雷華娟 丁振東 稅林輝 周寧博 陳夢 馮渝 李美靜 劉柏炎
〔摘要〕 目的 觀察七氟烷干預(yù)下海馬神經(jīng)元焦亡過程的形態(tài)學(xué)變化及神經(jīng)元相關(guān)蛋白表達特征。方法 海馬神經(jīng)元隨機分為對照組和七氟烷組(6、12、24、48 h組)。對照組暴露于21% O2、5% CO2 3 h,七氟烷組暴露于4.1%七氟烷、21% O2、5% CO2 3 h,七氟烷4個亞組根據(jù)七氟烷暴露3 h后的4個不同觀察時間點進行分組。應(yīng)用顯微鏡觀察神經(jīng)元形態(tài)變化,用尼氏染色檢測對照組及48 h組海馬神經(jīng)元細胞內(nèi)尼氏體個數(shù)和突觸變化,采用Western blot法檢測各組Caspase-8、Caspase-3、功能蛋白D(gasdermin D, GSDMD)、功能蛋白E(gasdermin E, GSDME)和α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體1(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, AMPAR1)的表達水平。結(jié)果 普通顯微鏡下觀察到,6 h組細胞變化不明顯;12 h組細胞疏松、水腫和孔洞形成;24 h組見細胞量降低、突觸減少、部分細胞膜破裂;48 h組細胞量明顯減少并出現(xiàn)大量的凋亡。尼氏染色顯示,48 h組大鼠海馬神經(jīng)元排列散亂、神經(jīng)元數(shù)量明顯減少、細胞皺縮、胞體縮小、部分樹突消失、軸突延長,尼氏體數(shù)量較對照組減少,差異有統(tǒng)計學(xué)意義(P<0.05)。Western blot法檢測顯示:Caspase-3表達活性在6、12、24 h組明顯高于對照組(P<0.05);Caspase-8表達活性在七氟烷4個組都增加,其中12、24、48 h組與對照組比較,差異有統(tǒng)計學(xué)意義(P<0.05);GSDME表達活性在七氟烷4個組都增加,12、24、48 h組與對照組以及6 h組比較,差異均有統(tǒng)計學(xué)意義(P<0.05);與對照組比較,GSDMD表達活性在 6 h組下降(P<0.05),12 h組增加,24、48 h組恢復(fù)正常值,但差異均無統(tǒng)計學(xué)意義(P>0.05);與對照組比較,AMPAR1表達活性在24 h組下降至最低,48 h組回升但未恢復(fù)至正常水平,差異均有統(tǒng)計學(xué)意義(P<0.05)。結(jié)論 正常的海馬神經(jīng)元表達炎性因子Caspase-3和GSDMD,七氟烷暴露使Caspase-8激活,導(dǎo)致GSDME介導(dǎo)神經(jīng)元焦亡,并改變海馬神經(jīng)元突觸的可塑性。
〔關(guān)鍵詞〕 海馬神經(jīng)元;焦亡;突觸可塑性;七氟烷;GSDMD;GSDME
〔中圖分類號〕R614? ? ? ? ? ?〔文獻標志碼〕A? ? ? ? ?〔文章編號〕doi:10.3969/j.issn.1674-070X.2021.09.002
Characteristics of Morphology and Protein Changes in the Process of Caspase-8/GSDME Induced Hippocampus Neuron Pyroptosis After Sevoflurane Exposure
LEI Huajuan1,2, DING Zhendong1, SHUI Linghui1, ZHOU Ningbo1, CHEN Meng1, FENG Yu2, LI Meijing2, LIU Boyan2*
(1. Department of Anesthesiology of The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; 2. Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)
〔Abstract〕 Objective To observe the morphological changes of hippocampal neurons and the expression characteristics of? neuron-relatedproteins under the intervention of sevoflurane induced pyroptosis. Methods Hippocampal neurons were random
divided into control group and sevoflurane group(6 h, 12 h, 24 h, 48 h group). Control group exposed to 21% O2, and 5% CO2 for 3 hours. Sevoflurane group exposed to 4.1% sevoflurane, 21% O2, and 5% CO2 for 3 hours, sevoflurane group was divided into 4 subgroups according to 4 different times after sevoflurane exposure for 3 hours. The morphological changes of neurons were observed under a microscope, and Nissl staining was used to check the number of Nissl bodies and synaptic changes in the cells on 48 h group and control group. Western blot was used to detect the expression levels of Caspase-8, Caspase-3, GSDMD, GSDME and AMPAR1 receptor. Results We observed with common microscope and discovered that there were not significant morphological changes on 6 h group; on 12 h group, the cells were loose, edema and holes were formed; on 24 h group, the number of cells and synapses decreased, partial cell membrane ruptured were observed; on 48 h group, the number of neurons was significantly reduced and a large number of cells apoptosis appeared. Nissl staining showed that the hippocampal neurons on 48 h group were disorderly arranged, the number of neurons was significantly reduced, cell shrinkage, the cell body was shrunk, some dendrites disappeared, and axons prolonged, compared with control group, the number of Nissl bodies on 48 h group decreased, difference has statistically significant (P<0.05). Western blot analysis showed that compared with control group, the expression activity of Caspase-3 increased significantly on 6, 12, 24 h group (P<0.05). The expression activity of Caspase-8 increased on sevoflurane 4 groups. Compared with control group, the difference of Caspase-8 was statistically significant on 12, 24, 48 h group (P<0.05). GSDME expression increased on sevoflurane 4 groups, the difference of GSDME was statistically significant on 12, 24, 48 h group compared with 6 h group and control group. GSDMD expression activity decreased on 6 h group, increased on 12 h group, then returned to normal on 24, 48 h group, but there was not statistically different from the control group (P>0.05). The expression of AMPAR1 receptor declined to the lowest level on 24 h group, and gradually restored on 48 h group, there were statistically differences from the control group (P<0.05). Conclusion Normal hippocampal neurons express inflammatory factors Caspase-3 and GSDMD. Sevoflurane exposure activates Caspase-8, leading GSDME mediated neuron pyroptosis and changes the synaptic plasticity of hippocampal neurons.
〔Keywords〕? hippocampal neurons; pyroptosis; synaptic plasticity; sevoflurane; GSDMD; GSDME
海馬是學(xué)習(xí)、記憶等認知功能的高級中樞,海馬神經(jīng)元也是中樞神經(jīng)系統(tǒng)執(zhí)行任務(wù)的主體。吸入麻醉藥七氟烷暴露后對海馬神經(jīng)元認知功能的損傷已經(jīng)在全球范圍內(nèi)受到廣泛的重視。但是,目前七氟烷暴露導(dǎo)致海馬認知功能損傷的作用機制尚未研究清楚。炎癥[1]、鈣超載[2]、凋亡[3]、鐵死亡[4]等是七氟烷致海馬損傷的可能機制。目前,最新的研究[5]證明,凋亡抑制劑并不能抑制七氟烷對海馬神經(jīng)元的損傷作用。有報導(dǎo)[6]稱Caspase-1和Caspase-3觸發(fā)的焦亡可以損傷七氟烷暴露后海馬神經(jīng)元,因此,焦亡可能是七氟烷暴露導(dǎo)致海馬損傷的可能機制之一。焦亡是依賴Caspase家族啟動炎性的程序性細胞死亡,表現(xiàn)為成熟的半胍氨酸作用于功能蛋白 D (gasdermin D, GSDMD)或者功能蛋白 E(gasdermin E, GSDME),可以在細胞膜上打孔,導(dǎo)致細胞內(nèi)外離子梯度消失,釋放炎癥因子以誘發(fā)神經(jīng)元焦亡[7]。目前,尚未有Caspase-8/GSDME信號通路誘導(dǎo)七氟烷暴露促發(fā)細胞焦亡而損傷海馬神經(jīng)元可塑性的相關(guān)報道。本實驗提出假說,Caspase-8/GSDME焦亡通路介導(dǎo)七氟烷暴露后海馬神經(jīng)元損傷,導(dǎo)致海馬神經(jīng)元突觸形態(tài)和功能的可塑性改變,并探索非經(jīng)典Caspase-8/GSDME焦亡通路在七氟烷暴露致海馬神經(jīng)元損傷中的作用,為臨床更好地防治七氟烷類麻醉劑暴露所致腦損傷提供實驗依據(jù)。
1 材料與方法
1.1? 細胞系
H19-7海馬神經(jīng)元(深圳豪地華拓生物公司,批號:HTX4064)飼養(yǎng)于湖南中醫(yī)藥大學(xué)診斷實驗室。
1.2? 試劑與儀器
七氟烷(江蘇恒瑞醫(yī)藥有限公司,批號:16043031); 兔抗大鼠Anti-Caspase 8多克隆抗體(批號: ab25901);兔抗大鼠Anti-Caspase 3多克隆抗體(批號:ab25901)、兔抗大鼠Anti-GSDME多克隆抗體(批號:ab215191)、兔抗大鼠Anti-GSDMD多克隆抗體(批號:ab219800)、兔抗大鼠Anti-AMPAR1多克隆抗體(批號:ab109182)均購自英國艾碧康公司。
5415R型小型冷凍離心機(德國Eppendorf公司);TG22-WS臺式高速離心機(長沙湘銳離心機有限公司);DSX100光學(xué)顯微鏡(日本奧林巴斯公司);GNP-9080型培養(yǎng)箱:隔水式恒溫培養(yǎng)箱(長沙湘銳離心機有限公司);Eppendorf型CO2培養(yǎng)箱(上海艾本德中國有限公司);自制麻醉箱。
1.3? 海馬神經(jīng)元培養(yǎng)
生長旺盛的海馬神經(jīng)元種植于含有89% DMEM、10% FBS、4×104 U/L青霉素和0.1 g/L鏈霉素的細胞培養(yǎng)基中,置于濕度為80%、含5% CO2的培養(yǎng)箱內(nèi)培養(yǎng)。根據(jù)細胞生長速度,每1~2 d更換培養(yǎng)液,對培養(yǎng)瓶中細胞傳代培養(yǎng),并在2~3周內(nèi)使用。需要進行形態(tài)學(xué)觀察及Western blot檢測的細胞在使用前轉(zhuǎn)移到10 cm×10 cm大小的培養(yǎng)皿中,待細胞長滿70%,然后均放到麻醉箱用4.1%七氟烷培養(yǎng)6、12、24、48 h。
1.4? 顯微鏡下觀察七氟烷干預(yù)下海馬神經(jīng)元的細胞形態(tài)學(xué)
將H19-7神經(jīng)元種植到6孔板內(nèi)培養(yǎng)1 d以及包被聚乙烯亞胺的蓋玻片上培養(yǎng)2 d,待神經(jīng)元生長到70%后開始進行干預(yù),取出種植于6孔板中的海馬神經(jīng)元細胞,隨機分為對照組、七氟烷組(6、12、24、48 h組[8])。對照組在21% O2、5% CO2條件下處理3 h;七氟烷組(6、12、24、48 h組)在4.1%七氟烷、21% O2、5% CO2條件下處理3 h。干預(yù)3 h后,分別將各組海馬神經(jīng)元細胞放入CytationTM 5細胞成像多功能檢測系統(tǒng)和顯微鏡內(nèi),觀察細胞形態(tài)并拍照。
1.5? 尼氏染色分析七氟烷暴露下的海馬神經(jīng)元
種植于6孔板中的對照組、48 h組的海馬神經(jīng)元用4%多聚甲醛固定10 min,蒸餾水洗滌2 min,換用新鮮的蒸餾水,再洗滌2 min。尼氏染色液染色10 min,蒸餾水洗滌2次。95%乙醇脫水約5 s,用70%乙醇脫水2次,最后用95%乙醇脫水1次,二甲苯透明,用中性樹膠封片,在顯微鏡下觀察細胞尼氏小體和神經(jīng)元樹突。
1.6? Western blot檢測七氟烷暴露下的海馬神經(jīng)元蛋白變化
處理結(jié)束后6、12、24、48 h分別收集各組海馬神經(jīng)元細胞,用細胞刮刀把海馬神經(jīng)元細胞從培養(yǎng)皿中刮下,然后PBS清洗,加入RIPA細胞裂解液,冰上裂解細胞30 min,提取總蛋白,應(yīng)用Bradford比色法測定蛋白含量。取20 μg蛋白上樣,進行電泳、轉(zhuǎn)膜、封閉、孵抗體、顯影,采用Western blot檢測GAPHD、Caspase-3、Caspase-8、GSDMD、GSDME和APMPAR1的表達情況。目的蛋白相對表達量=目的蛋白/GAPHD,實驗重復(fù)3次。
1.7? 統(tǒng)計學(xué)處理
采用SPSS 18.0統(tǒng)計軟件進行數(shù)據(jù)統(tǒng)計分析。計量資料用“x±s”表示,方差不齊者采用秩和檢驗,多組方差齊者,組間比較采用單因素方差分析,兩兩比較采用LSD法。P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1? 海馬神經(jīng)元形態(tài)特征的動態(tài)變化情況
對照組海馬神經(jīng)元細胞核和細胞體較小,細胞突觸細長,細胞量多,連接緊密;6 h組細胞形態(tài)變化不大,細長的突觸仍然很明顯;12 h組細胞數(shù)量變化不大,表現(xiàn)為細胞核、細胞體比對照組大,細胞連接疏松,細胞內(nèi)水分增多,部分細胞孔洞形成(箭頭處);24 h組細胞數(shù)量減少,細胞核和細胞體明顯變大,細胞膜破裂,突觸變寬變短,突觸明顯減少(箭頭處);48 h組細胞數(shù)量減少,細胞核和細胞體小,細胞突觸更少、變得更短,細胞膜皺縮,軸突延長(箭頭處)。見圖1。
2.2? 海馬神經(jīng)元尼氏染色結(jié)果
48 h組細胞出現(xiàn)大面積的皺縮,細胞核濃縮,神經(jīng)元變小,突觸減少或者消失,海馬神經(jīng)元排列散亂,數(shù)量明顯減少,細胞間距增大,胞體縮小,細胞皺縮,核固縮嚴重,部分樹突消失,軸突延長。與對照組比較,48 h組尼氏體數(shù)量明顯減少,差異有統(tǒng)計學(xué)意義(P<0.05)。見圖2-3。
2.3? 海馬神經(jīng)元蛋白表達結(jié)果
2.3.1? 焦亡相關(guān)蛋白表達情況? 七氟烷4組的Caspase-3表達均較對照組增高,6、12、24 h組差異有統(tǒng)計學(xué)意義(P<0.05)。七氟烷4組的Caspase-8表達且呈上升趨勢,其中12、24、48 h組與對照組及6 h組比較,差異均有統(tǒng)計學(xué)意義(P<0.05)。與對照組比較,七氟烷4組的GSDME表達均增加,12、24、48 h組與對照組及6 h組比較,差異均有統(tǒng)計學(xué)意義(P<0.05)。6 h組的GSDMD表達明顯低于對照組,差異有統(tǒng)計學(xué)意義(P<0.05),12、24、48 h組表達高于6 h組,差異有統(tǒng)計學(xué)意義(P<0.05)。見圖4-5。
2.3.2? 突觸蛋白表達情況? 與對照組比較,6 h組的AMPAR1表達增加,12 h組表達下降,但差異均無統(tǒng)計學(xué)意義(P>0.05),24 h組AMPAR1蛋白表達較對照組及6、12 h組急劇下降,差異有統(tǒng)計學(xué)意義(P<0.05),48 h表達回升,但未恢復(fù)到正常水平,與對照組、6 h組比較,差異有統(tǒng)計學(xué)意義(P<0.05)。見圖5-6。
3 討論
焦亡是炎性小體促發(fā)的、依賴Caspase蛋白激活的另外一種程序性細胞死亡方式[9]。當機體感受到病原體相關(guān)的分子模式(pathogen-associated
molecular patterns, PAMPs)或損傷相關(guān)模式(damage associated molecular patterns, DAMPs)刺激后,PAMPs或DAMPs激活NOD樣受體蛋白(nucleotide-binding oligomerization domain-like receptor, NLRP)炎性小體,包括NLRC4、NLRP1、NLRC4,或Pyrin炎性蛋白和黑色素瘤2(melanoma 2, AMA2)炎性小體,通過接頭蛋白ASC將Caspase蛋白前體加工后產(chǎn)生活性Caspase蛋白[9]?;钚訡aspase蛋白激活GSDMD或者GSDME以誘發(fā)焦磷酸化而切割GSDMD或者GSDME,被切割的GSDMD或者GSDME釋放其活性N端結(jié)構(gòu)域,在細胞膜上打孔促發(fā)細胞焦亡,表現(xiàn)為細胞內(nèi)水分滲透,最終導(dǎo)致細胞腫脹、破裂壞死[10-13],活性Caspase蛋白可以促進IL-1β、IL-18成熟并通過破裂的細胞膜釋放到細胞外,募集更多的炎癥因子產(chǎn)生炎癥放大效應(yīng)[13]。因此,焦亡除了限制和破壞細胞內(nèi)感染因素外,還在清除內(nèi)源性危險信號中發(fā)揮重要的作用[9]。經(jīng)典的焦亡途徑依托Caspase-1,而非經(jīng)典焦亡途徑依托Caspase-4/5/8/9/11[11]。
Caspase-1蛋白是誘發(fā)焦亡的經(jīng)典核心因子,參與包括眼科[14]和多種中樞系統(tǒng)疾病的產(chǎn)生,受胞內(nèi)多蛋白復(fù)合物炎性小體,特別是NLRP炎性小體家族、AMA2和Pyrin炎性蛋白調(diào)控充當支架以募集Caspase家族,并促進炎癥因子產(chǎn)生[15]。Caspase-8與胍天蛋白募集區(qū)(caspase recruitment domain, CARD)特異性結(jié)合發(fā)揮重要作用[16]。本實驗結(jié)果表明:可能是Caspase-8/GSDME促發(fā)了焦亡而不是凋亡誘導(dǎo)七氟烷暴露后的海馬神經(jīng)元損傷。Caspase-8既往在腫瘤發(fā)生中倍受關(guān)注[17],而其在中樞神經(jīng)系統(tǒng)中的研究相對較少。本研究發(fā)現(xiàn)七氟烷暴露后,海馬神經(jīng)元感受到氧化應(yīng)激的刺激,Caspase-8被活化,并激活和裂解GSDME,裂解GSDME釋放其活性N端結(jié)構(gòu)域在細胞膜上打孔,表現(xiàn)為七氟烷暴露12 h時,細胞體變大、細胞連接疏松、細胞內(nèi)水分增多;海馬神經(jīng)元七氟烷暴露24 h時,細胞核和細胞體明顯變大、細胞膜破裂,且發(fā)生海馬神經(jīng)元樹突突觸變短、軸突延長等可塑性變化。
細胞焦亡觸發(fā)的炎癥反應(yīng)可損傷神經(jīng)元的可塑性。最新研究[18]發(fā)現(xiàn),Aβ誘導(dǎo)激活NLRP3/Caspase-1/GSDMD通路介導(dǎo)海馬和皮質(zhì)神經(jīng)元焦亡,產(chǎn)生ROS及大量炎癥誘導(dǎo)阿爾茨海默病發(fā)生,導(dǎo)致神經(jīng)元突觸減少或者消失,神經(jīng)元軸索損傷,最終導(dǎo)致神經(jīng)元的死亡;基因敲除Caspase-1的大鼠通過沉默Caspase-1表達抑制的焦亡,減少海馬、皮質(zhì)神經(jīng)元損傷,增加神經(jīng)元突觸可塑性而改善認知功能[19]。在鏈霉素誘導(dǎo)的癡呆模型中發(fā)現(xiàn)類似的結(jié)果,NLRC4炎性小體介導(dǎo)Caspase-1損傷海馬神經(jīng)元突觸可塑性[17]。研究[20]發(fā)現(xiàn),脂肪因子Chemerin注射的妊娠期糖尿病模型,母鼠通過NLRP3/Caspase-1/GSDMD通路介導(dǎo)的巨噬細胞焦亡,大量釋放IL-1、IL-6和TNF-α因子和產(chǎn)生炎癥聚集效應(yīng),導(dǎo)致子代胎兒海馬神經(jīng)元丟失,損害神經(jīng)元的可塑性。本研究的細胞實驗發(fā)現(xiàn)同樣的結(jié)果,七氟烷暴露誘導(dǎo)神經(jīng)元焦亡,抑制突觸蛋白AMPAR1表達,導(dǎo)致受損神經(jīng)元的樹突變短、突觸面積減少,而損傷突觸可塑性。目前,有研究[21]報導(dǎo),七氟烷激活Caspase-3引發(fā)炎癥反應(yīng)而誘導(dǎo)海馬神經(jīng)元的凋亡是七氟烷暴露后神經(jīng)元損傷的主要機制,但是抗凋亡并不能緩解七氟烷暴露后的海馬神經(jīng)元損傷,而且凋亡也不會表現(xiàn)為細胞膜穿孔和破裂,說明七氟烷暴露后海馬神經(jīng)元焦亡的發(fā)生早于凋亡,焦亡是七氟烷暴露海馬神經(jīng)元損傷的重要機制之一。
綜上所述,海馬神經(jīng)元Caspase-8/GSDME通路誘導(dǎo)神經(jīng)元焦亡并改變神經(jīng)元突觸可塑性是七氟烷暴露海馬神經(jīng)元損傷的分子機制,Caspase-8具有焦亡和炎癥的雙重作用,值得進一步探討,七氟烷暴露后誘導(dǎo)Caspase-8/GSDME通路觸發(fā)海馬神經(jīng)元焦亡為臨床合理使用和防治七氟烷所致的腦損傷提供實驗基礎(chǔ)。
參考文獻
[1] YE J S, CHEN L, LU Y Y, et al. Honokiol-mediated mitophagy ameliorates postoperative cognitive impairment induced by surgery/sevoflurane via inhibiting the activation of NLRP3 inflammasome in the Hippocampus[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 8639618.
[2] ZHU X Q, YAO Y Y, GUO M Y, et al. Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapo?
ptosis[J]. Toxicology Letters, 2021, 336: 11-20.
[3] OZER A B, CERIBASI S, CERIBASI A O, et al. Effects of sevoflurane on apoptosis, BDNF and cognitive functions in neonatal rats[J]. Bratislavske Lekarske Listy, 2017, 118(2): 80-84.
[4] WU J, YANG J J, CAO Y, et al. Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits[J]. Journal of Neuroinflammation, 2020, 17(1): 110.
[5] LIAO Z, LI J, MIAO L, et al. Inhibition of RhoA activity does not rescue synaptic development abnormalities and long-term cognitive impairment after sevoflurane exposure[J]. Neurochemical Research, 2021, 46(3): 468-481.
[6] BERGSBAKEN T, FINK S L, COOKSON B T. Pyroptosis: host cell death and inflammation[J]. Nature Reviews Microbiology, 2009, 7(2): 99-109.
[7] XIA S Y, HOLLINGSWORTH L R IV, WU H. Mechanism and regulation of gasdermin-mediated cell death[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(3): a036400.
[8] 呂靜靜.七氟烷對大鼠胚胎神經(jīng)干細胞的活性、增殖、分化的影響及其可能機制研究[D].合肥: 安徽醫(yī)科大學(xué),2016:1-51.
[9] SAGULENKO V, VITAK N, VAJJHALA P R, et al. Caspase-1 is an apical caspase leading to caspase-3 cleavage in the AIM2 inflammasome response, independent of caspase-8[J]. Journal of Molecular Biology, 2018, 430(2): 238-247.
[10] SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665.
[11] SBORGI L, R?HL S, MULVIHILL E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. The EMBO Journal, 2016, 35(16): 1766-1778.
[12] AGLIETTI R A, ESTEVEZ A, GUPTA A, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7858-7863.
[13] LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
[14] 李? 翔,覃艮艷,彭? 俊,等.密蒙花顆粒劑對去勢雄兔淚腺組織細胞Caspase-1和IL-18的影響[J].湖南中醫(yī)藥大學(xué)學(xué)報,2019, 39(12):1440-1443.
[15] MAN S M, KANNEGANTI T D. Converging roles of caspases in inflammasome activation, cell death and innate immunity[J]. Nature Reviews Immunology, 2016, 16(1): 7-21.
[16] PARK H H, LO Y C, LIN S C, et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation[J]. Annual Review of Immunology, 2007, 25: 561-586.
[17] MANDAL R, BARRN J C, KOSTOVA I, et al. Caspase-8: The double-edged sword[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2020, 1873(2): 188357.
[18] HAN C Y, YANG Y, GUAN Q B, et al. New mechanism of nerve injury in Alzheimers disease: β-amyloid-induced neuronal pyroptosis[J]. Journal of Cellular and Molecular Medicine, 2020, 24(14): 8078-8090.
[19] SAADI M, KARKHAH A, POURABDOLHOSSEIN F, et al. Involvement of NLRC4 inflammasome through caspase-1 and IL-1β augments neuroinflammation and contributes to memory impairment in an experimental model of Alzheimer's like disease[J]. Brain Research Bulletin, 2020, 154: 81-90.
[20] LIANG Z X, HAN L Y, SUN D, et al. Chemerin-induced
macrophages pyroptosis in fetal brain tissue leads to cognitive disorder in offspring of diabetic dams[J]. Journal of Neuroinflammation, 2019, 16(1): 226.
[21] WU X Y, ZHANG Y L, XIA H L, et al. LIMK1 attenuates sevoflurane-induced neurodevelopmental toxicity through caspase-3 / cofilin/PARP-1 pathway[J]. Journal of Biological Regulators and Homeostatic Agents, 2020, 34(5): 1923-1928.