,Marino N A C,et al. Ecological determinism increases with organism size[J]. Ecology,2012,93(7):1752—1759.

[82] Zhou J Z,Liu W Z,Deng Y,et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community[J]. mBio,2013,4(2):e00584—12.

[83] Hu Y L,Wang S L,Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism[J]. Chinese Journal of Soil Science,2006,37(1):170—176. [胡亞林,汪思龍,顏紹馗. 影響土壤微生物活性與群落結(jié)構(gòu)因素研究進(jìn)展[J]. 土壤通報(bào),2006,37(1):170—176.]

[84] Guo J K,Dong M F,Ding Y Z,et al. Effects of plant growth promoting rhizobacteria on plants heavy metal uptake and transport:A review[J]. Ecology and Environmental Sciences,2015,24(7):1228—1234. [郭軍康,董明芳,丁永禎,等. 根際促生菌影響植物吸收和轉(zhuǎn)運(yùn)重金屬的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(7):1228—1234.]

[85] Zeng Y,Luo L Q. Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil[J]. Rock and Mineral Analysis,2017(2):1—13. [曾遠(yuǎn),羅立強(qiáng). 土壤中特異性微生物促進(jìn)植物修復(fù)重金屬研究進(jìn)展[J]. 巖礦測(cè)試,2017(2):1—13.]

[86] Tak H I,Ahmad F,Babalola O O. Reviews of environmental contamination and toxicology[M] //Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. New York:DM,Whitacre,2013:33—52.

[87] Ge L K,Ren H L,Lu J J,et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China[J]. Environmental Chemistry,2015,34(5):875—883. [葛林科,任紅蕾,魯建江,等. 我國(guó)環(huán)境中新興污染物抗生素及其抗性基因的分布特征[J]. 環(huán)境化學(xué),2015,34(5):875—883.]

[88] Li Z J,Yao Z P,Zhang J,et al. A review on fate and ecological toxicity of veterinary antibiotics in soil environments[J]. Asian Journal of Ecotoxicology,2008,3(1):15—20. [李兆君,姚志鵬,張杰,等. 獸用抗生素在土壤環(huán)境中的行為及其生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2008,3(1):15—20.]

[89] Pruden A,Pei R T,Storteboom H,et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology,2006,40(23):7445—7450.

[90] Liu F,Tao R,Ying G G,et al. Advance in environmental fate and ecological effects of antibiotics[J]. Acta Ecologica Sinica,2010,30(16):4503—4511. [劉鋒,陶然,應(yīng)光國(guó),等. 抗生素的環(huán)境歸宿與生態(tài)效應(yīng)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2010,30(16):4503—4511.]

[91] Zhou Y,Zhu H H,Yao Q. Improving soil fertility and soil functioning in cover cropped agroecosystems with symbiotic microbes[M]//Agro-environmental sustainability. Cham:Springer International Publishing,2017:149—171.

[92] Lin X G,Chen R R,Hu J L. The management and application of soil microbial resources and the perspectives of soil microbiology[J]. Acta Ecologica Sinica,2010,30(24):7029—7037. [林先貴,陳瑞蕊,胡君利. 土壤微生物資源管理、應(yīng)用技術(shù)與學(xué)科展望[J]. 生態(tài)學(xué)報(bào),2010,30(24):7029—7037.]

[93] Abdul Rauf C,Naz F,Ahmad I,et al. Management of black scurf of potato with effective microbes (EM),biological potassium fertilizer (BPF) and[J]. International Journal of Agriculture and Biology,2015,17(3):601—606.

[94] Rong L Y,Chai Q,Yao T,et al. Partial replacement of chemical fertilizer by compound microbial inoculant and potential for promoting growth of intercroppedand[J]. Acta Prataculturae Sinica,2015,24(2):22—30. [榮良燕,柴強(qiáng),姚拓,等. 復(fù)合微生物接種劑替代部分化肥對(duì)豌豆間作玉米的促生效應(yīng)[J]. 草業(yè)學(xué)報(bào),2015,24(2):22—30.]

[95] Bardgett R D,F(xiàn)reeman C,Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. The ISME Journal,2008,2(8):805—814.

[96] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165—173.

[97] Dong Z,Layzell D B. H2oxidation,O2uptake and CO2fixation in hydrogen treated soils[J]. Plant and Soil,2001,229(1):1—12.

[98] Shen R F,Zhao X Q. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica,2015,35(20):6584—6591. [沈仁芳,趙學(xué)強(qiáng). 土壤微生物在植物獲得養(yǎng)分中的作用[J]. 生態(tài)學(xué)報(bào),2015,35(20):6584—6591.]

Community Characteristic and Functional Variability of Soil Microbes in Urban-rural Complex Ecosystem

LI Min1,2, CHEN Liding1,2, YANG Xiaoru3, ZHAO Fangkai1,2, SUN Long1, XU Shenlai4, YANG Lei1, 2?

(1. State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China; 2. University of Chinese Academy of Sciences,Beijing 100049,China;3. Institute of Urban Environment,Chinese Academy of Sciences,Xiamen,Fujian 361021,China; 4. Yangtze Ecology and Environment Co. Ltd,Wuhan 440000,China)

Soil microbes play an important role in a number of processes of the terrestrial ecosystem. Rapid urbanization brings about drastic changes in land use in urban and rural areas, thus forming a heterogenous environmental gradient, and directly and/or indirectly affecting compositions and functions of soil microbial communities and further on their ecosystem services. In the present review, composition characteristics of the soil microbial community varying with the landscape unit in the complex ecosystem and their main affecting factors, and functional variation of the soil microbial community along an urbanization gradient were summarized. An environmental gradient from urban to rural areas was found as a result of rapid urbanization causing variation of composition and functions of the soil microbial community. Land use, soil pollutants, vegetation cover, soil properties and some others were the main environmental factors jointly affecting soil microbial communities. However, the leading factors affecting soil microbial communities vary with the landscape. Then ecological service functions of soil microbes were discussed and their variation with the landscape analyzed. It is, therefore, essential to analyze further in detail effects of the social-economic-natural complex ecosystem, varying in characteristic and pattern, on soil microbial communities, to explore mechanisms of the generation and maintenance of ecological services that soil microbes in different functional zones of urban-rural complex ecosystem render to the soil, and to specify mechanism of soil microbes maintaining soil security and human health in a varying environment, so as to improve ecological service functions of the soil and maintain urban and rural soil security and health of the living environment.

Urbanization; Soil microbes; Land use; Functional variation; Soil security

S154.3

A

10.11766/trxb202007110387

李敏,陳利頂,楊小茹,趙方凱,孫龍,許申來,楊磊. 城鄉(xiāng)復(fù)合生態(tài)系統(tǒng)土壤微生物群落特征及功能差異:研究進(jìn)展與展望[J]. 土壤學(xué)報(bào),2021,58(6):1368–1380.

LI Min,CHEN Liding,YANG Xiaoru,ZHAO Fangkai,SUN Long,XU Shenlai,YANG Lei. Community Characteristic and Functional Variability of Soil Microbes in Urban-rural Complex Ecosystem[J]. Acta Pedologica Sinica,2021,58(6):1368–1380.

*中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(2018057)和國(guó)家自然科學(xué)基金項(xiàng)目(41571130064,41871194)資助 Supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences(No. 2018057)and the National Natural Science Foundation of China(Nos. 41571130064,41871194)

Corresponding author,E-mail:leiyang@rcees.ac.cn

李 敏(1995—),女,山東濟(jì)南人,主要從事景觀格局與生態(tài)過程研究。E-mail:minli_st@rcees.ac.cn

2020–07–11;

2020–10–05;

2020–11–27

(責(zé)任編輯:盧 萍)

猜你喜歡
群落重金屬土壤
江埡庫區(qū)魚類群落組成和資源量評(píng)估
沉淀/吸附法在電鍍廢水重金屬處理中的應(yīng)用
大學(xué)生牙齦炎齦上菌斑的微生物群落
土壤
靈感的土壤
人教版生物必修3第4章第4節(jié)群落的演替教學(xué)設(shè)計(jì)
為什么土壤中的微生物豐富?
識(shí)破那些優(yōu)美“擺拍”——鏟除“四風(fēng)”的土壤
魚頭中重金屬含量真的很高?
吃蘑菇不會(huì)重金屬中毒