楊雅茸
摘要:對(duì)于小學(xué)生而言,數(shù)學(xué)知識(shí)比較抽象,且在解答一些實(shí)際的數(shù)學(xué)問題時(shí),仍有不少學(xué)生無(wú)法在大腦之中構(gòu)建起有效的知識(shí)網(wǎng)絡(luò)框架,使其不懂運(yùn)用哪些數(shù)學(xué)知識(shí)概念來解答問題。其中,對(duì)于圖示法應(yīng)用于小學(xué)數(shù)學(xué)教學(xué)之中,能夠有效將抽象的數(shù)學(xué)問題形象化,使得學(xué)生可以從中獲得良好的學(xué)習(xí)思路,因而對(duì)其展開研究具有一定的意義與價(jià)值。那么在文章中,主要從線段、集合、框架作圖方面,談一談圖示法的具體應(yīng)用方法。
關(guān)鍵詞:小學(xué)數(shù)學(xué);圖示法;運(yùn)用;方法
前言
形象生動(dòng)的教學(xué)方法能夠幫助學(xué)生了解和認(rèn)知課程知識(shí),且也有利于集中學(xué)生的學(xué)習(xí)注意力。尤其是在小學(xué)數(shù)學(xué)教學(xué)階段,正是小學(xué)生思維能力開發(fā)的重要時(shí)期,因而在此教學(xué)階段,運(yùn)用圖示法的直觀性來開展小學(xué)數(shù)學(xué)課程教學(xué),對(duì)激活學(xué)生的學(xué)習(xí)思維、加深學(xué)生的學(xué)習(xí)印象都起到積極的影響作用。鑒于此,文章將重點(diǎn)研究圖示法在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用。
一、小學(xué)數(shù)學(xué)教學(xué)中線段圖示方法的應(yīng)用
在解答一些小學(xué)數(shù)學(xué)應(yīng)用問題時(shí),教師可以嘗試?yán)弥庇^的線段圖示方法,引導(dǎo)學(xué)生分析與探索數(shù)學(xué)應(yīng)用題,使得原本復(fù)雜的數(shù)學(xué)應(yīng)用題變得簡(jiǎn)單易懂,從而讓學(xué)生可以獨(dú)立分析與解決。其中,對(duì)于線段圖示方法的應(yīng)用,可以從橫向線段圖、豎向線段圖兩個(gè)角度入手,引導(dǎo)學(xué)生結(jié)合具體的數(shù)學(xué)應(yīng)用問題,展開線段圖的構(gòu)建,以盡可能鍛煉學(xué)生的實(shí)踐運(yùn)用能力和分析能力,使其懂得靈活應(yīng)用這些直觀的圖示來幫助自己解決問題[1]。
請(qǐng)看下面這道小學(xué)數(shù)學(xué)應(yīng)用題:在一個(gè)大果園里,一共有梨樹350棵,比蘋果樹少五分之三,那么請(qǐng)問蘋果樹有多少棵呢?
問題解析:在解答這道數(shù)學(xué)應(yīng)用題時(shí),學(xué)生要懂得利用線段畫圖法,將題目中的意思表述出來,從而將抽象的數(shù)學(xué)問題形象化,進(jìn)而求解出數(shù)學(xué)問題的答案。那么在此過程中,學(xué)生要先判斷這道數(shù)學(xué)問題是應(yīng)用橫向線段圖,還是運(yùn)用豎向線段圖,之后再進(jìn)行具體的線段畫圖。其中,在這道數(shù)學(xué)應(yīng)用題中,學(xué)生可以利用橫向線段圖來展開分析與探究。比如:
從這些圖示可以看出,先找到線段中的單位“1”蘋果棵數(shù),并用線段清晰表現(xiàn)出來,再有題目中的比蘋果樹少五分之三,可以繼續(xù)畫出梨樹的棵數(shù)線段,從而尋找到蘋果樹與梨樹之間的量的對(duì)應(yīng)關(guān)系,進(jìn)而求解出數(shù)學(xué)應(yīng)用題的答案。
問題反思:可見,在解答一些數(shù)學(xué)應(yīng)用問題時(shí),可以應(yīng)用圖示法來引導(dǎo)學(xué)生分析其中的數(shù)量問題,從而促使學(xué)生可以直觀的看到和了解到題目中數(shù)量之間存在的關(guān)系,進(jìn)而幫助學(xué)生構(gòu)建起解答數(shù)學(xué)問題的思路,最終提升學(xué)生的數(shù)學(xué)問題解答能力。
二、小學(xué)數(shù)學(xué)教學(xué)中集合圖示方法的應(yīng)用
除了上述的線段圖示表示方法之外,一些數(shù)學(xué)問題以及概念也可以利用集合圖示的方法來分析和探索。其中,集合圖示方法的應(yīng)用也需要學(xué)生懂得結(jié)合實(shí)際的數(shù)學(xué)問題、數(shù)學(xué)概念定理知識(shí),展開具體的理解與應(yīng)用。同時(shí),集合圖示方法的應(yīng)用也考驗(yàn)了學(xué)生的理解與分析能力,尤其是對(duì)物體之間的共同屬性的分析與探索中,學(xué)生要懂得分析物體之間存在哪些共同的屬性,才能有效構(gòu)建起物體之間的聯(lián)系,從而將其看作一個(gè)整體,而這個(gè)整體就是集合。因此,對(duì)于集合圖示方法的應(yīng)用對(duì)學(xué)生的實(shí)際分析能力以及實(shí)踐操作能力提出了很高的要求。
如在分析下面這道數(shù)學(xué)問題時(shí),學(xué)生就可以利用集合圖示方法展開解答:
在一次猜謎語(yǔ)中,15名學(xué)生參與猜謎,其中有10名學(xué)生猜對(duì)第一個(gè)謎語(yǔ),7名學(xué)生猜對(duì)第二道謎語(yǔ),那么每名學(xué)生至少可以猜對(duì)一道謎語(yǔ),那么能夠猜對(duì)兩道謎語(yǔ)的學(xué)生一共有多少人呢?
問題分析:對(duì)于此道數(shù)學(xué)問題,學(xué)生可以嘗試從集合構(gòu)圖的方法來分析和解答這道數(shù)學(xué)題目。其中,在這道數(shù)學(xué)問題中,涉及到了一定數(shù)量的例舉,也談到了物體之間的共同屬性。因此,在解答過程中,學(xué)生可以運(yùn)用集合圖示法,將具有共同屬性的物體歸入到一個(gè)整體,并以一個(gè)整體的形式展現(xiàn)出來,從而形成一個(gè)完成的集合,進(jìn)而求解出問題的答案。如下圖所示:
那么從這個(gè)直觀的集合圖中,學(xué)生可以清晰看到其中存在的共同屬性關(guān)系,而這個(gè)屬性則是題目所要求出的答案。其中,根據(jù)題目中給出的信息條件,即一共有15學(xué)生,且每名學(xué)生至少可以猜對(duì)一道謎語(yǔ),通過這些信息條件,可以結(jié)合集合圖展開分析以求出答案。
問題反思:對(duì)于上述這道數(shù)學(xué)問題,學(xué)生需要懂得結(jié)合具體的集合圖,分析不同事物之間的關(guān)聯(lián)關(guān)系,從而尋求出具有共同屬性的物體,進(jìn)而求出題目所要求出的答案。
三、小學(xué)數(shù)學(xué)教學(xué)中框架圖示方法的應(yīng)用
對(duì)于框架圖示的運(yùn)用能夠有效將抽象的數(shù)學(xué)概念知識(shí)串聯(lián)出來,以方便學(xué)生日后的學(xué)習(xí)與探究。比如,以直觀的導(dǎo)圖形式,幫助學(xué)生在大腦中構(gòu)建起數(shù)學(xué)概念知識(shí)框架,從而方便學(xué)生從概念知識(shí)框架中尋找出可用于解答實(shí)際問題的數(shù)學(xué)概念,進(jìn)而讓學(xué)生意識(shí)到數(shù)學(xué)概念之間的聯(lián)系,最終實(shí)現(xiàn)對(duì)學(xué)生的數(shù)學(xué)概念形象化教學(xué)。那么在實(shí)際教學(xué)當(dāng)中,教師可以引導(dǎo)學(xué)生從基礎(chǔ)數(shù)學(xué)概念出發(fā),分析概念及其含義,并由基礎(chǔ)概念的構(gòu)建來引導(dǎo)學(xué)生形成整體的知識(shí)網(wǎng)絡(luò)框架,從而促使學(xué)生有序積累和完善知識(shí)結(jié)構(gòu)體系。
以“三角形”小學(xué)數(shù)學(xué)教學(xué)為例,在教學(xué)過程中,教師可以引導(dǎo)學(xué)生框架圖示法,對(duì)其中關(guān)于三角形的概念展開匯總與分析,以形成清晰的知識(shí)框架。其中,在課程教學(xué)之前,教師還要給予學(xué)生適當(dāng)?shù)匾龑?dǎo),讓他們學(xué)習(xí)一些框架圖的構(gòu)圖技巧,以利用有效的導(dǎo)圖來構(gòu)建知識(shí)概念體系[2]。比如,為學(xué)生設(shè)計(jì)一些關(guān)于思維導(dǎo)圖的微課視頻鏈接,讓他們了解關(guān)于框架圖示法的運(yùn)用方法,從而讓學(xué)生利用框架圖對(duì)“三角形”課程知識(shí)展開有效的預(yù)習(xí)。然后,讓學(xué)生根據(jù)實(shí)際學(xué)習(xí)所需、課程知識(shí),再對(duì)其中的知識(shí)框架圖進(jìn)行充實(shí)和完善。例如,利用如下框架進(jìn)行“三角形”知識(shí)點(diǎn)歸納,從而大致理清、理順課程知識(shí)點(diǎn),進(jìn)而促使學(xué)生知道哪些知識(shí)是可學(xué)的、可用的。如下圖所示:
通過上述框架圖示法的運(yùn)用,幫助學(xué)生構(gòu)建起三角形知識(shí)框架,以促使學(xué)生解答關(guān)于三角形問題的過程中,可以從自身的大腦思維框架中選擇出有用的課程知識(shí)點(diǎn),進(jìn)而順利將所學(xué)的課程知識(shí)運(yùn)用于實(shí)際。
四、結(jié)語(yǔ)
綜上所述,引導(dǎo)小學(xué)生運(yùn)用圖示法對(duì)不同的數(shù)學(xué)問題展開分析,對(duì)各種數(shù)學(xué)概念進(jìn)行總結(jié),都是小學(xué)數(shù)學(xué)教學(xué)工作應(yīng)該重點(diǎn)探究與落實(shí)的工作,因而在小學(xué)數(shù)學(xué)教學(xué)中,對(duì)圖示法的運(yùn)用具有一定的意義與價(jià)值。
參考文獻(xiàn):
[1]蔡季曉.小學(xué)數(shù)學(xué)圖示化教學(xué)法的策略探討[J].小學(xué)教學(xué)參考,2020,4(29):48-49.
[2]謝揚(yáng)琴.小學(xué)數(shù)學(xué)圖示教學(xué)的實(shí)踐研究[J].速讀,2019,15(2):84-84.
(云南省保山市第二示范小學(xué))