国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于主元分析和信息量模型的滑坡易發(fā)性評價
——以丹鳳縣為例

2021-08-27 07:29田凡凡薛喜成郭有金
能源與環(huán)保 2021年8期
關鍵詞:易發(fā)信息量滑坡

田凡凡,薛喜成,郭有金

(西安科技大學 地質(zhì)與環(huán)境學院,陜西 西安 710054)

滑坡易發(fā)性評價是滑坡災害風險管理的基礎性工作[1]。眾多學者在此方向做了大量的研究工作,并取得了豐碩成果,但也遇到一些亟待解決的難點問題,大致可概括為以下幾點:①滑坡屬性數(shù)據(jù)的獲取?;聦傩詳?shù)據(jù)是評價因子選取分析以及評價模型建立的基礎支撐。目前獲取滑坡屬性數(shù)據(jù)的方法主要有實地調(diào)查與影像提取2種。實地調(diào)查工作量繁瑣,工作精度較差,獲取的滑坡屬性數(shù)據(jù)與實際情況有一定差異;影像提取主要借助GIS技術從遙感影像、數(shù)字高程模型、地質(zhì)圖等影像中提取滑坡屬性數(shù)據(jù),提取數(shù)據(jù)與真實值的偏差受影像精度的影響。②評價因子的選取。評價因子的選取是確定滑坡主要影響因素,舍去無關因素、次要因素以及冗余因素的過程。高效的評價因子可以提高模型運算速率,大大簡化評價模型,從而提升預測結果的精度[2]。③評價單元的劃分?;乱装l(fā)性評價區(qū)劃結果是建立在評價單元劃分的基礎上完成的。評價單元是進行滑坡易發(fā)性評價最小的不可分割的單元,不同區(qū)域地質(zhì)環(huán)境條件的差異,導致其評價單元的劃分方式不同。因此,評價單元選取的合適與否直接影響評價結果的準確性。④評價模型的建立。評價模型的建立是進行區(qū)域滑坡易發(fā)性評價的核心內(nèi)容與難點所在,是將各評價因子所提供的離散數(shù)據(jù)、連續(xù)數(shù)據(jù)經(jīng)分析計算,揭露評價因子數(shù)據(jù)與滑坡災害發(fā)生的內(nèi)在聯(lián)系,綜合來判斷區(qū)域評價結果[3]。

針對以上難點問題,學者們已經(jīng)做了大量的研究。例如,于憲煜[4]強調(diào)要對評價因子的相關性進行研究,他采用皮爾森相關系數(shù)法對初步選取的58個與滑坡發(fā)生有關的影響因素進行分析處理,最終確定剩余18個相對獨立的影響因素作為評價因子。牛瑞卿等[5]采用遙感理論對初始評價因子進行相關約簡處理,剔出了冗余與干擾評價因子,最后得到了主要評價因子。楊盼盼等[6]采用網(wǎng)格單元作為最小評價單元,對西安臨潼區(qū)滑坡災害易發(fā)性進行預測研究,取得了較可靠的結果。尚慧等[7]根據(jù)水文學原理對DEM影像進行斜坡單元劃分,并將其用于彭陽縣滑坡易發(fā)性研究中。Milo Marjanovi等[8]采用多種機器學習算法對塞爾維亞的Fruka Gora區(qū)滑坡易發(fā)性進行評價。許沖等[9-11]采用多種二元統(tǒng)計學模型對多個區(qū)域滑坡進行預測。

上述學者在進行滑坡易發(fā)性評價研究時,存在以下2個方面的問題:①針對評價因子的選取,未考慮評價因子之間的相關性,或雖然考慮了因子間相關性,但未考慮因子的冗余度;②將歷史滑坡點與滑坡隱患點屬性數(shù)據(jù)統(tǒng)一用作評價因子的選取分析與評價模型的建立,并未考慮在滑坡隱患點判別過程中,可能會因為人的主觀認知缺陷,將非滑坡點錯誤地識別為滑坡隱患點,進而對評價因子的分析與模型的建立形成干擾,最終影響評價結果的準確性。因此,本文分別采用主成分分析法與皮爾森相關系數(shù)法對評價因子的冗余問題以及相關性問題進行分析。此外,根據(jù)野外實地調(diào)查,將研究區(qū)滑坡分為歷史滑坡與潛在滑坡2類,用歷史滑坡數(shù)據(jù)建立評價模型,用潛在滑坡數(shù)據(jù)驗證評價結果的準確性,進一步提高評價結果的預測精度。

1 研究區(qū)概況

丹鳳縣位于陜西省商洛東部,屬亞熱帶半濕潤—季風暖溫帶氣候區(qū),年降雨量為760 mm,多年平均氣溫13.8 ℃。總面積2 438 km2,區(qū)內(nèi)地貌屬秦嶺山地,海拔為+385~+2 021 m。區(qū)內(nèi)主要為元古界、泥盆系地層,沉積巖、火山巖及變質(zhì)巖均有發(fā)育。研究區(qū)處于秦嶺緯向構造帶北亞帶之南緣,長期在南北應力作用下形成東西向壓性斷裂為主的構造體系。區(qū)內(nèi)地下水主要類型有松散巖層孔隙水、基巖裂隙水以及巖溶水3類。由于境內(nèi)山高溝深,坡度陡峻,地質(zhì)構造復雜,巖體破碎,滑坡時有發(fā)生,呈現(xiàn)分布面廣、危害性大的特點,開展區(qū)內(nèi)滑坡易發(fā)性評價研究勢在必行。區(qū)內(nèi)歷史滑坡有150處,滑坡隱患有121處。滑坡主要以小型淺層堆積層滑坡為主。研究區(qū)所處地理位置以及滑坡分布如圖1所示。

圖1 研究區(qū)地理位置以及滑坡點分布Fig.1 Geographical location and landslide points distribution of the study area

2 信息量模型的建立

2.1 信息量模型的理論基礎

信息量模型是通過計算各評價因子對滑坡發(fā)生提供的信息量值,作為預測滑坡發(fā)生概率的定量指標。在進行滑坡易發(fā)性評價預測時,遵循如下基本觀點:預測或判斷滑坡發(fā)生概率與獲取的評價因子以及滑坡的數(shù)量和質(zhì)量有關[12],以信息量值為判定標準,信息量計算公式:

(1)

式中,I(Y,x1,x2,…,xn)為評價因子組合x1,x2,…,xn對滑坡發(fā)生所提供的信息量值;P(Y,x1,x2,…,xn)為評價因子組合x1,x2,…,xn對滑坡發(fā)生的概率。

2.2 信息量模型的建立

信息量模型的實現(xiàn)過程如下:

(1)計算評價因子xi對滑坡發(fā)生事件(K)所提供的信息量值I(xi,K):

(2)

式中,P(xi|K)為滑坡發(fā)生條件下,出現(xiàn)xi的先驗概率;P(xi)為研究區(qū)內(nèi)出現(xiàn)xi的概率。

式(2)求得的信息量值是理論解,而實際中多采用樣本的發(fā)生頻率代替概率來計算信息量值,如式(3):

(3)

式中,Ni為分布在評價因子xi內(nèi)的滑坡評價單元數(shù);N為滑坡所占評價單元數(shù);Si為包含評價因子xi的評價單元數(shù);S為研究區(qū)總評價單元數(shù)。

(2)計算評價單元內(nèi)n類評價因子疊加后對滑坡發(fā)生提供的總信息量值:

(4)

(3)某評價單元內(nèi)滑坡發(fā)生的概率值用總信息量指標Ii表示,Ii值越大,代表該單元內(nèi)滑坡發(fā)生概率越大,滑坡易發(fā)性越高。

3 評價因子的選取與分析

3.1 評價因子的初步選取

根據(jù)丹鳳縣地質(zhì)環(huán)境條件分析以及區(qū)內(nèi)典型滑坡的詳細勘查,初步選取高程、坡度、坡向、曲率、地形起伏度、高程變異系數(shù)、地表粗糙度、水系、斷層、年降雨量、地層年代、歸一化植被指數(shù)(Normalized Differential Vegetation Index,NDVI)、河流動能指數(shù)(Stream Power Index,SPI)以及地形濕度指數(shù)(Topographic Wetness Index,TWI)14類影響因子作為滑坡易發(fā)性評價因子。采用ArcGIS技術,分別從數(shù)字高程模型(DEM)、1∶5萬地質(zhì)圖、遙感影像圖等提取各評價因子圖層,如圖2所示。

圖2 滑坡評價因子圖層Fig.2 Landslide evaluation factor layer

3.2 評價因子的分析

本文根據(jù)野外實地調(diào)查,將滑坡分為歷史滑坡與滑坡隱患2類,提取滑坡評價因子屬性數(shù)據(jù),分別建立滑坡屬性數(shù)據(jù)庫。將歷史滑坡屬性數(shù)據(jù)庫作為評價因子分析的基礎數(shù)據(jù),分別采用主成分分析法與皮爾森相關系數(shù)法,分析評價因子的權重大小以及相關性。

3.2.1 主成分分析法

利用主成分分析法求得評價因子權重的實現(xiàn)流程如圖3所示。本文利用SPSS數(shù)學分析軟件主成分分析法對研究區(qū)歷史滑坡點的14類評價因子屬性數(shù)據(jù)進行分析處理,得到評價因子的解釋總方差及權重大小(圖4、表1)。

圖3 基于主成分分析法的評價因子權重實現(xiàn)流程Fig.3 Implementation process of evaluation factor weight based on principal component analysis

圖4 評價因子權重Fig.4 Weight of evaluation factors

表1 評價因子總方差解釋Tab.1 Interpretation of the total variance of the evaluation factor

主成分分析法是將多個線性相關的評價因子所構成的特征空間通過數(shù)學線性變換的方法進行降維處理,得到含有少數(shù)幾個各自獨立的綜合指標的低維空間,這些綜合指標被稱為主成分。在得到主成分后,通過建立成分矩陣求得各主成分線性組合中的系數(shù)的加權平均值,經(jīng)歸一化處理后,可以定量求得各原始變量的權重大小。從表1解釋總方差可以看出,初始特征值λi>1的成分有5個,這5個成分的累積方差占總方差的69.06%。因此,可以將這5個成分確定為原始變量的主成分,初始14類評價因子的信息可以綜合地利用這5個主成分變量來反映。從圖4中可以反映出14類評價因子的權重大小關系,其中TWI、地層年代、坡向、SPI所占權重分別為0.002、0.013、0.029及0.047,權重值均小于0.050。因此,剔除這4類評價因子,對剩余的10類評價因子做進一步處理。

3.2.2 皮爾森相關系數(shù)法

皮爾森相關系數(shù)法是用來衡量2個變量之間的線性相關程度的,通常用r表示,r的取值為-1~1。當r<0時,表示兩變量之間有負相關關系;當r=0時,表示兩變量之間無相關性,即變量間獨立;當r>0時,表示兩變量間有正相關關系。當|r|<0.3時,變量間呈微弱相關;當0.3≤|r|<0.5時,變量間呈低度相關;當0.5≤|r|<0.8時,變量間呈顯著相關;當|r|≥0.8時,變量間呈強相關。皮爾森相關系數(shù)計算公式如下:

(5)

本文將歷史滑坡作為樣本點,將以上剩余的10類評價因子作為樣本變量。將樣本點屬性數(shù)據(jù)代入SPSS軟件皮爾森相關性分析工具,得到各影響因素之間的相關性系數(shù)見表2。從表2可知,地表粗糙度、高程變異系數(shù)、地形起伏度與坡度之間的相關系數(shù)r的絕對值大于0.5,呈顯著相關或強相關。因此,剔除地表粗糙度、高程變異系數(shù)、地形起伏度3類評價因子,最終確定曲率、坡度、高程、至斷層距離、年降雨量、至水系距離、NDVI共7類評價因子作為研究區(qū)滑坡易發(fā)性評價指標。

表2 滑坡評價因子間相關系數(shù)Tab.2 Correlation coefficient among landslide evaluation factors

3.3 評價因子指標分級體系的建立

結合研究區(qū)滑坡發(fā)育特征,對選取的7類滑坡評價因子進行子類劃分,建立研究區(qū)滑坡評價因子指標分級體系,見表3。

表3 評價因子指標分級體系Tab.3 Correlation coefficient among landslide conditioning factors

4 基于信息量模型的滑坡易發(fā)性評價

4.1 評價單元的確定

評價單元的大小由多種因素決定,一般情況下,主要取決于專家系統(tǒng)。本文結合研究區(qū)面積、地形地貌以及原始數(shù)據(jù)等客觀情況,選取30 m×30 m的柵格單元作為評價單元。

4.2 評價因子的信息量值計算

根據(jù)以下公式計算評價因子的信息量值:

(6)

式中,Ni/Si為評價因子分級內(nèi)滑坡點的密度;N/S為研究區(qū)內(nèi)滑坡點的平均密度。

本文以丹鳳縣歷史滑坡數(shù)據(jù)為基礎,對各評價因子分級的信息量值進行計算,得到各評價因子分級的信息量值見表3。

4.3 評價結果與分析

采用ArcGIS重分類工具將研究區(qū)各評價因子圖層劃分為不同的分級分區(qū),然后將計算所得的分級信息量值賦值到對應分區(qū),再將各評價因子圖層進行柵格疊加計算,生成最終的研究區(qū)滑坡綜合信息量圖層,其信息量值為-5.99~3.11。采用自然間斷點法將其劃分為5個易發(fā)區(qū),分別為極低易發(fā)區(qū)(-5.99~-2.74)、低易發(fā)區(qū)(-2.74~-1.39)、中易發(fā)區(qū)(-1.39~0.24)、高易發(fā)區(qū)(0.24~0.90)、極高易發(fā)區(qū)(0.90~3.11),最終得到基于信息量模型的丹鳳縣滑坡易發(fā)性評價區(qū)劃圖,如圖5所示。

圖5 基于信息量模型的丹鳳縣滑坡易發(fā)性區(qū)劃Fig.5 Zoning of landslide susceptibility based on information model in Danfeng County

由圖5可知,丹鳳縣滑坡的分布特征如下:①滑坡的極高—高易發(fā)區(qū)主要分布于丹鳳縣南部山區(qū),面積為1 177.01 km2,占總面積的48.27%,歷史滑坡共發(fā)育有121處,占比為80.67%;②滑坡的中易發(fā)區(qū)面積為618.24 km2,占總面積的25.36%,歷史滑坡共發(fā)育有24處,占比為16.00%;③滑坡的極低—低易發(fā)區(qū)主要分布于丹鳳縣北部山區(qū),面積為642.75 km2,占總面積的26.36%,歷史滑坡共發(fā)育5處,占比為3.33%。

4.4 評價結果的檢驗

本文采用滑坡隱患點分布狀況對評價結果區(qū)劃圖進行檢驗。檢驗結果表明:在121處滑坡隱患點分布中,有93處落入極高—高易發(fā)區(qū),占比為76.85%;有23處落入中易發(fā)區(qū),占比為19.01%;有5處落入極低—低易發(fā)區(qū),占比為4.14%,檢驗結果較為滿意。

此外,針對極低—低易發(fā)區(qū)分布的5處滑坡隱患點,重點進行了野外實地考察,發(fā)現(xiàn)其中有4處滑坡發(fā)育特征并不明顯,可能存在識別錯誤。

5 結論

本文以丹鳳縣滑坡為研究對象,以GIS技術為實現(xiàn)手段,以信息量作為評價模型,開展丹鳳縣滑坡易發(fā)性評價研究。

(1)采用主成分分析法與皮爾森相關系數(shù)法對滑坡評價因子的權重以及相關性進行分析,結果表明:① TWI、地層年代、坡向、SPI所占權重分別為0.002、0.013、0.029及0.047,權重值均小于0.050,剔除這4類評價因子;②地表粗糙度、高程變異系數(shù)、地形起伏度與坡度之間呈顯著相關或強相關,剔除地表粗糙度、高程變異系數(shù)、地形起伏度3類評價因子,確定最終評價因子為曲率、坡度、高程、至斷層距離、年降雨量、至水系距離、NDVI共7類。

(2)建立信息量模型,利用自然間斷點法將丹鳳縣劃分為5個易發(fā)區(qū),分別為極低易發(fā)區(qū)(-5.99~-2.74)、低易發(fā)區(qū)(-2.74~-1.39)、中易發(fā)區(qū)(-1.39~0.24)、高易發(fā)區(qū)(0.24~0.90)、極高易發(fā)區(qū)(0.90~3.11),生成最終的丹鳳縣滑坡易發(fā)性評價區(qū)劃圖。

(3)丹鳳縣歷史滑坡的分布特征如下:①滑坡的極高—高易發(fā)區(qū)主要分布于丹鳳縣南部山區(qū),面積為1 177.01 km2,占總面積的48.27%,歷史滑坡共發(fā)育有121處,占比為80.67%;②滑坡的中易發(fā)區(qū)面積為618.24 km2,占總面積的25.36%,歷史滑坡共發(fā)育有24處,占比為16.00%;③滑坡的極低—低易發(fā)區(qū)主要分布于丹鳳縣北部山區(qū),面積為642.75 km2,占總面積的26.36%,歷史滑坡共發(fā)育5處,占比為3.33%。

(4)采用滑坡隱患點分布狀況對評價結果區(qū)劃圖進行檢驗。檢驗結果表明:在121處滑坡隱患點分布中,有93處落入極高—高易發(fā)區(qū),占比為76.85%;有23處落入中易發(fā)區(qū),占比為19.01%;有5處落入極低—低易發(fā)區(qū),占比為4.14%,檢驗結果較為滿意。

(5)針對極低—低易發(fā)區(qū)分布的5處滑坡隱患點,本文重點進行了野外實地考察,發(fā)現(xiàn)其中有4處滑坡發(fā)育特征并不明顯,可能存在識別錯誤。研究可以為滑坡易發(fā)性評價提供一定的參考。

猜你喜歡
易發(fā)信息量滑坡
2001~2016年香港滑坡與降雨的時序特征
機用鎳鈦銼在乳磨牙根管治療中的應用
貴州省地質(zhì)災害易發(fā)分區(qū)圖
重磅!廣東省發(fā)文,全面放開放寬落戶限制、加大住房供應……信息量巨大!
夏季羊易發(fā)疾病及防治方法
冬季雞腸炎易發(fā) 科學防治有方法
淺談公路滑坡治理
走出初中思想品德課的困擾探討
“監(jiān)管滑坡”比“渣土山”滑坡更可怕
讓多媒體技術在語文課堂飛揚