楊麗嬪 朱珍珠 雷紅 劉琴
摘 要:對(duì)近年來花青素在神經(jīng)退行性疾病中的研究進(jìn)展進(jìn)行綜述,并從抑制氧化應(yīng)激、緩解神經(jīng)炎癥、緩解興奮性毒性和抑制蛋白異常聚集等方面對(duì)花青素的神經(jīng)保護(hù)作用機(jī)制進(jìn)行探討,為進(jìn)一步了解和研究花青素類化合物在神經(jīng)退行性疾病中的預(yù)防作用提供科學(xué)依據(jù)。
關(guān)鍵詞:花青素;神經(jīng);退行性疾病;神經(jīng)保護(hù);分子機(jī)制
老齡化趨勢(shì)導(dǎo)致神經(jīng)退行性疾病發(fā)病率逐年增加。2018年美國公布的阿爾茨海默癥的患病人數(shù)為570萬,預(yù)計(jì)隨著老齡化趨勢(shì)的增加,到2050年將達(dá)到1 380萬[1]。在中國,一項(xiàng)根據(jù)人口老齡化趨勢(shì)的模型研究則預(yù)測(cè),到2050年中國的阿爾茨海默癥的患病人數(shù)將增長到4 250萬,遠(yuǎn)超美國[2]。神經(jīng)退行性疾病除了嚴(yán)重影響患者的生活質(zhì)量外,同時(shí)為社會(huì)帶來了巨大的醫(yī)護(hù)壓力和經(jīng)濟(jì)負(fù)擔(dān)。目前全世界每年用于治療癡呆癥的總成本超過1萬億美元,預(yù)計(jì)到2030年將達(dá)到2萬億美元[3]。盡管如此,到目前為止大多數(shù)的神經(jīng)退行性疾病尚無十分有效的治療方法,因此人們把目光投入到該類疾病的預(yù)防研究中。
花青素屬于黃酮類化合物,廣泛存在深色的果蔬和谷物中?;ㄇ嗨鼐哂休^強(qiáng)的抗氧化性,同時(shí)具有抗衰老、抗炎、抑菌、保護(hù)視力等多種生理功能,能降低機(jī)體內(nèi)的氧化應(yīng)激[4-5]和炎癥[6]水平?;ㄇ嗨乜梢酝ㄟ^血腦屏障到達(dá)大腦組織,對(duì)神經(jīng)具有保護(hù)作用[7-9],因此越來越多的科學(xué)家對(duì)花青素在神經(jīng)退行性疾病中潛在的預(yù)防作用研究產(chǎn)生了興趣。本文對(duì)近年來花青素類化合物對(duì)神經(jīng)退行性疾病相關(guān)的神經(jīng)損傷的保護(hù)作用研究進(jìn)行綜述,旨在為深入研究花青素類化合物對(duì)神經(jīng)退行性疾病的預(yù)防作用,為明確富含花青素的食物的健康促進(jìn)作用提供基礎(chǔ)。
1 花青素的結(jié)構(gòu)及來源
花青素是一類廣泛存在于植物中的天然色素。酸性條件下(pH<2.0)花青素主要以黃鹽陽離子的結(jié)構(gòu)穩(wěn)定存在,隨著pH增加會(huì)呈現(xiàn)出假堿、查爾酮、醌式等不同的結(jié)構(gòu)的轉(zhuǎn)變,顏色也會(huì)由紅色轉(zhuǎn)變成紫色、橙色、無色和藍(lán)色等不同的顏色[10]?;ㄇ嗨毓羌芙Y(jié)構(gòu)主要有矢車菊色素、天竺葵色素、飛燕草色素、芍藥色素、牽牛花色素、錦葵色素等六種[11]。自然界中花青素很少以游離態(tài)存在,通常是以結(jié)合單糖或低聚糖形成花色苷的結(jié)構(gòu)存在[12-13]。在所有的花青素中,矢車菊色素的分布最廣[14-16],如黑米、黑豆、黑莓、紫包菜、桑葚中的花青素主要為矢車菊素類。天竺葵色素主要分布在草莓、樹莓等漿果中,而藍(lán)莓中則富含飛燕草色素、牽?;ㄉ睾湾\葵色素等多種花青素。由于花青素具有較強(qiáng)的抗氧化、抗衰老作用,因此,食用富含花青素的深色的果蔬和谷物常被認(rèn)為對(duì)健康具有促進(jìn)作用。
2 神經(jīng)退行性疾病的發(fā)病機(jī)制
神經(jīng)退行性疾病是與中樞神經(jīng)系統(tǒng)緊密相關(guān)的疾病,以神經(jīng)元發(fā)生退行性病變?yōu)榛A(chǔ),屬于慢性且不可逆的神經(jīng)系統(tǒng)疾病,該疾病的發(fā)病人群主要為中老年群體[17]。在多種神經(jīng)退行性疾病中,以阿爾茨海默氏?。ˋD)和帕金森氏病(PD)為典型代表[18]。目前認(rèn)為,神經(jīng)退行性疾病的發(fā)病機(jī)制主要有四種:(1)神經(jīng)系統(tǒng)內(nèi)發(fā)生氧化應(yīng)激反應(yīng)導(dǎo)致神經(jīng)細(xì)胞產(chǎn)生氧化損傷[19];(2)神經(jīng)興奮性毒性引起神經(jīng)元損傷[20];(3)神經(jīng)系統(tǒng)內(nèi)炎癥反應(yīng)引起神經(jīng)細(xì)胞狀態(tài)異常[21];(4)神經(jīng)系統(tǒng)內(nèi)蛋白質(zhì)異常積累引起神經(jīng)疾病的產(chǎn)生[22]。以上主要的四種發(fā)病機(jī)制相互作用,最終導(dǎo)致大腦和骨髓特定區(qū)域內(nèi)神經(jīng)元群體死亡,從而產(chǎn)生認(rèn)知和運(yùn)動(dòng)障礙。
3 花青素對(duì)神經(jīng)退行性疾病的保護(hù)作用
流行病學(xué)研究表明,長期攝入富含花青素等黃酮類化合物的食物能明顯提高記憶能力,改善老年人的認(rèn)知障礙,還能在一定程度上減緩神經(jīng)疾病的產(chǎn)生 [23-24]。此外還發(fā)現(xiàn),花青素的高攝入量與PD的低發(fā)病率顯著相關(guān)[25],減緩與年齡有關(guān)的神經(jīng)變性,抑制神經(jīng)炎癥,改善認(rèn)知的作用[26-28]。一般認(rèn)為,抑制氧化應(yīng)激和緩解神經(jīng)炎癥是花青素發(fā)揮神經(jīng)保護(hù)作用的兩個(gè)關(guān)鍵機(jī)制。此外,花青素還可能通過緩解興奮性毒性及抑制蛋白異常聚集發(fā)揮作用。
3.1 花青素通過抑制氧化應(yīng)激發(fā)揮神經(jīng)保護(hù)作用
氧化損傷是神經(jīng)退行性疾病中最常見的特征之一,也是神經(jīng)細(xì)胞死亡的主要因素。研究表明,花青素可直接清除細(xì)胞內(nèi)的活性氧(ROS)[29],抑制神經(jīng)細(xì)胞產(chǎn)生氧化應(yīng)激,同時(shí)可通過促進(jìn)內(nèi)源性抗氧化劑的產(chǎn)生降低細(xì)胞內(nèi)ROS含量,發(fā)揮間接保護(hù)作用[30]。此外,花青素也可以通過抑制線粒體內(nèi)Bax促凋亡蛋白的活化,調(diào)節(jié)線粒體膜電位等途徑抑制細(xì)胞氧化損傷,最終達(dá)到減少神經(jīng)細(xì)胞凋亡,在不同的神經(jīng)退行性疾病中起到保護(hù)神經(jīng)系統(tǒng)的作用[31-34]。AD屬于發(fā)病率較高的神經(jīng)退行性疾病,誘導(dǎo)其產(chǎn)生的原因有多種,其中最主要的是淀粉樣β蛋白(Aβ)聚集假說。即Aβ肽聚集形成寡聚體和纖維后誘導(dǎo)神經(jīng)元氧化損傷和影響神經(jīng)元的生存能力,促進(jìn)AD的發(fā)展[35]。研究表明,花青素作為能夠通過血腦屏障的特殊抗氧化劑,可以進(jìn)入神經(jīng)細(xì)胞內(nèi)清除ROS,并促進(jìn)內(nèi)源性非酶和酶抗氧化劑的產(chǎn)生,降低氧化應(yīng)激水平,從而抑制Aβ誘導(dǎo)引起的神經(jīng)細(xì)胞的氧化損傷,為神經(jīng)元細(xì)胞提供有效保護(hù)[36-39]。PD是另一種常見的神經(jīng)退行性疾病,導(dǎo)致該疾病產(chǎn)生的重要因素之一也是氧化損傷。Jian Chen等[40]研究表明,矢車菊色素能夠通過抑制由1-甲基-4-苯基吡啶誘導(dǎo)的線粒體氧化應(yīng)激發(fā)揮對(duì)人神經(jīng)母細(xì)胞瘤細(xì)胞(SH-SY5Y)的保護(hù)作用。Mehrdad Roghani等[41]發(fā)現(xiàn),天竺葵色素可緩解6-羥基多巴胺(6-OHDA)誘導(dǎo)小鼠的神經(jīng)毒性,減輕其氧化應(yīng)激水平,對(duì)其神經(jīng)元起到保護(hù)作用。
3.2 花青素通過緩解神經(jīng)炎癥發(fā)揮神經(jīng)保護(hù)作用
在中樞神經(jīng)系統(tǒng)中的小膠質(zhì)細(xì)胞屬于免疫細(xì)胞,它是引起神經(jīng)退行性疾病中神經(jīng)元功能障礙或死亡的關(guān)鍵介體 [42-43] 。小膠質(zhì)細(xì)胞受到外界刺激分泌大量促炎介質(zhì),這些促炎介質(zhì)會(huì)誘導(dǎo)神經(jīng)細(xì)胞凋亡,引起神經(jīng)退行性疾病的產(chǎn)生?;ㄇ嗨乜梢砸种菩∧z質(zhì)細(xì)胞中促炎介質(zhì)的產(chǎn)生,避免因炎癥產(chǎn)生的細(xì)胞損傷,從而發(fā)揮神經(jīng)保護(hù)作用。Francis C. Lau等[44]和Amanda N. Carey等[45]報(bào)道了藍(lán)莓花青素通過抑制炎癥介質(zhì)一氧化氮(NO)和TNF-α的產(chǎn)生及誘導(dǎo)型一氧化氮合酶(iNOS)和環(huán)氧合酶(COX-2)的表達(dá)緩解小鼠小膠質(zhì)細(xì)胞(BV2)的炎癥水平。動(dòng)物實(shí)驗(yàn)也證明,花青素能夠通過干預(yù)炎癥信號(hào)通路,緩解小鼠神經(jīng)炎癥,減少神經(jīng)元損傷,從而提高小鼠記憶能力。李建光等[46]也發(fā)現(xiàn),黑果小檗內(nèi)含有的總花色苷能夠顯著改善Aβ25-35誘導(dǎo)引起的AD小鼠的記憶損傷。類似地,Yong-Jian Wang等[47]報(bào)道了紫薯花青素可以緩解脂多糖(LPS)誘導(dǎo)小鼠產(chǎn)生的急性炎癥,逆轉(zhuǎn)小鼠運(yùn)動(dòng)行為的損傷,并改善其學(xué)習(xí)和記憶能力。
Sarinthorn Thummayot等[48]發(fā)現(xiàn),矢車菊蘇葡萄糖苷(C3G)可抑制NF-κB炎癥信號(hào)通路的激活,減少iNOS的表達(dá)及NO的產(chǎn)生,同時(shí)激活抗氧化防御系統(tǒng),誘導(dǎo)抗氧化酶的產(chǎn)生并增加其活性,同時(shí)調(diào)節(jié)Aβ25-35誘導(dǎo)引起的人神經(jīng)母細(xì)胞瘤細(xì)胞(SK-N-SH)的炎癥反應(yīng)和氧化應(yīng)激。Muhammad Sohail Khan等[49]報(bào)道了黑豆花青素可同時(shí)抑制LPS誘導(dǎo)的小鼠腦組織中ROS和IL-1β等炎癥因子的產(chǎn)生,改善小鼠海馬依賴記憶功能。因此,一般認(rèn)為花青素對(duì)中樞神經(jīng)系統(tǒng)的保護(hù)作用是調(diào)節(jié)神經(jīng)系統(tǒng)內(nèi)的氧化應(yīng)激和抑制炎癥反應(yīng)的協(xié)同作用的結(jié)果。
3.3 花青素通過緩解興奮性毒性發(fā)揮神經(jīng)保護(hù)作用
興奮性毒性是神經(jīng)元特有的現(xiàn)象。興奮性刺激會(huì)導(dǎo)致神經(jīng)元內(nèi)大量鈣離子(Ca2+)流入,鈣穩(wěn)態(tài)失調(diào),線粒體膜去極化,引起線粒體功能障礙和神經(jīng)細(xì)胞死亡[50]。與AD緊密相關(guān)的一種神經(jīng)毒性物質(zhì)Aβ和肌萎縮側(cè)索硬化癥(ALS)中谷氨酸濃度的劇增,都能夠引起鈣穩(wěn)態(tài)失調(diào)而產(chǎn)生神經(jīng)興奮性毒性[51]。而花青素能緩解鈣穩(wěn)態(tài)失調(diào),減小這類神經(jīng)興奮毒性。Ping-Hsiao Shih等[52]報(bào)道了錦葵色素和錦葵色素-3-O-葡萄糖苷可緩解Aβ1-40和Aβ25-35誘導(dǎo)小鼠腦神經(jīng)瘤細(xì)胞(Neuro-2A)產(chǎn)生的鈣穩(wěn)態(tài)失調(diào),抑制ROS的產(chǎn)生,保護(hù)細(xì)胞抗氧化防御系統(tǒng)。Ji Seon Yang等[53]報(bào)道了矢車菊蘇葡萄糖苷可有效抑制谷氨酸誘導(dǎo)引起的大鼠海馬神經(jīng)元細(xì)胞內(nèi)Ca2+增加和線粒體去極化,減少神經(jīng)細(xì)胞的死亡,發(fā)揮神經(jīng)保護(hù)作用。
3.4 花青素通過抑制蛋白異常聚集發(fā)揮神經(jīng)保護(hù)作用
蛋白聚集引起神經(jīng)元死亡是神經(jīng)退行性疾病發(fā)生的重要機(jī)理之一。如AD患者大腦中Aβ肽聚集形成的寡聚體和tau蛋白聚集形成的神經(jīng)纖維纏結(jié) [54-55]。對(duì)于第二大神經(jīng)退行性疾病PD而言,發(fā)病機(jī)制之一則是由α-突觸核蛋白聚集形成的路易小體 [56-57]。ALS也與突變或氧化的SOD1和TAR-DNA結(jié)合蛋白-43(TDP-43)在細(xì)胞內(nèi)形成大的聚集體有關(guān) [58-59] 。Andrea Tarozzi等[60-61]先后報(bào)道了C3G在體外抑制Aβ1-42和Aβ25-35的自發(fā)聚集,緩解因Aβ聚集而誘導(dǎo)的SH-SY5Y細(xì)胞凋亡和壞死。Nan Song等[62]發(fā)現(xiàn),C3G不僅能在分子水平上抑制Aβ25-35的自發(fā)聚集,還能有效抑制Aβ25-35與細(xì)胞表面的結(jié)合。Hyo-Shin KIM等[63]利用分化后具有神經(jīng)細(xì)胞特征的鼠嗜鉻細(xì)胞瘤細(xì)胞(PC12)研究發(fā)現(xiàn),飛燕草色素能有效抑制Aβ誘導(dǎo)的tau蛋白過度磷酸化。C3G還可以在AD小鼠體內(nèi)抑制Aβ引起的tau蛋白過度磷酸化[64]。此外,Herbenya Peixoto等[65]利用秀麗隱桿線蟲研究了巴西莓的含花青素提取物的神經(jīng)保護(hù)作用,發(fā)現(xiàn)其顯著降低了AM141線蟲株體內(nèi)polyQ40∶GFP聚集體的含量,該蛋白聚集體與亨廷頓氏?。℉D)相關(guān)。
以上結(jié)果均表明,花青素很有可能通過抑制蛋白聚集發(fā)揮神經(jīng)保護(hù)作用,但目前尚不清楚花青素是否還能夠破壞其他蛋白質(zhì)物種的有毒聚集體形成,如ALS中的SOD1和PD中的α-突觸核蛋白。
4 結(jié)論與展望
老齡化趨勢(shì)導(dǎo)致神經(jīng)退行性疾病患者比例不斷增加。而對(duì)于神經(jīng)退行性疾病已經(jīng)達(dá)成一種共識(shí),即防大于治?;ㄇ嗨刈鳛橹参镌词称分幸环N天然功能性成分,由于其抗氧化、抗炎等生理功能而受到廣泛關(guān)注。大量的細(xì)胞和動(dòng)物實(shí)驗(yàn)研究均表明,花青素對(duì)神經(jīng)的保護(hù)作用可能涉及其抗氧化、抗炎及緩解興奮毒性和抑制蛋白異常聚集等機(jī)制。但目前對(duì)于花青素對(duì)神經(jīng)的保護(hù)作用的流行病學(xué)研究和臨床數(shù)據(jù)還不是很充分。此外,由于花青素在生理?xiàng)l件下不穩(wěn)定,容易發(fā)生氧化降解和在腸道菌群作用下的生物轉(zhuǎn)化,花青素的生物可利用度也一直讓研究者感到困惑[66]。為深入了解花青素對(duì)于神經(jīng)的保護(hù)作用及其機(jī)制,需要更多的流行病學(xué)統(tǒng)計(jì)數(shù)據(jù)和進(jìn)一步的臨床試驗(yàn),同時(shí)對(duì)花青素在體內(nèi)的氧化降解及其代謝產(chǎn)物進(jìn)行深入研究,明確花青素最終進(jìn)入大腦神經(jīng)的目標(biāo)產(chǎn)物及其對(duì)神經(jīng)的保護(hù)作用,為闡明花青素在以預(yù)防為主的策略中保護(hù)神經(jīng)系統(tǒng)免受疾病危害的作用,以及富含花青素食品的健康促進(jìn)作用提供科學(xué)依據(jù)。
參考文獻(xiàn)
[1]Alzheimer’s Association.2018 Alzheimer’s disease facts and figures[J].Alzheimer’s & Dementia,2018,14(3):367-429.
[2]Clay E,Zhou J,Yi Z M,et al. Economic burden for Alzheimer’s disease in China from 2010 to 2050:a modelling study[J].Journal of Market Access & Health Policy,2019,7(1):1667195.
[3]Prince P M,Wimo P A,Guerchet D M,et al. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence,Incidence,Cost and Trends[R].London:Alzheimer’s Disease International (ADI),2015.
[4]Abdel-Aal,El-Sayed M,Hucl,et al. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat[J].Food Chemistry,2018(254):13-19.
[5]Zhuan H. Research progress on antioxidant characteristics of anthocyanin in blueberriy[J].Cereals & Oils,2019,32(3):1-2.
[6]Szymanowska U,Baraniak B. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries[J].Antioxidants,2019(8):299.
[7]Youdim K A,Dobbie M S,Kuhnle G,et al. Interaction between flavonoids and the blood-brain barrier:in vitro studies[J].Journal of Neurochemistry,2003(85):180-192.
[8]Figueira,Inês,Tavares,Lucélia,et al. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols:an in vitro study[J].European Journal of Nutrition,2019(58):113-130.
[9]Fornasaro S,Ziberna L,Gasperotti M,et al. Determination of cyanidin 3-glucoside in rat brain,liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study[J].Scientific Reports,2016(6):22815.
[10]Nuno B,F(xiàn)ernando P. Chemistry and photochemistry of anthocyanins and related compounds:a thermodynamic and kinetic approach[J].Molecules,2016,21(11):1502.
[11]肖旭峰,李猛,伍夢(mèng)婷. 彩色馬鈴薯花青素研究進(jìn)展[J].現(xiàn)代園藝,2020,43(1):50-52.
[12]迪娜·吐爾洪,劉新蓮,李建光. 花色苷抗阿爾茲海默癥的研究進(jìn)展[J].中華中醫(yī)藥雜志,2019,34(4):1614-1617.
[13]喬廷廷,郭玲. 花青素來源、結(jié)構(gòu)特性和生理功能的研究進(jìn)展[J].中成藥,2019,41(2):388-392.
[14]彭祖茂,鄧夢(mèng)雅,嚴(yán)虞虞,等. 植物中花青素含量測(cè)定及種類分布研究[J].食品研究與開發(fā),2018,39(17):100-104.
[15]Pascual-Teresa D,Sonia. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins[J].Archives of Biochemistry and Biophysics,2014(559):68-74.
[16]Khoo H E,Azlan A,Tang S T,et al. Anthocyanidins and anthocyanins:colored pigments as food,pharmaceutical ingredients,and the potential health benefits[J].Food & Nutrition Research,2017,61(1):1361779.
[17]李玲瑤,張智媛,范征. 以Nrf2為靶點(diǎn)治療神經(jīng)退行性疾病的研究進(jìn)展[J].腦與神經(jīng)疾病雜志,2020,28(1):48-53.
[18]Uddin M S,Hossain M F,Mamun A A,et al. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration[J].Science of The Total Environment,2020(725):138313.
[19]Cenini G,Lloret A,Cascella R. Oxidative stress and mitochondrial damage in neurodegenerative diseases:from molecular mechanisms to targeted therapies[J].Oxidative Medicine and Cellular Longevity,2020:1-2.
[20]Binvignat O,Olloquequi J. Excitotoxicity as a target against neurodegenerative processes[J].Current Pharmaceutical Design,2020,26(12):1251-1262.
[21]Stephenson J,Nutma E,Paul V D V,et al. Inflammation in CNS neurodegenerative diseases[J].Immunology,2018(154):204-219.
[22]Cabral-Miranda F,Hetz C. ER Stress and neurodegenerative disease:a cause or effect relationship?[J].Current Topics in Microbiology and Immunology,2017(414):131-157.
[23]Spagnuolo C,Moccia S,Russo G L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders[J].European Journal of Medicinal Chemistry,2018(153):105.
[24]Santos N M,Batista P B,Batista ,et al. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins[J].Current Opinion in Food Science,2019(26):71-78.
[25]Gao X,Cassidy A,Schwarzschild M A,et al. Habitual intake of dietary flavonoids and risk of Parkinson disease[J].Neurology,2012,78(15):1138-1145.
[26]Kent K,Charlton K,Roodenrys S,et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia[J].European Journal of Nutrition,2015,56(1):333-341.
[27]Boespflug E L,Eliassen J C,Dudley J A,et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment[J].Nutritional Neuroscience,2018,21(4):297-305.
[28]Mcnamara R K,Kalt W,Shidler M D,et al. Cognitive response to fish oil,blueberry,and combined supplementation in older adults with subjective cognitive impairment[J].Neurobiology of Aging,2018(64):147-156.
[29]Kim S M,Chung M J,Ha T J,et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids[J].Life Sciences,2012,90(21-22):874-882.
[30]Cásedas G,González-Burgos E,Smith C,et al. Sour cherry (Prunus cerasus L.)juice protects against hydrogen peroxide-induced neurotoxicity by modulating the antioxidant response[J].Journal of Functional Foods,2018(46):243-249.
[31]Meng L S,Li B,Li D N,et al. Cyanidin-3-O-glucoside attenuates amyloid-beta (1-40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism[J].Journal of Functional Foods,2017(38):474-485.
[32]王舒敏,譚艷,盧豪,等. 矢車菊-3-O-葡萄糖苷對(duì)β淀粉樣蛋白25-35致海馬神經(jīng)細(xì)胞損傷的干預(yù)研究[J].衛(wèi)生研究,2018,47(3):73-78.
[33]Wang Y,F(xiàn)u X T,Li D W,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells[J].Neural Regeneration Research,2016,11(5):795.
[34]Kelsey N,Hulick W,Winter A,et al. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress[J].Nutritional Neuroscience,2011,14(6):249-259.
[35]Badshah H,Kim T H,Kim M O. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro[J].Neurochemistry International,2015(80):51-59.
[36]Liu L,Sheng B,Yan Y,et al. Protective effect of anthocyanin against the oxidative stress in neuroblastoma N2a cells[J].Progress in Biochemistry and Biophysics,2010,37(7):779-785.
[37]Wang Y,Cho N C,F(xiàn)u X T,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen speciesmediated DNA damage and apoptosis in PC12 cells[J].中國神經(jīng)再生研究(英文版),2016(5):795-800.
[38]Ramassamy C,Belkacemi A. Innovative anthocyanin/anthocyanidin formulation protects SK-N-SH cells against the amyloid-β peptide-induced toxicity:relevance to Alzheimer’s disease[J].Central Nervous System Agents in Medicinal Chemistry,2016,16(1):37-49.
[39]Ali T,Kim T,Rehman S U,et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress,neurodegeneration,and memory impairment in a mouse model of Alzheimer’s disease[J].Molecular Neurobiology,2018(55):6076-6093.
[40]Jian C,Jian S,Julian J,et al. Cyanidin protects SH-SY5Y human neuroblastoma cells from 1-Methyl-4-Phenylpyridinium-induced neurotoxicity[J].Pharmacology,2018(102):126-132.
[41]Roghani M,Niknam A,Jalali-Nadoushan M R,et al. Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism[J].Brain Research Bulletin,2010,82(5-6):279-283.
[42]Jeong J W,Lee W,Shin S,et al. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways[J].International Journal of Molecular Sciences,2013,14(1):1502-1515.
[43]吳海歌,劉雨晴,姚子昂. 小膠質(zhì)細(xì)胞及相關(guān)神經(jīng)退行性疾病[J].中國細(xì)胞生物學(xué)學(xué)報(bào),2015,37(4):560-564.
[44]Lau F C,Bielinski D F,Joseph J A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia[J].Journal of Neuroscience Research,2007,85(5):1010-1017.
[45]Carey A N,F(xiàn)isher D R,Rimando A M,et al. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia[J].Journal of Agricultural & Food Chemistry,2013,61(25):5979-5986.
[46]李建光,陽瑩,劉倩蕓,等. 黑果小檗總花色苷對(duì)Aβ25-35誘導(dǎo)的AD小鼠及小膠質(zhì)細(xì)胞神經(jīng)炎性反應(yīng)模型的影響[J].中華中醫(yī)藥雜志,2017(2):424-427.
[47]Wang Y J,Zheng Y L,Lu J,et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain[J].Neurochemistry International,2009,56(3):424-430.
[48]Thummayot S,Tocharus C,Jumnongprakhon P,et al. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells[J].Acta Pharmacologica Sinca,2018(39):1439-1452.
[49]Khan M S,Ali T,Kim M W,et al. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex[J].Neurochemistry International,2016(100):1-10.
[50]劉家岐,楚世峰,張大永,等. 鈣離子與帕金森病的研究進(jìn)展[J].中國藥理學(xué)與毒理學(xué)雜志,2018,32(9):32-33.
[51]任振宇,于小倩,彭雙清. 興奮性神經(jīng)毒性中的鈣穩(wěn)態(tài)失調(diào)及其在退行性病變中的作用[J].中國藥理學(xué)通報(bào),2007,23(3):289-292.
[52]Shih P H,Wu C H,Yeh C T,et al. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells[J].Journal of Agricultural & Food Chemistry,2011,59(5):1683-1689.
[53]Yang J S,Perveen S,Ha T J,et al. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species[J].Brain Research,2015(1606):9-20.
[54]林煉峰,羅煥敏. 基于Aβ與tau蛋白過度磷酸化損傷機(jī)制的阿爾茨海默病治療靶點(diǎn)(英文)[J].神經(jīng)科學(xué)通報(bào)(英文版),2011,27(1):53-60.
[55]Brier M R,Gordon,F(xiàn)riedrichsen K,et al. Tau and Aβ imaging,CSF measures,and cognition in Alzheimer’s disease[J].Science Translational Medicine,2016,8(338):66.
[56]Musacchio T,Rebenstorff M,F(xiàn)luri F,et al. Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T α-synuclein Parkinson’s disease rat model[J].Annals of Neurology,2017,81(6):825-836.
[57]牛西遠(yuǎn),吳蕾,丁小靈,等. 血漿及唾液中α-突觸核蛋白作為帕金森病生物學(xué)標(biāo)記物的研究[J].中風(fēng)與神經(jīng)疾病雜志,2018,35(3):201-204.
[58]陳健. 基因沉默減少肌萎縮側(cè)索硬化中異常蓄積蛋白的研究進(jìn)展[J].武警醫(yī)學(xué),2018,29(12):1177-1180.
[59]Sun J G,Yu-Mi S,Do-Yeon L,et al. Pathological modification of TDP-43 in amyotrophic lateral sclerosis with SOD1 mutations[J].Molecular Neurobiology,2018(56):2007-2021.
[60]Tarozzi A,Merliccoa A,Morroni F,et al. Cyanidin 3-O-glucopyranoside protects and rescues SH-SY5Y cells against amyloid-beta peptide-induced toxicity[J].Neuroreport,2008,19(15):1483-1486.
[61]Tarozzi A,Morroni F,Merlicco A,et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35)oligomer-induced toxicity[J].Neuroscience Letters,2010,473(2):72-76.
[62]Song N,Zhang L,Chen W,et al. Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APPswe/PS1ΔE9 mouse model[J].Biochimica Et Biophysica Acta Molecular Basis of Disease,2016,1862(9):1786-1800.
[63]Kim H S,Sul D,Lim J Y,et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation[J].Bioscience Biotechnology & Biochemistry,2009,73(7):1685-1689.
[64]Qin L,Zhang J,Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats[J].Neuroscience Letters,2013,534(Complete):285-288.
[65]Peixoto H,Roxo M,Krstin S,et al. Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.)mediates neuroprotective activities in Caenorhabditis elegans[J].Journal of Functional Foods,2016(26):385-393.
[66]Lila M A,Burton-Freeman B,Grace M,et al. Unraveling anthocyanin bioavailability for human health[J].Annual Review of Food Science and Technology,2016,7(1):375-393.
Research Advancements on the Protective Effect of Anthocyanins on Neurodegradative Disease
YANG Li-pin,ZHU Zhen-zhu,LEI Hong,LIU Qin
(College of Food Science and Engineering,Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province,Nanjing 210023,China)
Abstract:Studies have shown that anthocyanins can prevent neurodegenerative diseases and effectively alleviate the progress of neurodegenerative diseases and exert a protective effect on the nervous system. Research progress on neuroprotection of anthocyanins in neurodegenerative diseases was summarized and the neuroprotective mechanisms of anthocyanins were discussed in terms of suppressing the oxidative stress,anti-neuroinflammation,alleviating excitotoxicity and inhibiting abnormal protein aggregation to provide scientific basis for better understanding on the preventive effects of anthocyanin in neurodegenerative diseases.
Keywords:anthocyanins;nerve;neurodegenerative diseases;neuroprotection;molecular mechanism
基金項(xiàng)目:江蘇省高校自然科學(xué)研究重大項(xiàng)目(項(xiàng)目編號(hào):16KJA550001)。
作者簡(jiǎn)介:楊麗嬪(1995— ),女,碩士研究生,研究方向:食品科學(xué)。
通信作者:劉 琴(1968— ),女,博士,教授,研究方向:功能食品。