白興芹
【摘要】加強小學(xué)生各項思維能力的培養(yǎng),是小學(xué)數(shù)學(xué)學(xué)科教學(xué)面臨的重要課題.其中,培養(yǎng)學(xué)生逆向思維能力可以提高學(xué)生數(shù)學(xué)學(xué)習(xí)思維的靈活性,鍛煉學(xué)生創(chuàng)造性學(xué)習(xí)能力,對學(xué)生數(shù)學(xué)學(xué)科學(xué)習(xí)成效提高、數(shù)學(xué)學(xué)習(xí)方法改善、數(shù)學(xué)學(xué)習(xí)能力發(fā)展都有著積極促進作用.教師要善于利用引導(dǎo)逆向敘述、設(shè)計逆向轉(zhuǎn)換、關(guān)注逆向訓(xùn)練等手段,循序漸進地培養(yǎng)和鍛煉學(xué)生逆向思維能力,提升學(xué)生數(shù)學(xué)思維品質(zhì).
【關(guān)鍵詞】小學(xué)數(shù)學(xué);逆向思維;能力培養(yǎng);教學(xué)研究
小學(xué)階段是學(xué)生思維能力發(fā)展的黃金時期,數(shù)學(xué)學(xué)科教學(xué)責(zé)無旁貸地肩負(fù)著培養(yǎng)學(xué)生多維度、多方面思維能力的教學(xué)使命.逆向思維能力屬于一種高階思維,加強小學(xué)生逆向思維塑造,可以豐富學(xué)生的數(shù)學(xué)思維方法,拓寬學(xué)生數(shù)學(xué)認(rèn)知視野,讓學(xué)生在順向思維和逆向思維的協(xié)同配合下,更加深入地把握數(shù)學(xué)學(xué)習(xí)知識.教師要深入了解班級學(xué)生的認(rèn)知基礎(chǔ)和能力要素,在數(shù)學(xué)課堂實際教學(xué)中,有意識地將各類逆向思維訓(xùn)練方法和教學(xué)手段滲透到課堂活動中,調(diào)度多種教學(xué)要素的支持配合,給學(xué)生帶來更多學(xué)習(xí)啟發(fā).
一、引導(dǎo)逆向敘述,鍛煉學(xué)生認(rèn)知能力
數(shù)學(xué)逆向思維能力要從“說”做起.教師要通過數(shù)學(xué)說理活動、啟發(fā)學(xué)生進行數(shù)學(xué)因果剖析表述等方式,為學(xué)生逆向敘述所學(xué)內(nèi)容搭建平臺,鍛煉學(xué)生數(shù)學(xué)認(rèn)知能力,樹立學(xué)生逆向思維意識.
1.開展數(shù)學(xué)說理活動
小學(xué)階段學(xué)習(xí)的數(shù)學(xué)知識內(nèi)容,大都是以順向表述的形式進行呈現(xiàn)的,小學(xué)生認(rèn)識和理解這些數(shù)學(xué)知識時,也依賴于順向思維能力.教師要以引導(dǎo)逆向敘述為目標(biāo),開展各類數(shù)學(xué)說理活動,使學(xué)生能夠走出單一化的思考模式,擺脫思維定式的影響.數(shù)學(xué)說理活動需要發(fā)揮學(xué)生的主觀能動性,教師要在說理教學(xué)過程中做好課堂留白,鼓勵學(xué)生大膽嘗試,用順向、逆向兩種方式展開數(shù)學(xué)說理.小學(xué)生受限于思維能力和表達(dá)能力,在逆向敘述時難免會出現(xiàn)表述不準(zhǔn)確、邏輯不清晰的問題,教師要包容學(xué)生的這些錯誤,加強學(xué)生逆向敘述的思維引領(lǐng),教會學(xué)生必要的逆向敘述方法.
教師要兼顧說理活動的自主性和啟發(fā)性,根據(jù)學(xué)生逆向敘述的動態(tài)學(xué)習(xí)過程,在恰當(dāng)?shù)臅r候進行必要的課堂指導(dǎo),培養(yǎng)學(xué)生數(shù)學(xué)說理能力.人教版四年級下冊“小數(shù)點移動”小節(jié)教學(xué)中,教材以順向表述形式,向?qū)W生介紹了“小數(shù)點向右移動一位、兩位、三位……后,小數(shù)大小會隨之?dāng)U大到原來的10倍、100倍、1000倍……”的數(shù)學(xué)規(guī)律.學(xué)生知識理解掌握較為順利,都能根據(jù)小數(shù)點的變化情況,正確分析該小數(shù)擴大的倍數(shù).教師完成這些基礎(chǔ)性知識教學(xué)后,設(shè)計開展數(shù)學(xué)說理活動,以教材中的順向表述方式為起點,啟發(fā)學(xué)生思考:如果一個小數(shù)分別擴大到原來的10倍、100倍、1000倍……那么該小數(shù)的小數(shù)點分別向什么方向移動了幾位?教師鼓勵學(xué)生大膽發(fā)言,結(jié)合所學(xué)知識解決該問題,通過數(shù)學(xué)說理活動,讓學(xué)生從順向、逆向兩個維度構(gòu)建數(shù)學(xué)新知,促使學(xué)生對小數(shù)點移動與小數(shù)數(shù)值大小變化的關(guān)系建立更加深刻的理解.
2.啟發(fā)數(shù)學(xué)因果剖析
數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)公式由“因”到“果”的思維過程,能夠讓學(xué)生明確數(shù)學(xué)知識的形成過程和本質(zhì)內(nèi)涵,強化學(xué)生順向思維能力,而由“果”到“因”的思維剖析,則可以鍛煉學(xué)生逆向分析能力,發(fā)散學(xué)生數(shù)學(xué)學(xué)習(xí)思維.教師要善于啟發(fā)學(xué)生進行數(shù)學(xué)因果剖析學(xué)習(xí),引導(dǎo)學(xué)生整體把握數(shù)學(xué)知識的“因”“果”要素,從數(shù)學(xué)結(jié)果出發(fā),反向推導(dǎo)數(shù)學(xué)原因的合理性和正確性,培養(yǎng)學(xué)生反思學(xué)習(xí)意識.特別是在數(shù)學(xué)問題教學(xué)中,讓學(xué)生結(jié)合解題結(jié)果,再次回歸到數(shù)學(xué)問題當(dāng)中,倒推題干中的數(shù)量關(guān)系,可以讓學(xué)生快速找到解題的關(guān)鍵要素,提高學(xué)生分析問題、解決問題的能力.
教師要精心挑選數(shù)學(xué)課堂教學(xué)素材,從中選擇出思維性較強的數(shù)學(xué)問題,以高質(zhì)量的數(shù)學(xué)問題為抓手,啟發(fā)學(xué)生開展數(shù)學(xué)因果剖析活動.教學(xué)“積的變化規(guī)律”時,在教師的課堂引領(lǐng)下,學(xué)生通過循序漸進的探究學(xué)習(xí)活動,能夠認(rèn)識到乘法算式的積會隨著因數(shù)擴大、縮小而擴大、縮小,掌握乘法算式積的變化規(guī)律.課堂總結(jié)提升環(huán)節(jié)當(dāng)中,一般的題目設(shè)計是選擇一個基礎(chǔ)算式,通過改變其中一個因數(shù)的大小,讓學(xué)生推斷積的大小變化.這種題目設(shè)計更注重的是鞏固學(xué)生數(shù)學(xué)知識基礎(chǔ),但對學(xué)生思維能力的訓(xùn)練效果有限.教師可以創(chuàng)新數(shù)學(xué)題目設(shè)計,以16×9=144作為基礎(chǔ)算式,將積分別乘2,乘3除以2,除以3,讓學(xué)生列出因數(shù)的變化情況.這樣的題目設(shè)計與學(xué)生課堂新知建構(gòu)時采用的順向思維習(xí)慣相沖突,能夠鍛煉學(xué)生分析題目關(guān)鍵信息,梳理數(shù)量關(guān)系的能力,培養(yǎng)學(xué)生用逆向思維思考和解決問題的學(xué)習(xí)習(xí)慣.
二、設(shè)計逆向轉(zhuǎn)換,重建學(xué)生認(rèn)知體系
小學(xué)生逆向思維能力的培養(yǎng)需要更多數(shù)學(xué)教學(xué)元素的輔助,教師要從數(shù)學(xué)新舊知識聯(lián)系點、學(xué)生生活認(rèn)知素材等有效資源切入,設(shè)計逆向轉(zhuǎn)換的思維教學(xué)活動,引導(dǎo)學(xué)生重建數(shù)學(xué)認(rèn)知體系,提高數(shù)學(xué)學(xué)習(xí)效率.
1.彰顯新舊知識關(guān)聯(lián)
小學(xué)數(shù)學(xué)學(xué)科教學(xué)內(nèi)容涉及數(shù)學(xué)計算、圖形幾何、函數(shù)方程、統(tǒng)計分析等多個領(lǐng)域,面對這些錯綜復(fù)雜的數(shù)學(xué)知識,教師一味采用傳統(tǒng)教學(xué)模式展開課堂,必然會對學(xué)生知識掌握程度和實際應(yīng)用效果造成影響,限制學(xué)生數(shù)學(xué)學(xué)科學(xué)習(xí)成效.人教版小學(xué)數(shù)學(xué)教材的內(nèi)容編排體現(xiàn)出了很強的系統(tǒng)性和層次性,教師要深入研究編者的編排意圖,主動挖掘、整合數(shù)學(xué)新舊知識間的聯(lián)系點,用數(shù)學(xué)知識間的關(guān)聯(lián)性,設(shè)計一些逆向轉(zhuǎn)換的學(xué)習(xí)活動,使數(shù)學(xué)舊知成為學(xué)生數(shù)學(xué)新知建構(gòu)的立足點,數(shù)學(xué)新知則成為學(xué)生數(shù)學(xué)舊知延展的生長點,觸發(fā)學(xué)生數(shù)學(xué)課堂深度學(xué)習(xí).
鏈接數(shù)學(xué)新舊知識時,教師要明確培養(yǎng)學(xué)生逆向思維能力的主要目標(biāo),把教學(xué)目光更多地放在新舊知識“互逆性”上,讓學(xué)生從數(shù)學(xué)知識間的逆向轉(zhuǎn)換展開思考.人教版三年級上冊“倍的認(rèn)識”單元內(nèi)容由兩個小節(jié)構(gòu)成,分別是“求一個數(shù)是另一個數(shù)的幾倍”“求一個數(shù)的幾倍是多少”,前后兩個小節(jié)的教學(xué)內(nèi)容具有明顯的“互逆性”.教師在第二課時“求一個數(shù)的幾倍是多少”知識教學(xué)中,要有意識地鏈接上一課時的教學(xué)內(nèi)容,例如,列舉出“8是2的4倍”這一簡單的數(shù)學(xué)實例,讓學(xué)生由此展開數(shù)學(xué)遷移學(xué)習(xí),思考:2的4倍是多少?有了感性認(rèn)知素材的支撐,學(xué)生新知建構(gòu)自然不成問題,很快就能利用新舊知識的聯(lián)系點,完成知識遷移.教師要設(shè)計逆向轉(zhuǎn)換思考問題,把學(xué)生已有認(rèn)知作為新知生成的遷移學(xué)習(xí)出發(fā)點,學(xué)生新知建構(gòu)后,又能對之前學(xué)習(xí)的內(nèi)容形成更深入的理解,達(dá)到一舉多得的教學(xué)成效.
2.對接生活認(rèn)知素材
數(shù)學(xué)學(xué)科教學(xué)與學(xué)生日常生活有著諸多契合點,學(xué)生逆向思維能力的培養(yǎng)也不例外.教師要有意識地對接生活當(dāng)中的數(shù)學(xué)認(rèn)知素材,用學(xué)生熟悉的生活現(xiàn)象、生活問題等資源,拉近數(shù)學(xué)知識學(xué)習(xí)與學(xué)生已有認(rèn)知經(jīng)驗的距離,為學(xué)生感知數(shù)學(xué)新知營造真實的學(xué)習(xí)場景,使學(xué)生在生活情境中展開積極思考,為培養(yǎng)學(xué)生逆向思維能力提供便利.教師可以把需要學(xué)生逆向剖析的數(shù)量關(guān)系融入生活化的問題設(shè)計、情境設(shè)計,利用學(xué)生的生活經(jīng)驗,將這些數(shù)量關(guān)系更直接、更直觀地呈現(xiàn)出來,簡化數(shù)量關(guān)系的理解難度,使學(xué)生思維展開更具清晰性,邏輯思維更具縝密性,促進學(xué)生逆向思維能力成長.
生活認(rèn)知素材的投放要以生動的教學(xué)情境為支撐,教師要做好教學(xué)內(nèi)容整體設(shè)計,對創(chuàng)設(shè)情境的生活素材有所取舍,使其更好地為學(xué)生逆向思維能力培養(yǎng)服務(wù).在“位置與方向”第一課時“認(rèn)識東、南、西、北四個方向”教學(xué)中,教學(xué)內(nèi)容對學(xué)生來說并不陌生,學(xué)生生活中經(jīng)常會聽到、見到用東、南、西、北介紹方向的真實場景.教師可以把少部分課堂時間放在新知演繹中,待學(xué)生系統(tǒng)性掌握這四個方向后,開展“相反方向小游戲”,要求學(xué)生根據(jù)教師的說法,回答出與之相反的表述內(nèi)容.例如,教師說出向南走5米,學(xué)生就要回答向北走5米,利用充滿趣味性的游戲活動,營造輕松的課堂學(xué)習(xí)氛圍,在鞏固學(xué)生課堂學(xué)習(xí)數(shù)學(xué)基礎(chǔ)知識的同時,也鍛煉了學(xué)生逆向思維能力和反應(yīng)力,提高了學(xué)生的思維應(yīng)變能力.
三、關(guān)注逆向訓(xùn)練,提升學(xué)生認(rèn)知素養(yǎng)
教師要關(guān)注逆向思維能力的有效訓(xùn)練,在課堂新知演繹環(huán)節(jié)、鞏固提升環(huán)節(jié)設(shè)計數(shù)學(xué)公式或問題對比的逆向訓(xùn)練活動,讓學(xué)生得到豐富的逆向?qū)W習(xí)體驗,提升學(xué)生的數(shù)學(xué)認(rèn)知素養(yǎng),鍛煉學(xué)生數(shù)學(xué)應(yīng)用的綜合性和靈活性.
1.設(shè)計公式逆向訓(xùn)練
各類數(shù)學(xué)公式無疑是小學(xué)階段非常重要的一部分教學(xué)內(nèi)容.在愈發(fā)強調(diào)學(xué)生多元思維能力,注重學(xué)生解題思維系統(tǒng)化、綜合化的當(dāng)下,數(shù)學(xué)公式知識講解和訓(xùn)練設(shè)計絕不能停留在生搬硬套、死記硬背的低層次階段,教師需要全面深化學(xué)生數(shù)學(xué)公式的認(rèn)知理解,提高學(xué)生公式應(yīng)用的技巧性,使學(xué)生能夠靈活運用所學(xué)公式內(nèi)容,準(zhǔn)確解決數(shù)學(xué)問題.教師要設(shè)計數(shù)學(xué)公式的逆向訓(xùn)練活動,從順向、逆向兩個方面,啟發(fā)學(xué)生把同一個數(shù)學(xué)公式演變成兩個、三個,甚至更多的變形公式,彰顯數(shù)學(xué)公式的學(xué)習(xí)價值,強化學(xué)生學(xué)習(xí)意志,引導(dǎo)學(xué)生由公式本身發(fā)散思維,制訂和建構(gòu)更為合理的數(shù)學(xué)問題解題模式.
數(shù)學(xué)公式逆向訓(xùn)練,需要學(xué)生本身就具備一定逆向思維能力,教師要科學(xué)把關(guān)數(shù)學(xué)問題難度,使其不至于難度過高,造成學(xué)生解題思維混亂,避免學(xué)生“學(xué)不得法”的情況.學(xué)習(xí)了長方形、正方形的面積計算公式后,學(xué)生能夠運用面積公式,很輕松地解決給定長方形、正方形邊長,求解長方形、正方形面積的問題.教師可適當(dāng)提高問題難度,如給定長方形面積和一個邊長,讓學(xué)生求解長方形另一邊長;給定正方形面積,讓學(xué)生求解正方形邊長的數(shù)學(xué)問題,考查學(xué)生對面積公式的逆運算能力.對學(xué)有余力的學(xué)生,教師還可以設(shè)計一些給定正方形周長,讓學(xué)生求解正方形面積等綜合性較強的數(shù)學(xué)問題,提高對學(xué)生逆向思維能力培養(yǎng)力度,滿足不同層次學(xué)生的訓(xùn)練學(xué)習(xí)需求.
2.設(shè)計對比逆向訓(xùn)練
小學(xué)數(shù)學(xué)問題的考查形式愈發(fā)復(fù)雜化、創(chuàng)新化,各類新題型、新問法成為數(shù)學(xué)題目設(shè)計主流.小學(xué)生受思維定式的影響,在面對各種新穎的數(shù)學(xué)問題時,往往難以發(fā)現(xiàn)這些問題類型蘊含的思維規(guī)律,常常出現(xiàn)各種解題錯誤.教師著眼這些新題型的專項技巧訓(xùn)練,從數(shù)學(xué)學(xué)科教學(xué)的固有特點出發(fā),組織學(xué)生對多種類型數(shù)學(xué)問題展開對比分析,引導(dǎo)學(xué)生根據(jù)自身的解題習(xí)慣和解題能力,深入探究不同數(shù)學(xué)題型的考查方式和解題思路,用復(fù)雜多變的數(shù)學(xué)問題類型,沖擊學(xué)生固有解題思維,促使學(xué)生有針對性地調(diào)整解題方案,靈活解決不同類型的數(shù)學(xué)問題,提升學(xué)生數(shù)學(xué)思維品質(zhì).
數(shù)學(xué)問題的對比訓(xùn)練,對數(shù)學(xué)問題的選擇提出更高要求,教師要在現(xiàn)有問題素材基礎(chǔ)上,積極進行題目改編,確保數(shù)學(xué)問題素材的代表性,提高數(shù)學(xué)訓(xùn)練活動的切合性.針對四年級學(xué)生的“四則運算”題目設(shè)計中,教師可設(shè)置口算題、簡算題、計算題、文字?jǐn)⑹鲱}、應(yīng)用題等不同題目形式考查學(xué)生四則運算能力.例如,計算題982-131×5,可以演變成“從982里減去131的5倍,差是多少”或“982與327的差,是131的幾倍”的文字?jǐn)⑹鲱},用靈活的變式設(shè)計,引導(dǎo)學(xué)生從多個思維角度切入數(shù)學(xué)問題的分析、解決,這不僅可以豐富學(xué)生的數(shù)學(xué)解題方法,鍛煉學(xué)生數(shù)學(xué)解題能力,也可以拓寬學(xué)生數(shù)學(xué)解題思維的廣度和深度,使學(xué)生不局限于某一個固定的思維套路當(dāng)中,有利于學(xué)生逆向思維能力的發(fā)展.
小學(xué)數(shù)學(xué)學(xué)科學(xué)習(xí)中,涉及多個領(lǐng)域的概念知識、數(shù)學(xué)問題,這些知識的準(zhǔn)確建構(gòu)和問題的正確解答,都需要正確、有效的思維方法、思維能力作支撐.教師要積極探索培養(yǎng)學(xué)生逆向思維能力的有效途徑,在引導(dǎo)逆向敘述中,鍛煉學(xué)生數(shù)學(xué)認(rèn)知能力;在設(shè)計逆向轉(zhuǎn)換中,重建學(xué)生數(shù)學(xué)認(rèn)知體系;在關(guān)注逆向訓(xùn)練中,提升學(xué)生數(shù)學(xué)認(rèn)知素養(yǎng),利用多元化的數(shù)學(xué)教學(xué)手段,為學(xué)生感知逆向思維方法,形成逆向思維能力搭建學(xué)習(xí)平臺,落實培養(yǎng)學(xué)生多元思維能力的數(shù)學(xué)學(xué)科教學(xué)目標(biāo).
【參考文獻(xiàn)】[1]朱麗.小學(xué)階段如何通過數(shù)學(xué)教學(xué)培養(yǎng)學(xué)生思維[J].新課程,2020(48):195-196.
[2]王志艷.默會知識:提升數(shù)學(xué)思維能力的策略[J].小學(xué)教學(xué)參考,2020(35):36-38.
[3]劉代娣.揚思維風(fēng)帆 推數(shù)學(xué)成長:談小學(xué)生數(shù)學(xué)思維能力的培養(yǎng)策略[J].學(xué)苑教育,2020(31):43-44.