馬 超,楊欣潤,江高飛,張 勇,周開勝,韋 中?
病原青枯菌土壤存活的影響因素研究進展*
馬 超1,楊欣潤1,江高飛2,張 勇3,周開勝4,韋 中2?
(1. 農(nóng)田生態(tài)保育與污染防控安徽省重點實驗室,安徽農(nóng)業(yè)大學資源與環(huán)境學院,合肥 230036;2. 江蘇省固體有機廢棄物資源化高新技術(shù)研究重點實驗室,作物免疫重點實驗室,國家有機類肥料工程技術(shù)研究中心,南京農(nóng)業(yè)大學資源與環(huán)境科學學院,南京 210095;3. 西南大學資源環(huán)境學院,重慶 400715;4. 蚌埠學院土木與水利水電工程學院,安徽蚌埠 233030)
土傳青枯病是一種毀滅性的細菌性病害,廣泛分布于熱帶、亞熱帶和溫帶地區(qū),嚴重威脅世界糧食安全。病原青枯菌主要從土壤中侵染作物根系,其在土壤中存活能力強,因此防治極為困難。明確病原青枯菌土壤存活的關(guān)鍵影響因素有助于創(chuàng)建高效阻控土傳青枯病的技術(shù)。國內(nèi)外學者在青枯菌土壤存活方面開展了大量研究,但由于影響青枯菌土壤存活的因素復雜,而相關(guān)研究多圍繞單一因素展開,缺乏針對青枯菌土壤存活規(guī)律和影響因素的系統(tǒng)性認識。本文系統(tǒng)梳理了青枯菌的自身特性(基因、行為和代謝產(chǎn)物)及土壤生物、非生物因素對其在土壤中存活的影響,闡明了青枯菌在寄主存在時土體存活、向寄主根表方向運動遷移時根際存活以及入侵寄主根系時根表存活的主要影響因子,以期為土傳青枯病的高效阻控提供參考。
青枯菌;細菌土壤存活;個體特性;群體特性;土壤生物環(huán)境;土壤非生物環(huán)境
青枯?。╞acterial wilt disease)是世界上最具破壞性的植物細菌性土傳病害之一,分布于全球各大洲;其致病菌茄科勞爾氏菌(,簡稱青枯菌)的多樣性高、寄主范圍廣(可侵染45科200多種植物),嚴重威脅全世界的農(nóng)業(yè)生產(chǎn)[1-3]。我國青枯病危害尤為嚴重,廣泛分布于30多個省份和地區(qū),危害近百種植物[4]。青枯菌主要從土壤中侵染作物根系,其在土壤中生存能力強,且土壤中青枯菌的數(shù)量與植物青枯病發(fā)病率呈顯著正相關(guān)4]。因此,明確青枯菌土壤存活的關(guān)鍵影響因素將有助于制定針對性的抑病對策。
當前青枯菌土壤存活影響因素研究主要面臨兩個難點:第一,病菌的土壤存活時間長、存活形式多樣(包括寄主存在時的土體存活、向寄主根表方向運動遷移時根際存活以及入侵寄主根系時的根表存活);第二,影響病菌土壤存活的因素多元且繁雜,如其自身特性(如基因、行為和代謝產(chǎn)物等)、土壤原生動物、細菌、真菌和噬菌體等生物因素,以及根系分泌物、礦質(zhì)元素等非生物因素[5-9]。前人試驗研究大多僅關(guān)注單一因素對青枯菌土壤存活的影響,缺乏對青枯菌土壤存活影響因素的系統(tǒng)分析。為此,本文通過對國內(nèi)外青枯菌土壤存活影響因素研究報道的系統(tǒng)梳理,從青枯菌自身特性、土壤生物環(huán)境和非生物環(huán)境三個方面概述青枯菌土壤存活的影響因素(圖1),并對今后青枯菌土壤存活影響因素的研究方向進行思考,以期為闡明青枯菌的土壤存活規(guī)律和土傳青枯病的系統(tǒng)阻控等提供幫助。
青枯菌基因組主要由染色體和大質(zhì)粒組成,其染色體上攜帶著眾多維持DNA復制、修復、轉(zhuǎn)錄和翻譯等必需的看家基因(house keeping genes),大質(zhì)粒上除一些重要看家基因的副本外,還攜帶眾多菌株特異性基因(strain-specific genes),如編碼芳香族化合物分解代謝、銅-鋅-鎘等重金屬抗性的基因簇[10-11]?;蚪M規(guī)模代謝網(wǎng)絡(luò)模型的預測和試驗結(jié)果表明,青枯菌可通過表型轉(zhuǎn)換系統(tǒng)(phc)介導依賴于種群密度變化的群體感應(yīng)系統(tǒng),動態(tài)調(diào)控其在土壤中的存活及對寄主植物的侵染[9,12]。種群密度低時,青枯菌通過啟動光譜代謝策略降解利用果膠、半乳糖醛酸酯、木質(zhì)素和羥基肉桂酸類化合物等,使其可在土壤中長期存活[13]。Ahmad等[14]研究表明青枯菌、以及等基因可控制黑褐色色素的產(chǎn)生,以應(yīng)對環(huán)境的氧化脅迫。Brown等[15]研究表明編碼resistance nodulation-cell division (RND)家族多藥外排泵的基因是青枯菌應(yīng)對抗生素、植物抗毒素和洗滌劑等有毒化合物脅迫的重要因子。此外,還有一些基因可能會影響青枯菌在低溫環(huán)境下的生存能力。例如,Stevens等[16]發(fā)現(xiàn)敲除17.6 kb基因島PGI-1,青枯菌菌株KZR-5對低溫的耐受能力更強。
青枯菌在根際定殖和入侵寄主根系時,會發(fā)生移動、趨化、存活狀態(tài)轉(zhuǎn)變、群體感應(yīng)和生物膜形成等行為,從而趨利避害、提高存活率和增強致病性[6,17-18]。Tans-Kersten等[17]發(fā)現(xiàn)青枯菌的移動能力可幫助其在寄主植物生長發(fā)育早期形成入侵。而當無寄主存在時,具有移動能力的青枯菌可更好地攝取營養(yǎng)物質(zhì),避免不利環(huán)境,甚至遷移到更適宜的寄主上,從而使種群得以更好地擴散和傳播[7]。除了移動能力外,趨化反應(yīng)也是青枯菌提高土壤存活力的重要手段[18]。Yao和Allen[18]發(fā)現(xiàn),與水稻根系分泌物相比,青枯菌更容易被番茄的根系分泌物吸引,青枯菌的這種趨化反應(yīng)有助于其找到較有利的生存環(huán)境。此外,當青枯菌在土壤中遭遇低溫和重金屬脅迫等時,會迅速轉(zhuǎn)變自身的存活狀態(tài)進入休眠(viable but nonculturable state,VBNC),以進行自我保護[6]。群體感應(yīng)系統(tǒng)是一種廣泛保守的細菌細胞間交流機制,細菌個體可從群體行為中獲得生存和持久的競爭優(yōu)勢[19]。當根際青枯菌種群增加到一定密度時,其群體感應(yīng)系統(tǒng)開始發(fā)揮作用——調(diào)節(jié)青枯菌細胞間的定殖及眾多毒力相關(guān)基因的表達[19],可有效提高青枯菌在根際的定殖和侵染的成功率。青枯菌還可大量分泌黏稠狀胞外多糖類物質(zhì)包裹青枯菌細胞、細胞殘渣、蛋白質(zhì)、DNA及DNA降解酶等形成生物膜,以抵御各種環(huán)境脅迫(如干旱、抑菌物質(zhì)),進而提高土壤存活率[20]。青枯菌也可分泌胞外DNA降解酶(extracellular DNase,exDNases)參與生物膜形成,破壞植物根系防御反應(yīng),幫助青枯菌在土壤存活、根際附著及定殖21]。Yao和Allen[22]還發(fā)現(xiàn)趨氧性運動可顯著影響青枯菌生物膜形成,在青枯菌土壤存活、根際定殖過程起重要作用。
青枯菌在土壤中向寄主根系方向遷移過程中產(chǎn)生的代謝產(chǎn)物對維持自身生存、種內(nèi)和種間交流或/和毒性均十分重要。研究表明,青枯菌能產(chǎn)生Ralfuranone、Yersinabactin和Micacocidin等不同化學結(jié)構(gòu)的鐵載體,其中Micacocidin有一定的金屬螯合性,在體外具有抗霉菌作用,可增強其在土壤中的競爭能力[23]。青枯菌產(chǎn)生的代謝產(chǎn)物還可協(xié)助其進行跨種交流,如Ralsolamycin可誘導34種真菌保守形態(tài)的分化,促進土壤真菌形成厚垣孢子[9]。厚垣孢子的形成為青枯菌定殖提供特定的生態(tài)位,促進其入侵真菌菌絲,進而提高青枯菌在不良土壤環(huán)境中的存活率[7]。此外,青枯菌在向寄主方向遷移過程中可通過群體感應(yīng)系統(tǒng)產(chǎn)生Ralfuranones代謝物,缺乏Ralfuranone代謝物的突變體,其在細胞間隙中的生長能力顯著降低、消失毒力[23]。
青枯菌在土壤中的存活會受到土壤微型動物的影響。根結(jié)線蟲能破壞寄主根部組織,提高青枯菌根際侵染的成功率,如Furusawa等[24]發(fā)現(xiàn)青枯菌和根結(jié)線蟲在根際的共同侵染會加重番茄青枯病害。原生動物作為土壤食物網(wǎng)中的消費者,能通過捕食作用直接影響青枯菌[25]。Xiong等[26]發(fā)現(xiàn)在整個植物生長周期中,田間土壤原生生物和青枯菌的種群動態(tài)變化緊密相關(guān);健康植物和發(fā)病植物的苗期根際土壤原生動物數(shù)量存在顯著差異;原生動物與青枯菌的相對豐度呈顯著負相關(guān)。馬超等[27]將青枯菌接入土壤后,發(fā)現(xiàn)其在第56天的存活數(shù)量與初始土壤鞭毛蟲和變形蟲的總數(shù)成反比,說明原生動物的捕食作用抑制了外來青枯菌的活動。這可能是由于原生動物捕食迫使土壤微生物產(chǎn)生了抑菌性物質(zhì),從而間接抑制了病原青枯菌[28]。
土壤細菌和真菌對青枯菌土壤存活的影響主要是通過資源競爭、拮抗抑制和產(chǎn)生抑菌分泌物等實現(xiàn)的。例如,解淀粉芽孢桿菌可通過競爭根系分泌物降低根際青枯菌的種群密度和致病性[29];黃桿菌可通過降低與青枯菌凝集素結(jié)合的糖供應(yīng),從而抑制寄主存在狀況下土體中的青枯菌[30];熒光假單胞菌產(chǎn)生的揮發(fā)性有機物(volatile organic compounds,VOCs)會抑制寄主存在時土體土中青枯菌的生長,抑制率可達32%[31];黃曲霉產(chǎn)生的VOCs對共培養(yǎng)環(huán)境中青枯病菌的生長抑制作用較之無菌對照提升了4倍[32]。
除了上述種群水平的研究,前人還探究了土著菌(如細菌、真菌)物種多樣性、物種組成、物種間關(guān)聯(lián)度以及土著菌-青枯菌之間生態(tài)位重疊度等生物群落特征對青枯菌土壤存活的影響[33-35]。土壤細菌群落的物種多樣性與病原青枯菌的入侵存活之間呈負相關(guān)關(guān)系[36-37]。究其原因或有以下兩點:一是根際土著微生物群落代謝較快,留給入侵者的資源有限[36];二是與根際微生物群落中的資源利用連接度高、嵌套度低以及土著菌-青枯菌生態(tài)位重疊度高等有關(guān)[33]。Hu等34]研究發(fā)現(xiàn)接種至根際的有益假單胞菌的基因型越多樣,根際青枯菌的密度就越低。Li等[35]通過群落物種間相互作用關(guān)系對青枯菌入侵作用的影響研究,發(fā)現(xiàn)物種之間呈促進關(guān)系的根際菌群會促進青枯菌入侵,而呈拮抗關(guān)系的則會抑制青枯菌入侵。
噬菌體是一類在土壤中普遍存在的、專性侵染細菌的病毒,可通過對病原菌的精準裂解,壓制病原菌的數(shù)量[38]。研究表明,溫室條件下裂解型噬菌體可通過阻斷青枯菌表面多糖(致病因子之一)的形成,減少病害發(fā)生[39]。Murugaiyan等[40]發(fā)現(xiàn),將絲狀噬菌體PE204與病菌同時施用后, PE226可感染根際中的青枯菌,降低寄主植物的發(fā)病率。噬菌體還可通過適應(yīng)性權(quán)衡來抑制土壤中青枯菌的生長,這些權(quán)衡可由表達不同毒力因子的高成本以及控制代謝、毒性途徑和網(wǎng)絡(luò)的全局調(diào)控基因驅(qū)動[9,41]。例如,噬菌體驅(qū)動青枯菌產(chǎn)生噬菌體抗性的同時,也增加了抑制生長等適應(yīng)性成本;此外,增加專性噬菌體的豐富度也可顯著抑制根際青枯菌的豐度,且其抑制作用也間接改變了土著菌群的組成和多樣性,使得高度拮抗青枯菌的細菌類群增加[42]。土壤中噬菌體侵染使青枯菌對生防細菌產(chǎn)生的拮抗物質(zhì)更加敏感,削弱了青枯菌在根際環(huán)境的競爭能力,進而有效降低了根際土壤青枯菌的數(shù)量[43]。然而,土壤非青枯菌專性噬菌體是否會對青枯菌土壤存活產(chǎn)生影響尚待進一步研究。
根系分泌物對青枯菌在土壤中的存活既可為積極的促進作用,也可為強烈的抑制作用[33,44-45]。一方面,根系分泌物可為青枯菌提供各種賴以生存的資源,從而促進青枯菌的生長。Wei等[33]發(fā)現(xiàn),根際分泌物的構(gòu)成會影響土壤微生物群落內(nèi)部結(jié)構(gòu)及其與病原青枯菌之間的相互作用,進而影響青枯菌的根際定殖。Yang等[45-46]通過微系統(tǒng)試驗,分別探討了根系分泌的資源數(shù)量(有效資源含量)和質(zhì)量(化學計量特性,如碳磷比C/P)對青枯菌存活的影響,結(jié)果發(fā)現(xiàn)有效資源含量越高、C/P越大,青枯菌的存活率越高。Li等[47]的研究發(fā)現(xiàn)根系分泌物中的肉豆蔻酸、肉桂酸和反丁烯二酸可有效促進青枯菌定殖在煙草根際。除上述直接作用外,根系分泌物還可通過影響青枯菌與土著微生物之間的相互作用從而調(diào)控病菌的存活。Gu等[48]發(fā)現(xiàn)青枯菌感染過的番茄根系分泌物(咖啡酸)可減少共生根際微生物群落多樣性,對青枯菌的土壤存活產(chǎn)生積極影響。另一方面,當植物的根系分泌物中富含殺菌物質(zhì),則能直接殺害土壤中的青枯菌。例如,孔雀草可通過根系分泌大量噻吩類物質(zhì),抑制青枯菌的存活數(shù)量[49]。植物種屬的差異也會影響根系分泌物的組成和殺菌效果。Deberdt等[50]發(fā)現(xiàn)前茬為十字花科或豆科與前茬為菊科相比,種植十字花科或豆科時,青枯菌的土壤存活量和當季番茄發(fā)病率均會顯著下降。寄主植物也可因青枯菌侵染而啟動防御系統(tǒng),分泌具有青枯菌侵染抑制作用的根系分泌物,進而實現(xiàn)抑菌效果[44]。
植物的營養(yǎng)水平與其防御機制密切相關(guān),這最終會影響土傳病菌的存活水平和侵染效率[51]。土壤養(yǎng)分元素(如氮、磷、鉀)含量處于較低水平時會通過調(diào)控寄主植物的生長而間接影響土壤青枯菌的存活。Yang等[51]發(fā)現(xiàn)地表氮、磷和鉀養(yǎng)分含量較低時不利于植物健康生長,會減弱寄主植物對病原菌的抵抗能力,導致寄主土體中青枯菌的數(shù)量增加。除含量外,養(yǎng)分元素的種類和形態(tài)也會影響病原菌的土壤存活。例如,適當增加硅素,可誘導抗性增強,有效降低寄主根表的青枯菌數(shù)量[52];通過亞磷酸灌根可有效減少入侵寄主根系青枯菌數(shù)量[53];鈣、硼、鎂、鉬等元素可有效抑制寄主存在時土體的青枯菌數(shù)量,其中鉬、鈣的抑制效果最好,抑菌率可分別達35.93%和16.93%[54]。研究表明,礦質(zhì)元素的抑菌作用主要是通過提高植物防御酶系的活性和抗病能力實現(xiàn)的[55]。例如,在鐵多酚催化劑作用下,粉狀氧化鈣顯著抑制了寄主存在的土體中青枯菌的數(shù)量,從而控制了青枯病的發(fā)生[55]。Fe3+作為根際微生物爭奪的稀缺資源,微生物對它的爭奪也會顯著改變青枯菌的土壤存活。Gu等[56]研究發(fā)現(xiàn),在植物育苗階段提前加入能高產(chǎn)且不會被青枯菌“竊取”鐵載體的有益微生物,可通過抑制病原菌獲取Fe3+來實現(xiàn)降低其土壤存活數(shù)量的目的。
土壤理化性狀(如含水量、溫度和酸堿性等)也可影響青枯菌的土壤存活。高濕環(huán)境下寄主存在時土體中青枯菌的存活量會顯著提升,因為土壤含水量高會導致寄主防御病菌的相關(guān)基因表達下調(diào),進而使得寄主根表青枯菌的存活量增加[57]。但是,當土壤含水量過高,土壤呈厭氧狀況時,青枯菌則可能會因呼吸作用受阻引起土體存活量降低[58]。土壤升溫會在一定程度上改善土壤的理化環(huán)境(如加快有機質(zhì)分解、增加營養(yǎng)元素的濃度),但當溫度達到一定程度后(如70℃),其對青枯菌土壤存活影響則表現(xiàn)為抑制[59]。由于土壤溫度和水分傳導均與土壤容重密切關(guān)聯(lián),因而土壤的單位體積質(zhì)量也與青枯菌的土壤存活存在關(guān)聯(lián)。Yamfang等[59]研究發(fā)現(xiàn),土壤單位體積質(zhì)量越小,青枯菌對土壤熱量的響應(yīng)越強烈。土壤酸堿性對青枯菌的影響比較復雜,既有直接作用也有間接作用。土壤酸性條件下(如pH 4.5~5.5)有利于寄主存在時土體中青枯菌的生長,不利于有益菌(如熒光假單胞菌和蠟樣芽孢桿菌等)的生長,促進了青枯菌土體的存活[60]。Wang等[61]發(fā)現(xiàn)土壤pH變化會引起土壤微生物群落變化,間接地影響青枯菌在土壤中存活。此外,土壤中存在的羥基自由基對青枯菌的抑制效果較好[55]。根據(jù)水生生態(tài)系統(tǒng)的研究經(jīng)驗,青枯菌的土壤存活狀況還可能會受土壤電導率等化學性質(zhì)影響,但具體作用的方向和程度尚待進一步試驗探究。
值得一提的是,農(nóng)藝措施(如耕作制度、灌溉和施肥等)也會顯著改變青枯菌的土體存活、根際存活和根表存活。不過,任何措施的調(diào)控本質(zhì)均是通過改變農(nóng)田土壤的生物和非生物因素實現(xiàn)的。例如,Niu等[62]研究發(fā)現(xiàn),不同輪作制度(煙-玉米輪作/煙-百合輪作/煙-蘿卜輪作)下土壤細菌群落組成和結(jié)構(gòu)差異顯著,使得各處理的煙草青枯菌存活狀態(tài)迥異。灌溉會導致青枯菌的爆發(fā),這或與青枯菌在水分較高的環(huán)境下能夠以較自由的形式存活有關(guān)[63]。生物有機肥主要是因為其中的功能菌多為從健康植株根際分離得到拮抗菌,可通過其拮抗青枯菌作用進而抑制青枯菌在土壤中的存活[64]。
青枯菌是一種危害性極大的土傳病菌,嚴重威脅世界農(nóng)業(yè)可持續(xù)生產(chǎn)和農(nóng)業(yè)經(jīng)濟發(fā)展。本文系統(tǒng)總結(jié)了影響青枯菌在土壤中存活的主要因素,厘清了青枯菌自身特性、土壤生物和非生物環(huán)境對青枯菌土壤存活的作用,對掌握青枯菌的土壤存活動態(tài)和集成青枯病防控措施有一定的借鑒意義。同時,本文也提出了今后青枯菌土壤存活影響因素的研究重點及防治注意事項:
1)探究土壤大中型生物、土壤真菌群落特性以及非專性噬菌體等生物因素對青枯菌土壤存活的影響。蚯蚓、螨蟲等大中型土壤動物作為土壤食物網(wǎng)的重要組成,不僅顯著影響線蟲、原生動物和微生物等青枯菌存活密切相關(guān)的因子,而且大型動物的自身活動對土壤結(jié)構(gòu)也有影響,最終影響土壤的水、熱和氣等。但目前關(guān)于蚯蚓、螨蟲等大中型土壤動物對青枯菌存活影響的報道尚未出現(xiàn);同時,土壤真菌群落特性和非青枯菌專性噬菌體等土壤生物因素方面研究也很欠缺。
2)深入探究土壤酸化、鹽漬化等非生物因素對青枯菌土壤存活的影響。土壤生物的分布、存活依賴于特定的土壤環(huán)境,相較于生物環(huán)境而言,目前對于非生物環(huán)境影響青枯菌存活的研究較為薄弱。
3)加強對全球變化下青枯菌土壤存活狀態(tài)的探究。全球變化(升溫、干旱等)不僅可通過改變土壤水熱狀況而對青枯菌存活產(chǎn)生直接影響,還可通過改變寄主植物的生長而間接影響土壤中青枯菌的存活。
4)構(gòu)建青枯菌土壤的存活預測模型。青枯菌土壤存活的影響因素十分復雜,通過模型設(shè)置青枯菌土壤存活各影響因素相關(guān)的對象以及參數(shù),將有助于預測特定區(qū)域環(huán)境條件下各因素對病菌存活的相對貢獻,進而得知關(guān)鍵影響因子。
5)關(guān)注多因素互作、重視病原菌的污染源頭。理論研究可基于單個因素與青枯菌土壤存活關(guān)系進行,而實際防治則需要同時考慮多個因素及其交互作用的影響。同時,考慮到青枯菌的引入主要是由灌溉引起的,因而重視灌溉系統(tǒng)的源頭控制有望大幅提高青枯病防治效率。
致 謝 衷心感謝朱媛媛、張子赟兩位同學在文獻查閱過程中予以的幫助!
(
)
[1] Hayward A C. Biology and epidemiology of bacterial wilt caused by[J]. Annual Review of Phytopathology,1991,29(1):65—87.
[2] Wang H M,Wu Y C,Shen B. Characterization and biological effects of antigonistic N5 against[J]. Soils,2013,45(6):1082—1090. [王洪梅,吳云成,沈標. 青枯病生防菌N5的特性及其生物學效應(yīng)[J]. 土壤,2013,45(6):1082—1090.]
[3] Song S,Sun L,Shi J X,et al. Effects of successive application of bioorganic fertilizer on controlling tobacco wilt caused by[J]. Soils,2013,45(3):451—458. [宋松,孫莉,石俊雄,等. 連續(xù)施用生物有機肥對煙草青枯病的防治效果[J]. 土壤,2013,45(3):451—458.]
[4] Jiang G F,Wei Z,Xu J,et al. Bacterial wilt in China:History,current status,and future perspectives[J]. Frontiers in Plant Science,2017,8:1549. https://doi.org/10.3389/fpls.2017.01549.
[5] Grey B E,Steck T R. The viable but nonculturable state ofmay be involved in long-term survival and plant infection[J]. Applied and Environmental Microbiology,2001,67(9):3866—3872.
[6] Lee C G,Iida T,Inoue Y,et al. Prokaryotic communities at different depths between soils with and without tomato bacterial wilt but pathogen-present in a single greenhouse[J]. Microbes and Environments,2017,32(2):118—124.
[7] Ottemann K M,Miller J F. Roles for motility in bacterial–host interactions[J]. Molecular Microbiology,1997,24(6):1109—1117.
[8] Spraker J E,Sanchez L M,Lowe T M,et al.lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues[J]. The ISME Journal,2016,10(9):2317—2330.
[9] Peyraud R,Cottret L,Marmiesse L,et al. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen[J]. PLoS Pathogens,2016,12(10):e1005939.
[10] Wu D S,Ding W,Zhang Y,et al. Oleanolic acid induces the type III secretion system of[J]. Frontiers in Microbiology,2015,6:1466.
[11] Zhang Y,Li J,Zhang W Q,et al. Ferulic acid,but not all hydroxycinnamic acids,is a novel T3SS inducer ofand promotes its infection process in host plants under hydroponic condition[J]. Frontiers in Plant Science,2017,8:1595.
[12] Khokhani D,Lowe-Power T M,Tran T M,et al. A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen[J]. mBio,2017,8(5):e00895-17. https://doi.org/10.1128/mbio.00895-17.
[13] Lowe T M,Ailloud F,Allen C. Hydroxycinnamic acid degradation,a broadly conserved trait,protectsfrom chemical plant defenses and contributes to root colonization and virulence[J]. Molecular Plant-Microbe Interactions,2015,28(3):286—297.
[14] Ahmad S,Lee S Y,Kong H G,et al. Genetic determinants for pyomelanin production and its protective effect against oxidative stress in[J]. PLoS One,2016,11(8):e0160845.
[15] Brown D G,Swanson J K,Allen C. Two host-inducedgenes,acrA and dinF,encode multidrug efflux pumps and contribute to bacterial wilt virulence[J]. Applied and Environmental Microbiology,2007,73(9):2777—2786.
[16] Stevens P,Overbeek L S,van Elsas J D.ΔPGI-1 strain KZR-5 is affected in growth,response to cold stress and invasion of tomato[J]. Microbial Ecology,2011,61(1):101—112.
[17] Tans-Kersten J,Huang H,Allen C.needs motility for invasive virulence on tomato[J]. Journal of Bacteriology,2001,183(12):3597—3605.
[18] Yao J,Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen[J]. Journal of Bacteriology,2006,188(10):3697—3708.
[19] Li P,Yin W F,Yan J L,et al. Modulation of inter- kingdom communication by PhcBSR quorum sensing system inphylotype I strain GMI1000[J]. Frontiers in Microbiology,2017,8:1172.
[20] Flemming H C,Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9):623—633.
[21] Tran T M,MacIntyre A,Hawes M,et al. Escaping underground nets:Extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium[J]. PLoS Pathogens,2016,12(6):e1005686.
[22] Yao J,Allen C. The plant pathogenneeds aerotaxis for normal biofilm formation and interactions with its tomato host[J]. Journal of Bacteriology,2007,189(17):6415—6424.
[23] Mori Y,Inoue K,Ikeda K,et al. The vascular plant-pathogenic bacteriumproduces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces[J]. Molecular Plant Pathology,2016,17(6):890—902.
[24] Furusawa A,Uehara T,Ikeda K,et al.colonization of tomato roots infected by[J]. Journal of Phytopathology,2019,167(6):338—343.
[25] Wei Z,Song Y Q,Xiong W,et al. Soil protozoa:Research methods and roles in the biocontrol of soil-borne diseases. Acta Pedologica Sinica,2021,58(1):14—22. [韋中,宋宇琦,熊武,等. 土壤原生動物——研究方法及其在土傳病害防控中的作用[J]. 土壤學報,2021,58(1):14—22.]
[26] Xiong W,Song Y,Yang K M,et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome,2020,8(1):27.
[27] Ma C,Gong X,Gao H J,et al. Legacy impacts on the relationships between soil microbial community and the invasion potential of non-indigenous bacteria[J]. Acta Ecologica Sinica,2018,38(22):7933—7941. [馬超,龔鑫,郜紅建,等. 歷史因素對土壤微生物群落與外來細菌入侵間關(guān)系的影響[J]. 生態(tài)學報,2018,38(22):7933—7941.]
[28] Jousset A,Scheu S,Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria[J]. Functional Ecology,2008,22(4):714—719.
[29] Wu K,Su L,F(xiàn)ang Z,et al. Competitive use of root exudates bywithdecreases the pathogenic population density and effectively controls tomato bacterial wilt[J]. Scientia Horticulturae,2017,218:132—138.
[30] Kwak M J,Kong H G,Choi K,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36(11):1100—1109.
[31] Raza W,Ling N,Liu D Y,et al. Volatile organic compounds produced byWR-1 restrict the growth and virulence traits of[J]. Microbiological Research,2016,192:103—113.
[32] Spraker J E,Jewell K,Roze L V,et al. A volatile relationship:Profiling an inter-kingdom dialogue between two plant pathogens,and[J]. Journal of Chemical Ecology,2014,40(5):502—513.
[33] Wei Z,Yang T J,F(xiàn)riman V P,et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications,2015,6:8413—8422.
[34] Hu J,Wei Z,F(xiàn)riman V P,et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio,2016,7(6):e01790.
[35] Li M,Wei Z,Wang J N,et al. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters,2019,22(1):149—158.
[36] Irikiin Y,Nishiyama M,Otsuka S,et al. Rhizobacterial community-level,sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system[J]. Applied Soil Ecology,2006,34(1):27—32.
[37] Roy N,Choi K,Khan R,et al. Culturing simpler and bacterial wilt suppressive microbial communities from tomato rhizosphere[J]. The Plant Pathology Journal,2019,35(4):362—371.
[38] Ye M,Sun M M,Huang D,et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment[J]. Environment International,2019,129:488—496.
[39] Elhalag K,Nasr-Eldin M,Hussien A,et al. Potential use of soilborne lyticas a biocontrol agent against[J]. Journal of Basic Microbiology,2018,58(8):658—669.
[40] Murugaiyan S,Bae J Y,Wu J,et al. Characterization of filamentous bacteriophage PE226 infectingstrains[J]. Journal of Applied Microbiology,2011,110(1):296—303.
[41] Perrier A,Peyraud R,Rengel D,et al. Enhanced in planta fitness through adaptive mutations in EfpR,a dual regulator of virulence and metabolic functions in the plant pathogen[J]. PLoS Pathogens,2016,12(12):e1006044.
[42] Wang X F,Wei Z,Yang K M,et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology,2019,37(12):1513—1520.
[43] Wang X F,Wei Z,Li M,et al. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs[J]. Evolution,2017,71(3):733—746.
[44] Gu Y A,Wei Z,Wang X Q,et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile[J]. Biology and Fertility of Soils,2016,52(7):997—1005.
[45] Yang T,Wei Z,F(xiàn)riman V,et al. Resource availability modulates biodiversity-invasion relationships by altering competitive interactions[J]. Environmental Microbiology,2017,19(8):2984—2991.
[46] Yang T,Han G,Yang Q,et al. Resource stoichiometry shapes community invasion resistance via productivity-mediated species identity effects[J]. Proceedings of the Royal Society B:Biological Sciences,2018,285(1893):20182035.
[47] Li S L,Xu C,Wang J,et al. Cinnamic,myristic and fumaric acids in tobacco root exudates induce the infection of plants by[J]. Plant and Soil,2017,412(1/2):381—395.
[48] Gu Y A,Hou Y G,Huang D P,et al. Application of biochar reducesinfection via effects on pathogen chemotaxis,swarming motility,and root exudate adsorption[J]. Plant and Soil,2017,415(1/2):269—281.
[49] Tang C S,Wat C K,Towers G H N. Thiophenes and benzofurans in the undisturbed rhizosphere ofL[J]. Plant and Soil,1987,98(1):93—97.
[50] Deberdt P,Gozé E,Coranson-Beaudu R,et al.andas previous crops show promise for the control of bacterial wilt of tomato without reducing bacterial populations[J]. Journal of Phytopathology,2015,163(5):377—385.
[51] Yang S D,Jun W U,Zhao J C,et al. Physical,chemical and biological characteristics analysis of rhizosphere soils between infected plants of tomato bacterial wilt and non-infected plants[J]. China Vegetables,2013,22:64–69.
[52] Ghareeb H,Bozsó Z,Ott P G,et al. Transcriptome of silicon-induced resistance againstin the silicon non-accumulator tomato implicates priming effect[J]. Physiological and Molecular Plant Pathology,2011,75(3):83—89.
[53] Norman D J,Chen J,Yuen J M F,et al. Control of bacterial wilt ofwith phosphorous acid[J]. Plant Disease,2006,90(6):798—802.
[54] Zheng S Y. Effect of mineral molybdenum on tobacco bacterial wilt caused byD]. Chongqing:Southwest University,2014. [鄭世燕. 礦質(zhì)營養(yǎng)Mo對煙草抗青枯病的影響及生理生化機理[D]. 重慶:西南大學,2014.]
[55] Morikawa C K. Generation of hydroxyl radicals by Fe-polyphenol-activated CaO2as a potential treatment for soil-borne diseases[J]. Scientific Reports,2018,8(1):9752.
[56] Gu S H,Wei Z,Shao Z Y,et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002—1010.
[57] Jiang Y S,Huang M J,Zhang M X,et al. Transcriptome analysis provides novel insights into high-soil-moisture- elevated susceptibility toinfection in ginger(Roscoe cv. Southwest)[J]. Plant Physiology and Biochemistry,2018,132:547—556.
[58] Cai Z C,Zhang J B,Huang X Q,et al. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica,2015,52(3):469—476. [蔡祖聰,張金波,黃新琦,等. 強還原土壤滅菌防控作物土傳病的應(yīng)用研究[J]. 土壤學報,2015,52(3):469—476.]
[59] Yamfang M,Thepa S,Kongkiattikajorn J. Development of a solar hot water system and investigation of the effects of soil density to inhibit microbial performance in soil with hot water dropping[J]. Renewable Energy,2018,117:28—36.
[60] Li S L,Liu Y Q,Wang J,et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Frontiers in Microbiology,2017,8:703.
[61] Wang R,Zhang H C,Sun L G,et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports,2017,7(1):343.
[62] Niu J J,Chao J,Xiao Y H,et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate[J]. Journal of Basic Microbiology,2017,57(1):3—11.
[63] álvarez B,López M M,Biosca E G. Survival strategies and pathogenicity ofphylotype II subjected to prolonged starvation in environmental water microcosms[J]. Microbiology,2008,154(11):3590—3598.
[64] Wei Z,Yang X M,Yin S X,et al. Efficacy of-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology,2011,48(2):152—159.
Research Progresses on Key Factors Affecting Survival ofin Soils
MA Chao1, YANG Xinrun1, JIANG Gaofei2, ZHANG Yong3, ZHOU Kaisheng4, WEI Zhong2?
(1. Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention,School of Resources and Environment,Anhui Agricultural University,Hefei 230036,China;2. Jiangsu Provincial Key Lab of Organic Solid Waste Utilization,Key Laboratory of Plant Immunity,National Engineering Research Center for Organic-based Fertilizers,College of Resources and Environmental Science Nanjing Agricultural University,Nanjing 210095,China;3. College of Resources and Environment,Southwest University,Chongqing 400715,China;4. Center of Environment Science Experiment of College of Material Science and Chemical Engineering,Bengbu University,Bengbu,Anhui 233030,China)
is a kind of soil-borne bacteria destructive to agricultural crops. As it is extensively distributed in the tropical, subtropical and temperate zones, it seriously threatens food safety of the world. In the world, a large number of scientists have devoted their efforts to studying bacterial wilt and, but few have done a systematic research because there are so many factors contributing to the survival ofand most of the researches focus on a single factor only. Therefore, it is essential to identify what are the key factors that influencesurvival in the soil to gain some valuable insights into management and control of the soil-borne diseases. Nevertheless, the factors are multifarious and their dynamics in soil systems together with their effects onremain poorly explored. Herein, this paper aimed to primarily collate the effects and traits of, as well as soil biotic and abiotic factors on the survival ofin soil. To achieve this goal, this paper first reviewed researches on impacts of individual and population characteristics of, and then those on interactions of soil biotic and abiotic factors on, especially reports on their roles in controlling soil-borne plant diseases. In the next section, this paper put forth an outlook for control of plant pathogenicin future in light of the problems existing currently in this aspect. The traits ofinclude gene, behavior, and metabolite; soil biotic factors, such as populations and community structures of soil nematode, protozoan, bacteria, fungi, and specialized phage; and soil abiotic factors, such as root exudate, soil nutrients (i.e. N, P, and K), and soil physiochemical properties (i.e. pH, density, and temperature). Similarly,survival in soil has three aspects: survival in the non-rhizospheric soil adjacent to the host plant, survival in the rhizosphere of the host plant, and survival on the root surface of the host plant. Hence, it is suggested that future researches be oriented towards investigation ofsurvival in soil and exploration of measures and practices of preventingsoil-borne diseases. Therefore, future efforts should be accordingly devoted firstly to investigations of influences of soil microorganism, soil fungal communities, and general phage onsurvival in soil. Soil microorganisms, such as earthworm and mite are important components of the soil food web, which can significantly change the above-mentioned biotic factors ofin soil together with soil structure. Secondly, it is essential to clarify howdynamic in soil responds to climate change. Climate change, such as warming and drought can directly influencesurvival by regulating soil temperature and moisture, and indirectly by affecting growth of the host plants. Thirdly, mathematical models should be constructed as soon as possible for predicting survival rate ofin soil. This is essential due to the multifarious nature and complexity of the factors influencingsurvival in soils. Hence, mathematical models might be the only tools to clearly assess these elements with designed objects and parameters. The models can even assess relative contribution of each factor tosurvival separately under certain conditions and further distinguish key influencing factors. And fourthly, it is important to comprehensively investigate influencing factors while controlling the soil-borne disease in the field. This is a result of manipulating the factors influencingsurvival in soil. At the end, more, attention should be paid to irrigation schemes. Irrigation may significantly affect effectiveness of the measures or practices of preventing the bacterial wilt due to its substantialintroduction to the field.
; Survival of bacteria in soil; Individual characteristics; Population characteristics; Soil biotic factors; Soil abiotic factors
S154.3
A
10.11766/trxb202008140252
馬超,楊欣潤,江高飛,張勇,周開勝,韋中. 病原青枯菌土壤存活的影響因素研究進展[J]. 土壤學報,2021,58(6):1359–1367.
MA Chao,YANG Xinrun,JIANG Gaofei,ZHANG Yong,ZHOU Kaisheng,WEI Zhong. Research Progresses on Key Factors Affecting Survival ofin Soils[J]. Acta Pedologica Sinica,2021,58(6):1359–1367.
*國家自然科學基金項目(31700452,32071628,41922053和42090060)和農(nóng)田生態(tài)保育與污染防控安徽省重點實驗室開放基金(FECPP201901)資助Supported by the National Natural Science Foundation of China(Nos. 31700452, 32071628, 41922053 and 42090060)and the Open Fund of Key Laboratory of Farmland Ecological Conservation and Pollution Prevention of Anhui Province in China(No. FECPP201901)
馬 超(1986—),男,安徽合肥人,博士,副教授,研究領(lǐng)域:土壤微生物生態(tài)和土壤肥力。E-mail:chaoma@ahau.edu.cn
Corresponding author,E-mail:weizhong@njau.edu.cn。
2020–08–14;
2020–10–19;
2021–01–06
(責任編輯:陳榮府)