馬叢叢 王梓平 許繼取
摘 要:對褪黑素改善認(rèn)知作用的研究進(jìn)展進(jìn)行綜述,為褪黑素的進(jìn)一步開發(fā)利用提供科學(xué)依據(jù)。
關(guān)鍵詞:褪黑素;老年認(rèn)知障礙;輕度認(rèn)知障礙
研究表明,褪黑素有神經(jīng)保護(hù)作用[1-3]。褪黑素是哺乳動物必需氨基酸-色氨酸的衍生物[4]。褪黑素在植物中廣泛存在,植物中的褪黑激素水平似乎遠(yuǎn)遠(yuǎn)高于在動物血清中測得的濃度[5]。在哺乳動物海馬中,褪黑素及其受體的異常水平與衰老相關(guān)的疾病老年癡呆癥和帕金森氏病等有關(guān)[6]。并且,利用外源性褪黑素可以顯著改善這些疾病的癥狀[7-8]。褪黑素改善認(rèn)知作用與其物理化學(xué)結(jié)構(gòu)相關(guān)?;诮Y(jié)構(gòu)-活性關(guān)系的分析表明,褪黑素分子的吲哚部分由于其高的共振穩(wěn)定性和對自由基反應(yīng)的非常低的活化能壘而成為與氧化劑相互作用的反應(yīng)中心[9-10]。甲氧基具有親脂性和促氧化潛力,阻止褪黑素表現(xiàn)出前氧化活性,酰胺側(cè)鏈N-C = O結(jié)構(gòu)有利于新五元環(huán)的形成[11]。與經(jīng)典的抗氧化劑不同,褪黑激素沒有前氧化活性,并且褪黑激素與反應(yīng)性物質(zhì)相互作用產(chǎn)生的所有已知中間體也是自由基清除劑[9],該現(xiàn)象被定義為褪黑激素家族的自由基清除級聯(lián)反應(yīng)。由于這種級聯(lián)作用,1個褪黑激素分子具有清除多達(dá)4個或更多反應(yīng)性物質(zhì)的潛力,這使得褪黑激素作為抗氧化劑非常有效。褪黑素可清除各種活性氧和氮[12],研究表明,褪黑素對于老年認(rèn)知障礙、異氟烷誘導(dǎo)的認(rèn)知障礙、輕微認(rèn)知障礙和缺氧引起的認(rèn)知障礙等的治療和預(yù)防都與其抗氧化功能密切相關(guān)。老年認(rèn)知障礙是神經(jīng)衰老導(dǎo)致的神經(jīng)變性和神經(jīng)損傷。褪黑素及其代謝產(chǎn)物可作為自由基清除劑防止衰老,同時抑制自噬、調(diào)節(jié)胰島素信號通路和炎癥信號通路改善老年認(rèn)知障礙。對于麻醉相關(guān)的神經(jīng)毒性,褪黑素能夠有效地預(yù)防和治療異氟烷引起的腦損傷。同時,褪黑素對于輕度認(rèn)知障礙(MCI)和缺氧引起的認(rèn)知障礙也具有一定的治療效果。
1 老年認(rèn)知障礙
褪黑素及其代謝產(chǎn)物可作為自由基清除劑防止衰老。褪黑素合成中涉及的酶、代謝物和受體的水平在衰老過程中降低,從而導(dǎo)致老年人中褪黑激素的水平較低。胰島素、類胰島素生長因子1(IGF1)和類胰島素生長因子2(IGF2)促進(jìn)MAPK / ERK途徑,激活蛋白激酶(AKT)[13]。AKT激活哺乳動物雷帕霉素靶標(biāo)(mTOR)和自噬,褪黑素對自噬具有抑制作用[14]。哺乳動物褪黑激素受體MT1(Mel1a)和MT2(Mel1b)是G蛋白偶聯(lián)受體,在激活過程中與G蛋白偶聯(lián)[15]。MT1和MT2表達(dá)隨著年齡的增長而降低[16]。隨著年齡的增長,褪黑激素通過MT1抑制小鼠神經(jīng)干細(xì)胞中CREB磷酸化[17-18]。衰老過程中,除胸腺外,胸外組織(肝臟、脾臟、腎臟和心臟)的MT1和MT2 mRNA水平顯著降低[6]。在下丘腦中,與年齡相關(guān)的神經(jīng)退行性疾病中MT2水平降低[19]。老年人中褪黑素代謝產(chǎn)物的分泌下降[20]。與褪黑素從生產(chǎn)到降解的途徑相似,褪黑素受體隨著年齡增加相關(guān)的功能顯著下降,這種下降可能導(dǎo)致衰老過程中褪黑激素水平的降低。神經(jīng)系統(tǒng)和非神經(jīng)系統(tǒng)的正常和病理性衰老所涉及的機(jī)制也可能導(dǎo)致這種減少。β-淀粉樣蛋白(Aβ)積聚和神經(jīng)纖維纏結(jié)以及縮短和高度磷酸化的TAU蛋白是老年癡呆癥的神經(jīng)病理學(xué)特征。褪黑素治療可恢復(fù)高脂飲食老年大鼠腦胰島素信號傳導(dǎo)障礙[21]。褪黑素阻止高脂誘導(dǎo)的海馬Aβ積累和TAU磷酸化增加,改善海馬神經(jīng)炎癥,減輕高脂大鼠氧化應(yīng)激,并恢復(fù)海馬中的CREB活動和BDNF水平以及神經(jīng)元活動。煙酰胺單核苷酸和褪黑激素通過調(diào)節(jié)額葉皮層和海馬中的線粒體功能和凋亡來減輕衰老引起的認(rèn)知障礙,能夠顯著降低前額皮質(zhì)和海馬的ROS水平,提高其線粒體膜能力和ATP水平[22]。
2 對異氟烷誘導(dǎo)的認(rèn)知障礙
麻醉相關(guān)的神經(jīng)毒性對發(fā)育中的大腦的影響,包括氧化應(yīng)激,突觸形成受損,甚至是長期的行為障礙[23-26]。褪黑素治療可有效地恢復(fù)異氟烷致海馬損傷大鼠海馬結(jié)構(gòu)和功能的損害。異氟烷暴露早期,引起線粒體形態(tài)改變。BeiLi等[27]證明,褪黑素能夠預(yù)防和治療異氟烷引起的海馬損傷。γ-氨基丁酸(GABA)是大腦中的抑制神經(jīng)遞質(zhì)。異氟烷能增強(qiáng)大腦的GABA受體的功能,從而起到麻醉作用[28],但是麻醉過程會對神經(jīng)元以及突觸內(nèi)環(huán)境造成干擾,引起細(xì)胞凋亡,進(jìn)而產(chǎn)生認(rèn)知障礙。一些研究聲稱,異氟烷可以在血液中產(chǎn)生不同數(shù)量的三氟乙酸,從而誘導(dǎo)細(xì)胞毒性[29]。另有研究認(rèn)為,麻醉會破壞體內(nèi)氧化和抗氧化的平衡。氧化應(yīng)激與保護(hù)機(jī)制之間的平衡是通過復(fù)雜的細(xì)胞生理學(xué)維持的,如果打破平衡,則會產(chǎn)生異常的氧化還原穩(wěn)態(tài),從而導(dǎo)致病理變化[30]。
氧化應(yīng)激在哺乳動物大腦發(fā)育中對麻醉劑引起的神經(jīng)元變性起重要作用[31]。根據(jù)以前的研究,異氟烷可以顯著增加ROS的積累[32]。某些酶(如SOD、GSH和MDA)可以對氧化劑和抗氧化劑產(chǎn)生響應(yīng)。SOD和GSH可以減少源自氧的自由基對細(xì)胞的損害[33]。褪黑素顯著降低了ROS和MDA的水平,并顯著增加了SOD和GSH的活性。這表明褪黑素可以通過上調(diào)抗氧化酶的表達(dá)來清除活性氧,以保護(hù)海馬。結(jié)合病理結(jié)果表明褪黑素可以明顯減輕神經(jīng)元細(xì)胞的病理損傷,我們證明褪黑素具有緩解異氟烷引起的海馬氧化應(yīng)激的能力。因此,結(jié)果表明減少ROS的積累可能是在異氟烷吸入過程中保護(hù)脆弱組織的有效方法。
Nrf2在蛋白激酶C(PKC)中啟動,它在氧化應(yīng)激反應(yīng)中起著關(guān)鍵作用[34-35]。在氧化應(yīng)激條件下,Nrf2被PKC磷酸化,然后誘導(dǎo)HO-1和其他抗氧化酶(如SOD和GSH)的轉(zhuǎn)錄激活[35-37]。在我們的研究中,蛋白質(zhì)印跡的結(jié)果表明褪黑激素可以激活PKCα/ Nrf2信號傳導(dǎo)途徑發(fā)揮抗氧化作用。同時,褪黑素顯著增加了核Nrf2表達(dá)并過表達(dá)HO-1。這些結(jié)果證明褪黑素不僅增加了Nrf2的表達(dá),而且還促進(jìn)了其在核部分的積累。Nrf2在Neh2結(jié)構(gòu)域與Keap1結(jié)合后通過泛素-蛋白酶體途徑降解[38],而PKC磷酸化Nrf2使Nrf2與Keap1分離,從而發(fā)揮生物學(xué)作用[39]。另有研究表明,PKCα使Nrf2磷酸化,導(dǎo)致Nrf2易位至細(xì)胞核[40]??傊?,褪黑素可以激活PKCα/ Nrf2信號通路,促進(jìn)Nrf2的核轉(zhuǎn)運(yùn),并誘導(dǎo)Nrf2下游的抗氧化酶HO-1的表達(dá),從而減少異氟烷引起的氧化應(yīng)激和隨后的海馬損傷。
圍手術(shù)期神經(jīng)認(rèn)知障礙指手術(shù)和麻醉后導(dǎo)致的認(rèn)知障礙,尤其是老年患者更容易產(chǎn)生圍手術(shù)期神經(jīng)認(rèn)知障礙[41]。圍手術(shù)期神經(jīng)認(rèn)知障礙影響學(xué)習(xí)、記憶、注意力和語言理解能力等認(rèn)知功能,增加患者死亡率[42]。Hui Yuan等[43]采用C57小鼠2%異氟烷吸入4 h造圍手術(shù)期神經(jīng)認(rèn)知障礙。研究表明,褪黑素和雷帕霉素顯著改善了異氟烷引起的認(rèn)知障礙,并導(dǎo)致褪黑素水平以及海馬中TNF-α、IL-1β、IL-6、p-mTOR的表達(dá)水平下降。但并未闡明褪黑素使mTOR失活的機(jī)制,可做進(jìn)一步研究。高齡是術(shù)后認(rèn)知功能障礙的重要獨(dú)立危險(xiǎn)因素。在年輕小鼠中,覺醒節(jié)律與異氟烷引起的記憶障礙有關(guān)。長期異氟醚麻醉可導(dǎo)致衰老小鼠的記憶缺陷和晝夜節(jié)律紊亂進(jìn)一步加劇和延長[44]。褪黑激素已被認(rèn)為是晝夜節(jié)律轉(zhuǎn)變的有效療法。在老年小鼠中,在麻醉前連續(xù)7 d每天以10 μmg/ kg劑量的褪黑激素進(jìn)行預(yù)處理。我們發(fā)現(xiàn),褪黑激素可通過時鐘基因重新同步來恢復(fù)運(yùn)動活動和溫度晝夜節(jié)律,從而預(yù)防異氟烷引起的認(rèn)知障礙。所以,褪黑素可以通過晝夜節(jié)律性重新同步來預(yù)防異氟烷引起的認(rèn)知障礙[45]。
褪黑素通過海馬褪黑素受體2-cAMP反應(yīng)元件結(jié)合信號傳導(dǎo)減弱老年大鼠中異氟烷引起的認(rèn)知障礙[46]。褪黑素減弱了異氟烷誘導(dǎo)的老年大鼠血漿/海馬褪黑激素水平下降和認(rèn)知障礙[47]。褪黑激素2受體(MT)在晝夜節(jié)律紊亂、阿爾茨海默氏?。ˋD)和其他神經(jīng)系統(tǒng)疾病中起關(guān)鍵作用。cAMP反應(yīng)元件結(jié)合(CREB)是記憶形成的重要轉(zhuǎn)錄因子。MT拮抗劑4P-PDOT阻止了褪黑素對異氟烷誘導(dǎo)的海馬MT表達(dá)下降和下游CREB磷酸化的保護(hù)作用。而4P-PDOT阻止了褪黑素對異氟烷引起的記憶障礙的衰減作用。所以,海馬MT -CREB信號傳導(dǎo)可能是麻醉藥引起的認(rèn)知障礙的潛在治療靶點(diǎn)。NR2B-CREB信號通路在該過程中也起著關(guān)鍵作用[48]。但有研究表明,選擇不同的時間點(diǎn)麻醉大鼠,異氟烷在白天或晚上均未顯著改變褪黑激素水平,地氟醚麻醉則會在白天改變褪黑激素水平[49]。
褪黑素的預(yù)先用藥減輕了異氟烷麻醉引起的老年大鼠海馬中Aβ生成和膽堿能功能障礙[50]。全身麻醉藥在發(fā)育中的大鼠大腦的許多區(qū)域引起廣泛的凋亡神經(jīng)變性。線粒體依賴性凋亡途徑的激活在麻醉誘導(dǎo)的發(fā)育性神經(jīng)細(xì)胞凋亡的早期階段很重要。褪黑素可通過改善線粒體體內(nèi)穩(wěn)態(tài)并穩(wěn)定線粒體內(nèi)膜來抑制凋亡型神經(jīng)元損害。褪黑激素誘導(dǎo)的神經(jīng)保護(hù)作用至少部分是通過抑制線粒體依賴性細(xì)胞凋亡途徑介導(dǎo)的,因?yàn)橥屎诩に匾鹂沟蛲龅鞍譩cl-X的上調(diào),麻醉誘導(dǎo)的細(xì)胞色素c釋放減少進(jìn)入細(xì)胞質(zhì)并減少麻醉誘導(dǎo)的caspase-3活化,這是DNA酶活化和凋亡小體形成的重要步驟[51]。
3 輕度認(rèn)知障礙
一些MCI患者似乎隨著時間的推移保持穩(wěn)定或恢復(fù)正常,但在5年內(nèi)進(jìn)展為AD的比例超過一半[52]。MCI患者睡眠周期紊亂,褪黑素分泌時間提前[53]。MCI老年人在補(bǔ)充含有褪黑激素和色氨酸的DHA磷脂油性乳劑12周后,在認(rèn)知功能方面有了顯著改善[52,54]。De Butte M等[55]采用大鼠頸動脈結(jié)扎模型模擬MCI模型,褪黑激素治療可減輕動脈結(jié)扎導(dǎo)致的CA1海馬神經(jīng)元的衰減,并增強(qiáng)視覺記憶。
4 缺氧引起的認(rèn)知障礙
全球范圍內(nèi)每年死亡的360萬個新生兒中幾乎有1/4是窒息死亡[56]。褪黑素減輕了新生兒缺氧缺血性腦病的氧化應(yīng)激,減少了病兒癲癇發(fā)作和白質(zhì)異常[57]。新生仔豬低溫缺氧模型表明褪黑素增加了全腦磁共振波譜的核苷酸三磷酸/可交換磷酸鹽池的水平。與單獨(dú)的體溫降低相比,體溫降低加褪黑素組的TUNEL陽性細(xì)胞核減少,丘腦中的caspase 3裂解減少。盡管在灰色或白色物質(zhì)中小膠質(zhì)細(xì)胞總數(shù)沒有減少,但是缺氧缺血后48 h皮質(zhì)中典型的細(xì)胞毒性小膠質(zhì)細(xì)胞活化標(biāo)記CD86的表達(dá)減少了[58]。所以,褪黑素治療能安全有效地改善新生兒腦病。
5 展望
褪黑素能夠?qū)λダ稀⒙樽韯?、MCI和缺氧等認(rèn)知障礙有預(yù)防和治療作用。褪黑素能夠減輕氧化應(yīng)激,減少氧化應(yīng)激引起的細(xì)胞損傷。同時降低細(xì)胞炎癥,降低腦組織炎癥因子表達(dá)。另外,通過調(diào)節(jié)胰島素信號通路和抗凋亡作用起到神經(jīng)保護(hù)作用。褪黑素作為神經(jīng)保護(hù)劑未來的研究可能重點(diǎn)關(guān)注以下幾個方面:(1)褪黑素抗氧化機(jī)理相關(guān)的信號通路以及抗氧化酶基因表達(dá);(2)褪黑素抗炎作用相關(guān)機(jī)制研究;(3)褪黑素作用于胰島素信號通路機(jī)制研究;(4)褪黑素抗神經(jīng)細(xì)胞凋亡作用信號通路研究。關(guān)于褪黑激素治療,仍有許多問題亟待解決。對于這些問題的研究將為褪黑素在醫(yī)學(xué)、食品、保健等領(lǐng)域的未來提供重要的依據(jù)。
參考文獻(xiàn)
[1]Hardeland R.Melatonin in aging and disease-multiple consequences of reduced secretion,options and limits of treatment[J]. Aging and Disease,2012,3(2):194-225.
[2]Rüdiger Hardeland,Burkhard Poeggeler.Non-vertebrate melatonin[J].Journal of Pineal Research,2003,34(4):233-241.
[3]Sanchez-Hidalgo M,et al.Age-related changes in melatonin synthesis in rat extrapineal tissues[J]. Experimental Gerontology,2009,44(5):328-334.
[4]Lerner A B,et al.Isolation of melatonin,the pineal gland factor that lightens melanocytes[J]. Journal of the American Chemical Society,1958,80(10):2587-2587.
[5]Murch S J,et al.Melatonin in feverfew and other medicinal plants[J].Lancet,1997,350(9091):1598-1609.
[6]M S-H,et al.Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging[J]. Journal of Pineal Research,2009,46(1):29-35.
[7]Mckenna J T,Christie M A,Jeffrey B A,et al.Chronic ramelteon treatment in a mouse model of Alzheimer’s disease[J].Archives Italiennes De Biologie,2012,150(1):5-14.
[8]Seithikurippu R Pandi-Perumal,Ahmed S Bahammam,Gregory M Brown,et al.Melatonin antioxidative defense:therapeutical implications for aging and neurodegenerative processes[J]. Neurotoxicity Research,2013,23(3):267-300.
[9]Poeggeler B,et al.Melatonin,hydroxyl radical-mediated oxidative damage,and aging:a hypothesis[J]. Journal of Pineal Research,1993,14(4):151-168.
[10]Gozzo A,Lesieur D,Duriez P,et al.Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model[J]. Free Radical Biology,1999,26(11-12):1538-1543.
[11]Poeggeler B,et al.Melatonin’s unique radical scavenging properties - roles of its functional substituents as revealed by a comparison with its structural analogs[J].Journal of Pineal Research,2002,33(1):20-30.
[12]Tan D,et al.Chemical and physical properties and potential mechanisms:melatonin as a broad spectrum antioxidant and free radical scavenger[J]. Current Topics in Medicinal Chemistry,2002,2(2):189-197.
[13]Moloney A M,Griffin R J,Timmons S,et al.Defects in IGF-1 receptor,insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling[J].Neurobiology of Aging,2010,31(2):224-243.
[14]Sarlak,et al.Effects of melatonin on nervous system aging:neurogenesis and neurodegeneration[J].Journal of Pharmacological Ences,2013,123(1):9-24.
[15]Hardeland R J B.Melatonin:signaling mechanisms of a pleiotropic agent [J].Biofactors,2009,35(2):183-192.
[16]Wu Y H,Zhou J N,Heerikhuize J V,et al.Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease[J].Neurobiology of Aging,2007,28(8):1239-1247.
[17]Von Gall C,et al.Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor[J].Neuroreport,2000,11(9):1803-1807.
[18]Gall C V,Weaver D R J N O A.Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus[J].Neurobiology of Aging,2008,29(3):464-470.
[19]Savaskan E,et al.Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease[J].Journal of Pineal Research,2004,38(1):10-16.
[20]Mahlberg R,Tilmann A,Salewski L,et al.Normative data on the daily profile of urinary 6-sulfatoxymelatonin in healthy subjects between the ages of 20 and 84[J].Psychoneuroendocrinology,2006,31(5):634-641.
[21]Xu,Jiqu,Gao,Hui,Zhang,Li,et al.Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet[J]. Journal of Pineal Research,2019,67(2):e12584.
[22]L Hosseini,MS Vafaee,R Badalzadeh,et al.Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus[J].Neuroscience,2019(423):29-37.
[23]Miao H H,Zhang Y,Ding G N,et al.Ginsenoside Rb1 attenuates isoflurane/surgery-induced cognitive dysfunction via inhibiting neuroinflammation and oxidative stress[J]. Biomedical and Environmental Sciences,2017(5):53-62.
[24]Nie H,Peng Z,Lao N,et al.Effects of Sevoflurane on self-renewal capacity and differentiation of cultured neural stem cells[J]. Neurochemical Research,2013,38(8):1758-1767.
[25]Flick R P,Katusic S K,Colligan R C,et al.Cognitive and behavioral outcomes after early exposure to anesthesia and surgery[J]. Pediatrics,2011,128(5):e1053-e1061.
[26]Walters J L,Paule M G.Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity[J]. Neurotoxicology and Teratology,2017,60:2-23.
[27]Li Bei,F(xiàn)eng Xiu Jing,Hu Xue Yuan,et al.Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCα/Nrf2 signaling pathway in developing rats[J]. Brain Research Bulletin,2018(143):9-18.
[28]Nishikawa K,Jenkins A,Paraskevakis I,et al.Volatile anesthetic actions on the GABAA receptors:contrasting effects of alpha 1(S270)and beta 2(N265)point mutations[J]. Neuropharmacology,2002,42(3):337-345.
[29]Yasuda,et al.Pharmacokinetics of desflurane,sevoflurane,isoflurane,and halothane in pigs[J]. Anesthesia and Analgesia,1990,71(4):340-348.
[30]P S-C,D C-R,L G-S,et al.Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells[J]. Free Radical Biology & Medicine,2015(87):226-236.
[31]Y C,Mj M-F,A W,et al.Carbon monoxide modulates cytochrome oxidase activity and oxidative stress in the developing murine brain during isoflurane exposure[J]. Free Radical Biology & Medicine,2015(86):191-199.
[32]Wu Wanjun,Zhou Xianju,Liu Ping,et al.Isoflurane reduces hypoxia/reoxygenation-induced apoptosis and mitochondrial permeability transition in rat primary cultured cardiocytes[J]. BMC Anesthesiology,2014,14:17.
[33]Xy M,J Y,Zq L,et al.Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway[J]. International Journal of Clinical and Experimental Medicine,2015,8(9):15506-15513.
[34]Yc H,M K,F(xiàn)y L,et al.Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts[J]. Journal of Dermatological Science,2018,90(2):123-134.
[35]Lm Y,et al.Melatonin protects diabetic heart against ischemia-reperfusion injury,role of membrane receptor-dependent cGMP-PKG activation[J]. Biochimica Et Biophysica Acta.Molecular Basis of Disease,2018,1864(2):563-578.
[36]Hc H,T N,Cb P.Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(23):12475-12480.
[37]Ishii T,Itoh K,Takahashi S,et al.Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages[J]. Journal of Biological Chemistry,2000,275(21):16023.
[38]Ys K,et al.Mechanism of action of sulforaphane:inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells[J]. Cancer Research,2006,66(17):8804-8813.
[39]Hc H,T N,Cb P.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription[J]. The Journal of Biological Chemistry,2002,277(45):42769-42774.
[40]Br Y,Mj L,Jh K,et al.Enhancement of parthenolide-induced apoptosis by a PKC-alpha inhibition through heme oxygenase-1 blockage in cholangiocarcinoma cells[J]. Experimental & Molecular Medicine,2010,42(11):787-797.
[41]Evered L,Silbert B,Knopman D S,et al.Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018[J]. Acta Anaesthesiologica Scandinavica,2018,62(10):1473-1480.
[42]Steinmetz J,Christensen K B,Lund T,et al.Long-term consequences of postoperative cognitive dysfunction[J]. Anesthesiology,2009,110(3):548-555.
[43]H Y,G W,X Z,et al.Melatonin and Rapamycin attenuate isoflurane-induced cognitive impairment through inhibition of neuroinflammation by suppressing the mTOR signaling in the hippocampus of aged mice[J]. Frontiers in Aging Neuroscience,2019,11:314.
[44]Ma W-D,Rt D,De B,et al.Effect of isoflurane anesthesia on circadian metabolism and physiology in Rats[J]. Comparative Medicine,2017,67(2):138-146.
[45]Song J,Chu S,Cui Y,et al.Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice[J]. Experimental Neurology,2018(306):45-54.
[46]Y L,C N,Z L,et al.Prophylactic melatonin attenuates isoflurane-induced cognitive impairment in aged rats through hippocampal melatonin receptor 2 - cAMP response element binding signalling[J]. Basic & Clinical Pharmacology & Toxicology,2017,120(3):219-226.
[47]Y L,et al.Melatonin attenuates isoflurane-induced acute memory impairments in aged rats[J]. Basic & Clinical Pharmacology & Toxicology,2013,113(4):215-220.
[48]T X,et al.Melatonin pretreatment prevents isoflurane-induced cognitive dysfunction by modulating sleep-wake rhythm in mice[J]. Brain Research,2016,1634:12-20.
[49]E O,Ha E,Ls D,et al.Effect of day/night administration of three different inhalational anesthetics on melatonin levels in rats[J]. The Kaohsiung Journal of Medical Sciences,2016,32(6):302-305.
[50]C N,et al.Melatonin premedication attenuates isoflurane anesthesia-induced β-amyloid generation and cholinergic dysfunction in the hippocampus of aged rats[J]. The International Journal of Neuroscience,2013,123(4):213-220.
[51]Jh Y,Lb C,Rj R,et al.Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain[J]. Neurobiology of Disease,2006,21(3):522-530.
[52]M R,et al.Effects of a diet integration with an oily emulsion of DHA-phospholipids containing melatonin and tryptophan in elderly patients suffering from mild cognitive impairment[J].Nutritional Neuroscience,2012,15(2):46-54.
[53]Sl N,Ib H,Z T,et al.Circadian misalignment and sleep disruption in mild cognitive impairment[J].Journal of Alzhmers Disease,2014,38(4):857-866.
[54]Dp C,De V,N O,et al.Therapeutic application of melatonin in mild cognitive impairment[J].Am J Neurodegener Dis,2012,1(3):280-291.
[55]M D B,Research G B J B B.Efficacy of a low-dose melatonin pretreatment in protecting against the neurobehavioral consequences of chronic hypoperfusion in middle-aged female rats[J].Behavioural Brain Research,2020(377):112257.
[56]Kurinczuk J J,et al.Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]. Early Human Development,2010,86(6):329-338.
[57]H A,H E,M E-D,et al.Melatonin use for neuroprotection in perinatal asphyxia:a randomized controlled pilot study[J].Journal of Perinatology,2015,35(3):186-191.
[58]Nj R,S F,B F,et al.Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model[J].Brain A Journal of Neurology,2013(136):90-105.
Research Progress on Melatonin Improving Cognitive Function
MA Cong-cong1,WANG Zi-ping2,XU Ji-qu1
(1 Oil Crops Research Institute of Chinese Academy of Agriculture Sciences/Hubei Key Laboratory of Lipid Chemistry and Nutrition/Key Laboratory of Oilseeds Processing,Ministry of Agriculture and Rural Affairs,Wuhan 430062,China;2School of Public Health,Wuhan University of Science and Technology,Wuhan 430065,China)
Abstract:This paper reviewed the cognitive effects of melatonin to provide scientific reference for the further development and utilization of melatonin.
Keywords:melatonin;aging-induced cognitive impairment;mild cognitive impairment
基金項(xiàng)目:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系油菜體系 (項(xiàng)目編號:CARS-13)。
作者簡介:馬叢叢(1985— ),女,碩士,研究方向:脂質(zhì)營養(yǎng)。
通信作者:許繼?。?973— ),男,研究員,研究方向:脂質(zhì)營養(yǎng)。